Riemannian Geometry – Lecture 18 Homogeneous Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Riemannian Geometry – Lecture 18 Homogeneous Spaces Riemannian Geometry – Lecture 18 Homogeneous spaces Dr. Emma Carberry September 21, 2015 Example 18.1. Proposition The Lie group SO(n + 1) acts smoothly on the unit sphere Sn. For every p 2 Sn the isotropy subgroup is conjugate to SO(n). Hence Sn is a homogeneous space and is diffeomorphic to the quotient manifold SO(n + 1)=SO(n). Here we are identifying SO(n) with its image under the embedding SO(n) ! SO(n + 1) ! 1 0 A 7! 0 A Example 18.1 (Continued). Proof: The action n+1 n+1 SO(n + 1) × R ! R (g; p) 7! g · p preserves the Euclidean inner product and hence gives an action SO(n + 1) × Sn ! Sn; which is clearly smooth. Example 18.1 (Continued). To see that the action is transitive, note that it suffices to show that n for any p 2 S , we may find g 2 SO(n + 1) such that ge1 = p. n n But given p 2 S , we may take v2; : : : ; vn+1 2 S such that v1 = p; v2; : : : ; vn+1 is an orthonor- mal basis of Rn+1 with the same orientation as the standard basis. Then g 2 SO(n + 1) defined by j vi = gi ej; satisfies p = ge1. 1 Example 18.1 (Continued). The isotropy subgroup SO(n + 1)e1 (i.e. the subgroup fixing e1) clearly contains ! 1 SO(n) = : SO(n) j Conversely, suppose e1 = g · e1 = g1ej. Then 1 j g1 = 1 and g1 = 0 for j 6= 1: Since g 2 SO(n + 1) ⊂ O(n + 1), g tg = I, so X 1 2 (gj ) = 1 j 1 1 and as g1 = 1 this gives gj = 0 for j 6= 1. Proposition 18.2. Let H be a closed subgroup of the Lie group G and suppose that H and G=H are connected. Then G is connected. Proof: Suppose G = U [ V for ;= 6 U; V open subsets of G: Writing π : G ! G=H for the projection then G=H = π(U) [ π(V ) and ; 6= π(U); π(V ) open subsets of G=H: Since G=H is connected, for some g 2 G we have gH 2 π(U) \ π(V ): Since G = U [ V then gH = (gH \ U) [ (gH \ V ): Since gH ∼= H inherits its topology from G, these are open subsets of gH and since H is connected, (gH \ U) \ (gH \ V ) 6= ; so U \ V 6= ; so G is connected. Corollary 18.3. SO(n) is connected for all n ≥ 1. 2 Proof. We use induction on n. SO(1) is a single point so clearly connected. Then from the above proposition and the fact that Sn is connected, the result follows. Corollary 18.4. O(n) has two connected components for all n ≥ 1. Proof. The map R : SO(n) ! O(n) g 7! Ag where 0 1 −1 B C B 1 C B C B C A = B 1 C B C B · C @ A 1 is a homeomorphism from SO(n) to the subset of O(n) consisting of matrices of determinant −1. O(n) = SO(n) [ R(SO(n)) then expresses O(n) as the union of two open, nonempty, disjoint connected subsets. Example 18.5. Proposition The Lie group O(n + 1) acts smoothly on the unit sphere Sn. For every p 2 Sn the isotropy subgroup is conjugate to O(n). Hence Sn is a homogeneous space and is diffeomorphic to the quotient manifold O(n + 1)=O(n). Proof: Exercise Active Learning Question 18.6. Show that the Lie group U(n + 1) acts transitively on the sphere S2n+1, and for each p 2 S2n+1 the isotropy subgroup is conjugate to U(n). Hence the sphere S2n+1 is a homogeneous space and is diffeomorphic to U(n + 1)=U(n). Again, we may replace the unitary group by the special unitary group in this example and hence obtain that S2n+1 is diffeomorphic to SU(n + 1)=SU(n). Taking n = 1, note that SU(1) consists of a single point, the identity matrix, and hence S3 is diffeomorphic to the Lie group SU(2). In fact S3 and S1 are the only spheres which admit Lie group structures. 3 Example 18.8 ( Real projective space, RPn). Recall that RPn is the space of lines through the origin in Rn+1. Equivalently, n+1 n f0g n = R ; RP ∼ where 0 1 n 0 1 n (X ;X ;:::;X ) ∼ λ(X ;X ;:::;X ); λ 2 R n f0g: We write the equivalence class of (X0;X1;:::;Xn) as [X0 : X1 : ::: : Xn]. Example 18.8 (Continued). The natural projection n+1 n R n f0g ! RP (X0;X1;:::;Xn) 7! [X0 : X1 : ::: : Xn] restricts to Sn to exhibit Sn as a double cover of RPn. That is, we have a diffeomorphism n ∼ n S = ∼ = RP : Example 18.8 (Continued). We have Sn ∼= SO(n + 1)=SO(n) ∼= O(n + 1)=O(n) n n S is a double cover of RP O(n) is a double cover of SO(n): This suggests trying to show that n RP is diffeomorphic to SO(n + 1)=O(n): Example 18.8 (Continued). Identify O(n) with its image under the embedding O(n) ! SO(n + 1) ! det A A 7! : A Using the identification n ∼ n S = ∼ = RP we have a smooth transitive action of SO(n + 1) on RPn. Exercise 18.9. Show that the isotropy group of [1 : 0 ::: : 0] is O(n) . 4 Example 18.10 (Complex projective space, CPn). CPn is the space of complex lines through the origin in Cn+1. Equivalently, n+1 n f0g n = C ; CP ∼ where 0 1 n 0 1 n (X ;X ;:::;X ) ∼ λ(X ;X ;:::;X ); λ 2 C n f0g: We write the equivalence class of (X0;X1;:::;Xn) as [X0 : X1 : ::: : Xn]. The proof that CPn is a smooth manifold of real dimension 2n is completely analogous to the argument for real projective space. Exercise 18.11. Show that CPn is a homogeneous manifold diffeomorphic to SU(n+1)=S(U(1)× U(n)). 5.
Recommended publications
  • Differentiable Manifolds
    Prof. A. Cattaneo Institut f¨urMathematik FS 2018 Universit¨atZ¨urich Differentiable Manifolds Solutions to Exercise Sheet 1 p Exercise 1 (A non-differentiable manifold). Consider R with the atlas f(R; id); (R; x 7! sgn(x) x)g. Show R with this atlas is a topological manifold but not a differentiable manifold. p Solution: This follows from the fact that the transition function x 7! sgn(x) x is a homeomor- phism but not differentiable at 0. Exercise 2 (Stereographic projection). Let f : Sn − f(0; :::; 0; 1)g ! Rn be the stereographic projection from N = (0; :::; 0; 1). More precisely, f sends a point p on Sn different from N to the intersection f(p) of the line Np passing through N and p with the equatorial plane xn+1 = 0, as shown in figure 1. Figure 1: Stereographic projection of S2 (a) Find an explicit formula for the stereographic projection map f. (b) Find an explicit formula for the inverse stereographic projection map f −1 (c) If S = −N, U = Sn − N, V = Sn − S and g : Sn ! Rn is the stereographic projection from S, then show that (U; f) and (V; g) form a C1 atlas of Sn. Solution: We show each point separately. (a) Stereographic projection f : Sn − f(0; :::; 0; 1)g ! Rn is given by 1 f(x1; :::; xn+1) = (x1; :::; xn): 1 − xn+1 (b) The inverse stereographic projection f −1 is given by 1 f −1(y1; :::; yn) = (2y1; :::; 2yn; kyk2 − 1): kyk2 + 1 2 Pn i 2 Here kyk = i=1(y ) .
    [Show full text]
  • Arxiv:1507.08163V2 [Math.DG] 10 Nov 2015 Ainld C´Ordoba)
    GEOMETRIC FLOWS AND THEIR SOLITONS ON HOMOGENEOUS SPACES JORGE LAURET Dedicated to Sergio. Abstract. We develop a general approach to study geometric flows on homogeneous spaces. Our main tool will be a dynamical system defined on the variety of Lie algebras called the bracket flow, which coincides with the original geometric flow after a natural change of variables. The advantage of using this method relies on the fact that the possible pointed (or Cheeger-Gromov) limits of solutions, as well as self-similar solutions or soliton structures, can be much better visualized. The approach has already been worked out in the Ricci flow case and for general curvature flows of almost-hermitian structures on Lie groups. This paper is intended as an attempt to motivate the use of the method on homogeneous spaces for any flow of geometric structures under minimal natural assumptions. As a novel application, we find a closed G2-structure on a nilpotent Lie group which is an expanding soliton for the Laplacian flow and is not an eigenvector. Contents 1. Introduction 2 1.1. Geometric flows on homogeneous spaces 2 1.2. Bracket flow 3 1.3. Solitons 4 2. Some linear algebra related to geometric structures 5 3. The space of homogeneous spaces 8 3.1. Varying Lie brackets viewpoint 8 3.2. Invariant geometric structures 9 3.3. Degenerations and pinching conditions 11 3.4. Convergence 12 4. Geometric flows 13 arXiv:1507.08163v2 [math.DG] 10 Nov 2015 4.1. Bracket flow 14 4.2. Evolution of the bracket norm 18 4.3.
    [Show full text]
  • Topics on the Geometry of Homogeneous Spaces
    TOPICS ON THE GEOMETRY OF HOMOGENEOUS SPACES LAURENT MANIVEL Abstract. This is a survey paper about a selection of results in complex algebraic geometry that appeared in the recent and less recent litterature, and in which rational homogeneous spaces play a prominent r^ole.This selection is largely arbitrary and mainly reflects the interests of the author. Rational homogeneous varieties are very special projective varieties, which ap- pear in a variety of circumstances as exhibiting extremal behavior. In the quite re- cent years, a series of very interesting examples of pairs (sometimes called Fourier- Mukai partners) of derived equivalent, but not isomorphic, and even non bira- tionally equivalent manifolds have been discovered by several authors, starting from the special geometry of certain homogeneous spaces. We will not discuss derived categories and will not describe these derived equivalences: this would require more sophisticated tools and much ampler discussions. Neither will we say much about Homological Projective Duality, which can be considered as the unifying thread of all these apparently disparate examples. Our much more modest goal will be to describe their geometry, starting from the ambient homogeneous spaces. In order to do so, we will have to explain how one can approach homogeneous spaces just playing with Dynkin diagram, without knowing much about Lie the- ory. In particular we will explain how to describe the VMRT (variety of minimal rational tangents) of a generalized Grassmannian. This will show us how to com- pute the index of these varieties, remind us of their importance in the classification problem of Fano manifolds, in rigidity questions, and also, will explain their close relationships with prehomogeneous vector spaces.
    [Show full text]
  • Fixed Point Free Involutions on Cohomology Projective Spaces
    Indian J. pure appl. Math., 39(3): 285-291, June 2008 °c Printed in India. FIXED POINT FREE INVOLUTIONS ON COHOMOLOGY PROJECTIVE SPACES HEMANT KUMAR SINGH1 AND TEJ BAHADUR SINGH Department of Mathematics, University of Delhi, Delhi 110 007, India e-mail: tej b [email protected] (Received 22 September 2006; after final revision 24 January 2008; accepted 14 February 2008) Let X be a finitistic space with the mod 2 cohomology ring isomorphic to that of CP n, n odd. In this paper, we determine the mod 2 cohomology ring of the orbit space of a fixed point free involution on X. This gives a classification of cohomology type of spaces with the fundamental group Z2 and the covering space a complex projective space. Moreover, we show that there exists no equivariant map Sm ! X for m > 2 relative to the antipodal action on Sm. An analogous result is obtained for a fixed point free involution on a mod 2 cohomology real projective space. Key Words: Projective space; free action; cohomology algebra; spectral sequence 1. INTRODUCTION Suppose that a topological group G acts (continuously) on a topological space X. Associated with the transformation group (G; X) are two new spaces: The fixed point set XG = fx²Xjgx = x; for all g²Gg and the orbit space X=G whose elements are the orbits G(x) = fgxjg²Gg and the topology is induced by the natural projection ¼ : X ! X=G; x ! G(x). If X and Y are G-spaces, then an equivariant map from X to Y is a continuous map Á : X ! Y such that gÁ(x) = Ág(x) for all g²G; x 2 X.
    [Show full text]
  • The Real Projective Spaces in Homotopy Type Theory
    The real projective spaces in homotopy type theory Ulrik Buchholtz Egbert Rijke Technische Universität Darmstadt Carnegie Mellon University Email: [email protected] Email: [email protected] Abstract—Homotopy type theory is a version of Martin- topology and homotopy theory developed in homotopy Löf type theory taking advantage of its homotopical models. type theory (homotopy groups, including the fundamen- In particular, we can use and construct objects of homotopy tal group of the circle, the Hopf fibration, the Freuden- theory and reason about them using higher inductive types. In this article, we construct the real projective spaces, key thal suspension theorem and the van Kampen theorem, players in homotopy theory, as certain higher inductive types for example). Here we give an elementary construction in homotopy type theory. The classical definition of RPn, in homotopy type theory of the real projective spaces as the quotient space identifying antipodal points of the RPn and we develop some of their basic properties. n-sphere, does not translate directly to homotopy type theory. R n In classical homotopy theory the real projective space Instead, we define P by induction on n simultaneously n with its tautological bundle of 2-element sets. As the base RP is either defined as the space of lines through the + case, we take RP−1 to be the empty type. In the inductive origin in Rn 1 or as the quotient by the antipodal action step, we take RPn+1 to be the mapping cone of the projection of the 2-element group on the sphere Sn [4].
    [Show full text]
  • Homogeneous Spaces Defined by Lie Group Automorphisms. Ii
    J. DIFFERENTIAL GEOMETRY 2 (1968) 115-159 HOMOGENEOUS SPACES DEFINED BY LIE GROUP AUTOMORPHISMS. II JOSEPH A. WOLF & ALFRED GRAY 7. Noncompact coset spaces defined by automorphisms of order 3 We will drop the compactness hypothesis on G in the results of §6, doing this in such a way that problems can be reduced to the compact case. This involves the notions of reductive Lie groups and algebras and Cartan involutions. Let © be a Lie algebra. A subalgebra S c © is called a reductive subaU gebra if the representation ad%\® of ίΐ on © is fully reducible. © is called reductive if it is a reductive subalgebra of itself, i.e. if its adjoint represen- tation is fully reducible. It is standard ([11, Theorem 12.1.2, p. 371]) that the following conditions are equivalent: (7.1a) © is reductive, (7.1b) © has a faithful fully reducible linear representation, and (7.1c) © = ©' ©3, where the derived algebra ©' = [©, ©] is a semisimple ideal (called the "semisimple part") and the center 3 of © is an abelian ideal. Let © = ©' Θ 3 be a reductive Lie algebra. An automorphism σ of © is called a Cartan involution if it has the properties (i) σ2 = 1 and (ii) the fixed point set ©" of σ\$r is a maximal compactly embedded subalgebra of ©'. The whole point is the fact ([11, Theorem 12.1.4, p. 372]) that (7.2) Let S be a subalgebra of a reductive Lie algebra ©. Then S is re- ductive in © if and only if there is a Cartan involution σ of © such that σ(ft) = ft.
    [Show full text]
  • Why Do We Do Representation Theory?
    Why do we do representation theory? V. S. Varadarajan University of California, Los Angeles, CA, USA Bologna, September 2008 Abstract Years ago representation theory was a very specialized field, and very few non-specialists had much interest in it. This situation has changed profoundly in recent times. Due to the efforts of people like Gel’fand, Harish-Chandra, Lang- lands, Witten, and others, it has come to occupy a cen- tral place in contemporary mathematics and theoretical physics. This talk takes a brief look at the myriad ways that rep- resentations of groups enters mathematics and physics. It turns out that the evolution of this subject is tied up with the evolution of the concept of space itself and the classifi- cation of the groups of symmetries of space. Classical projective geometry • The projective group G = PGL(n + 1) operates on complex projective space CPn and hence on algebraic varieties imbedded in CPn. Classical geometry was concerned with the invariants of these varieties under the projective action. Main problems over C • To study the ring of invariants of the action of G on the graded ring of polynomials on Cn+1. The basic question is: • Is the invariant ring finitely generated? • The spectrum of the ring of invariants is a first ap- proximation to a moduli space for the action. Solutions over C • (Hilbert-Weyl) The ring of invariants is finitely gener- ated if G is a complex semi simple group. This is based on • (Weyl) All representations of a complex semi simple grup are completely reducible. • (Nagata) Finite generation of invariants is not always true if G is not semi simple.
    [Show full text]
  • Example Sheet 1
    Part III 2015-16: Differential geometry [email protected] Example Sheet 1 3 1 1. (i) Do the charts '1(x) = x and '2(x) = x (x 2 R) belong to the same C differentiable structure on R? (ii) Let Rj, j = 1; 2, be the manifold defined by using the chart 'j on the topo- logical space R. Are R1 and R2 diffeomorphic? 2. Let X be the metric space defined as follows: Let P1;:::;PN be distinct points in the Euclidean plane with its standard metric d, and define a distance function (not a ∗ 2 ∗ metric for N > 1) ρ on R by ρ (P; Q) = minfd(P; Q); mini;j(d(P; Pi) + d(Pj;Q))g: 2 Let X denote the quotient of R obtained by identifying the N points Pi to a single point P¯ on X. Show that ρ∗ induces a metric on X (the London Underground metric). Show that, for N > 1, the space X cannot be given the structure of a topological manifold. 3. (i) Prove that the product of smooth manifolds has the structure of a smooth manifold. (ii) Prove that n-dimensional real projective space RP n = Sn={±1g has the struc- ture of a smooth manifold of dimension n. (iii) Prove that complex projective space CP n := (Cn+1 nf0g)=C∗ has the structure of a smooth manifold of dimension 2n. 4. (i) Prove that the complex projective line CP 1 is diffeomorphic to the sphere S2. (ii) Show that the natural map (C2 n f0g) ! CP 1 induces a smooth map of manifolds S3 ! S2, the Poincar´emap.
    [Show full text]
  • Geometries of Homogeneous Spaces 1. Rotations of Spheres
    (October 9, 2013) Geometries of homogeneous spaces Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ [This document is http://www.math.umn.edu/~garrett/m/mfms/notes 2013-14/06 homogeneous geometries.pdf] Basic examples of non-Euclidean geometries are best studied by studying the groups that preserve the geometries. Rather than specifying the geometry, we specify the group. The group-invariant geometry on spheres is the familiar spherical geometry, with a simple relation to the ambient Euclidean geometry, also rotation-invariant. The group-invariant geometry on real and complex n-balls is hyperbolic geometry: there are infinitely many straight lines (geodesics) through a given point not on a given straight line, contravening in surplus the parallel postulate for Euclidean geometry. 1. Rotations of spheres 2. Holomorphic rotations n 3. Action of GLn+1(C) on projective space P 4. Real hyperbolic n-space 5. Complex hyperbolic n-space 1. Rotations of spheres Let h; i be the usual inner product on Rn, namely n X hx; yi = xi yi (where x = (x1; : : : ; xn) and y = (y1; : : : ; yn)) i=1 The distance function is expressed in terms of this, as usual: distance from x to y = jx − yj (where jxj = hx; xi1=2) The standard (n − 1)-sphere Sn−1 in Rn is n−1 n S = fx 2 R : jxj = 1g The usual general linear and special linear groups of size n (over R) are 8 < GLn(R) = fn-by-n invertible real matricesg = general linear group : SLn(R) = fg 2 GLn(R) : det g = 1g = special linear group The modifier special refers to the determinant-one condition.
    [Show full text]
  • Symplectic Topology of Projective Space: Lagrangians, Local Systems and Twistors
    Symplectic Topology of Projective Space: Lagrangians, Local Systems and Twistors Momchil Preslavov Konstantinov A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy of University College London. Department of Mathematics University College London March, 2019 2 I, Momchil Preslavov Konstantinov, confirm that the work presented in this thesis is my own, except for the content of section 3.1 which is in collaboration with Jack Smith. Where information has been derived from other sources, I confirm that this has been indicated in the work. 3 На семейството ми. Abstract n In this thesis we study monotone Lagrangian submanifolds of CP . Our results are roughly of two types: identifying restrictions on the topology of such submanifolds and proving that certain Lagrangians cannot be displaced by a Hamiltonian isotopy. The main tool we use is Floer cohomology with high rank local systems. We describe this theory in detail, paying particular attention to how Maslov 2 discs can obstruct the differential. We also introduce some natural unobstructed subcomplexes. We apply this theory to study the topology of Lagrangians in projective space. We prove that a n monotone Lagrangian in CP with minimal Maslov number n + 1 must be homotopy equivalent to n RP (this is joint work with Jack Smith). We also show that, if a monotone Lagrangian in CP3 has minimal Maslov number 2, then it is diffeomorphic to a spherical space form, one of two possible Euclidean manifolds or a principal circle bundle over an orientable surface. To prove this, we use algebraic properties of lifted Floer cohomology and an observation about the degree of maps between Seifert fibred 3-manifolds which may be of independent interest.
    [Show full text]
  • Quantum Real Projective Space, Disc and Spheres
    Algebras and Representation Theory 6: 169–192, 2003. 169 © 2003 Kluwer Academic Publishers. Printed in the Netherlands. Quantum Real Projective Space, Disc and Spheres Dedicated to the memory of Stanisław Zakrzewski PIOTR M. HAJAC1, RAINER MATTHES2 and WOJCIECH SZYMANSKI´ 3 1Mathematical Institute, Polish Academy of Sciences, ul. Sniadeckich´ 8, Warsaw, 00–950 Poland and Department of Mathematical Methods in Physics, Warsaw University, ul. Ho˙za 74, Warsaw, 00-682 Poland 2Max Planck Institute for Mathematics in the Sciences, Inselstr. 22–26, D-04103 Leipzig, Germany and Institute of Theoretical Physics, Leipzig University, Augustusplatz 10/11, D-04109 Leipzig, Germany. e-mail: [email protected] 3School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia. e-mail: [email protected] (Received: October 2000) Presented by S. L. Woronowicz ∗ R 2 Abstract. We define the C -algebra of quantum real projective space Pq , classify its irreducible representations, and compute its K-theory. We also show that the q-disc of Klimek and Lesniewski can be obtained as a non-Galois Z2-quotient of the equator Podles´ quantum sphere. On the way, we provide the Cartesian coordinates for all Podles´ quantum spheres and determine an explicit form of ∗ ∗ isomorphisms between the C -algebras of the equilateral spheres and the C -algebra of the equator one. Mathematics Subject Classifications (2000): 46L87, 46L80. ∗ Key words: C -representations, K-theory. 1. Introduction Classical spheres can be constructed by gluing two discs along their boundaries. Since an open disc is homeomorphic to R2, this fact is reflected in the following short exact sequence of C∗-algebras of continuous functions (vanishing at infinity where appropriate): 2 2 2 1 0 −→ C0(R ) ⊕ C0(R ) −→ C(S ) −→ C(S ) −→ 0.
    [Show full text]
  • 18.782 Arithmetic Geometry Lecture Note 26
    18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #26 12/10/2013 26.1 Genus 1 curves with no rational points Let C=k be a (smooth, projective, geometrically irreducible) curve of genus 1 over a perfect field k. Let n be the least positive integer for which Divk C contains an effective divisor D of degree n (such divisors exist; take the pole divisor of any non-constant function in k(C), for example). If C has a k-rational point, then n = 1 and C is an elliptic curve. We now consider the case where C does not have a rational point, so n > 1. We have deg(D) = n > 2g−2 = 0, so the Riemann-Roch theorem implies `(D) = deg(D) + 1 − g = n; and for any positive integer m we have `(mD) = deg(mD) + 1 − g = mn: We now analyze the situation for some specific values of n. 26.1.1 The case n = 2 We have `(D) = 2, so let f1; xg be a basis for L(D). Then `(2D) = 4, so in addition to f1; x; x2g, the Riemann-Roch space L(2D) contains a fourth linearly independent function y. We then have f1; x; x2; y; xy; x3g as a basis for L(3D), but L(4D) is an 8-dimensional vector space containing the 9 functions f1; x; x2; y; xy; x3; x2y; x4; y2g, so there is a linear relation among them, and this linear relation must have nonzero coefficient on both y2 and x4. Assuming we are not in characteristic 2, we can complete the square in y to obtain an equation of the form y2 = f(x) where f is a quartic polynomial over k.
    [Show full text]