New K–Ar Age Determinations of Kilimanjaro Volcano in the North
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
10 Interesting Facts About Mount Kilimanjaro
10 Interesting Facts About Mount Kilimanjaro 1) Mount Kilimanjaro is the tallest mountain in Africa, making it one of the seven summits. It very popular with both experienced hikers and first time adventurers because it is considered to be the easiest of the seven summits. Scaling the mountain requires no technical skills or equipment, such as rope, harness, crampons or ice axe. It is a hiking peak, not mountaineering. 2) Kilimanjaro is not only Africa’s tallest peak, but also the world’s tallest free standing mountain. The summit, named Uhuru Point, is 5,895 meters (19,341 feet) above sea level. While most high mountains are part of ranges, such as Mount Everest’s Himalayan Mountain Range, free standing mountains like Kilimanjaro are usually a result of volcanic activity. 3) Kilimanjaro lies just 205 miles from the equator, in the country of Tanzania. The equator is an imaginary line that divides the Northern Hemisphere and Southern Hemisphere. When early explorers reported seeing glaciers on the top of Kilimanjaro, people did not believe them as they thought it was impossible for ice to form so close to the hot, equatorial sun. Scientists now believe that the glaciers shrink and then regrow during the planet’s ice ages. 4) The origin of the name Kilimanjaro is not certain. The most popular answer is that the name comes from the Swahili word “Kilima” (mountain) and the Chagga word “Njaro” (whiteness). Another possibility is that Kilimanjaro is the European pronunciation of a KiChagga phrase meaning “we failed to climb it.” 5) Now approximately 30,000 people climb Kilimanjaro every year. -
Mount Kenya Kenya
MOUNT KENYA KENYA Mount Kenya (Kenya) 65 WORLD HERITAGE NOMINATION - IUCN TECHNICAL EVALUATION MOUNT KENYA (KENYA) 1. DOCUMENTATION (i) IUCN/WCMC Data Sheet(9 references) (ii) Additional Literature Consulted: Kingdon, J. 1990. Island Africa. Collins; Ojany, F.F. et. al. 1991. Proceedings of the International Workshop on Ecology and Socio-Economy of Mount Kenya Area. 204p.; Bussmann, R.W. 1994. The Forests of Mount Kenya. PhD Dissertation. Bayreuth; Bussmann, R.W. 1996. Destruction and Management Kenya’s Forests. Ambio 25(5); Davis, S.D. et. al. 1994. Centres of Plant Diversity. Vol I. IUCN; Young, T. 1984. Kenya’s Indigenous Forests. WWF/IUCN. 41p.; Allan, I. ed. 1991. Guide to Mount Kenya. Mt. Club Kenya; Boy, G. and I. Allan. 1988. Snowcaps on the Equator Bodley Head; Amin, M. et. al. 1991. On God’s Mountain. Carnerapix; Coe, M. 1967. The Ecology of the Alpine Zone on Mount Kenya. Junk; Thorsell, J. 1997. Africa’s Mountain Parks and Reserves. h African Mountain Association Meeting Proceedings UNU. In Press; Hastenrath, S. 1984. The Glaciers of Equatorial East Africa. Reidel. 353p.; Wass, P. ed. 1995. Kenya’s Indigenous Forests. IUCN; Rheker, J.R. et. al. Bibliography of East African Mountains. 1989. Laikipia Report 13. University of Bern; Ojany, F. 1993. Mt. Kenya and its Environs: A Review of Interaction between Mountain and People in an Equatorial Setting. Mt. Res. and Devel. 13(3). (iii) Consultations: 5 external reviewers, Kenya Wildlife Service Officials, Forestry Department, University of Nairobi scientists. (iv) Field Visit: J. Thorsell, January, 1997 2. SUMMARY OF NATURAL VALUES Mount Kenya, 5,199m is the second highest peak in Africa. -
1904-10-01, [P ]
îyj'^ c : 1 v ' %«!' Ka Ui-m ei« ST~I; V- : «£ää ï:'® * :m 1 :m JW I? NINE FATALLY HURT WRECK OS S. y. CENTRAL THE COMMONWEALTH.1 D0IX(iS OF A WEEK L<ÛUÜRZaR M‘yREC0ÏER THE POLITICAL OUTLOOK And Thirty Others Seriously Injured |>tü< il Published Weekly. Noted Improvement in Strength Con- DEATH LIST WILL in Iron Mountain Wreck. DEMOCRATIC MANAGERS HAVE Six People Sericus y Injured Near URKKNtTOOD, MISSISSIPPI. tmues After the Operation. fronton. Mo., Sept. 27.—One of the What Has IfaiijH itHl Throughout DONE BIG THINGS . 1 R Hi • I moat serious railçoad wrecks cm the Rochester, N. Y. ' liOAK * the Civilized World. Iron Mountain Railroad fur several REACH SIXTY-TWO •*11 > One id.-■ •»Iri-IlKlIi ; C. , Hi's occurred at 3 o'clock this morn* •I M 1 It I II I n • <1 I » Il r III It \pn 11MVIS HAS APPEASED WEST VIRGINIA Split Hull Uornilineni of in< n«*ar Vulcan, ‘•lie- smaii station in Tliree 'Ippppm, %ft«*r Wilrli » A WHI.k'S \KWS CONTjKNSED Terrible Loss of Life as Result of ■ wt ' i0 southern part ol this county, and Freight < riitli«-* Into the Train. M And Eié<ms Doesn’t Care »f Repubti- about 125 miles from St. Louis. The I/>r .'j Lady <’ur/ou of Wreck Near New Market, Tenn. cans Lose the State—Taggart Prom train was No. 17, a southbound passen Km;. Rochester, N. Y., Sept. 26.—Six pr-o. A Complete Review of the Happenings il a q let night, Sai Dr Here, urda ‘«e» to Deliver Indiana, and Con- T for Hot Springs, Ark., and was pic, who were injured in a wrccl on ill the Past Sete|l Days in ibis necticut and New York Both Look <Towd«d with visitors to the Anieri* the New York Centra] railroad, f ill CAUSE OF WRECK EXPLAINED a aud All Foreign Lauds. -
5Th GRADE WEEKLY SCHEDULE
***Parents/guardians of special needs students will be contacted by their child’s special education teacher to provide accommodations and support to help their child complete these lessons. If you have not yet heard from their teacher, please reach out to them to request additional guidance.*** Week of April 23 5th GRADE WEEKLY SCHEDULE DAY SUBJECT PAGE ACTIVITY Reading& Read the passage “Standing on the Roof of Africa.” Answer questions 1-6. 4-6 Writing Daily grammar warm up DAY Math 7-10 Spiral Review & Tarsia Rules (Multiply Mixed Numbers) 1 Science 11-12 Earth Day 2020 Art 13-14 Activities that focus on SHAPE & FORM Reading& Reread the passage “Standing on the Roof of Africa.” Answer questions 7-12. 16-17 Writing Daily grammar warm up DAY 2 Math 18-20 Spiral Review & Order Up (Order and Compare Decimals) Science 21-22 I File Bowling Reading& Read the passage “Going Up a Mountain.” Answer questions 13-17. 24-26 Writing Daily grammar warm up DAY 3 Math 27-28 Spiral Review & Decimal Dynamo (Multiply Decimals) Science 29-30 I File Hockey & I File Skiing P.E. 31-32 Muscular Endurance Reading& Reread “Going Up a Mountain.” Answer questions 18-23 34-35 Writing Daily grammar warm up DAY 4 Math 36-38 Spiral Review & Operation Target (Order of Operations) Science 39-42 I File Swimming Reread the “Standing on the Roof of Africa” & “Going Up a Mountain”. Answer Reading& 44-45 questions 24-25 & complete the writing prompt. Writing Daily grammar warm up DAY 5 Math 46-47 Spiral Review & The Grass is Always Greener (Multiply Whole Numbers) Science -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei -
General Index Vols. I-X, Third Series
GENERAL INDEX VOLS. I-X, THIRD SERIES. SOTE.-The names of minerals are inserted only uuder the word XINERAL. The references to articles on Botany,Grology and Zoology, are grouped under these words, but at the same time are iu general inserted in their places elsewhere. A Adger, J B, analysis of talc, iv, 419. Abbe, C., method of least squares, i, 41 1. Adhesion, apparent. viii, 13'1. systems of telegraphy, ii, Africa, diamonds from, i, 69, 306 R. -1 dgesstz, A,, application of photography table for the computation of relative to natural history, noticed, iii, 156. altitudes, iii, 31. Revision of the Echini, noticed, v, eclipse of sun in 1869, iii. 264. 158, vii, I 61, viii, 72. auroras in Labrador, vi. 151. History of Balanoglorsus and Tor- Nebulre of Herschel's Cat., ix, 42. naria, noticed, v, 234, Abel and Brown, rapidity of detonation notice of papers on embryology by vii. 57. Kowalevsky, viii, 470. dbich, H., urork on hail in the Caucas. Hreckel's Gastrwa theory, viii, 472. sus, noticed, iv. 79. Embryology of Ctenophore, noticed, geologische Beobachtungen auf Rei. viii, 471. sen im Kaukasus, noticed, x, 390. exploration in South America, ix, 74. Abney, photographic irradiation, x, 296. Anderson School, ix, 408, x, 485. Academy, National, meeting, Nov., 1872. inctinct (1) in hermit crabs, x. 290. v, 78. Agassiz. E. C. and A,, Seaside Studies April, 1873, v, 483: 1874, vii, in Natural History, noticed, ii, 132. 603, 1875, ix. 483. Agnsszz, L.,tishaest in the Sargasso Xat. Sci.. New York. ix, 484. Sea, iii, 154, Phil. -
Final Report
WORLD METEOROLOGICAL ORGANIZATION GLOBAL CRYOSPHERE WATCH REPORT No. 17 FINAL REPORT Tropical Regions Cryosphere Workshop Arusha, United Republic of Tanzania 4-6 July 2017 GCW Technical Report #17 (2017) © World Meteorological Organization, 2017 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce, or translate this publication in part or in whole should be addressed to: Chair, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 8403 P.O. Box 2300 Fax: +41 (0) 22 730 8040 CH-1211 Geneva 2, Switzerland E-mail: [email protected] NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised. The findings, interpretations and conclusions expressed in WMO publications with named authors are those of the authors alone and do not necessarily reflect those of WMO or its Members. - 1 - GROUP PHOTO Figure 1: Mount Kilimanjaro - 2 - EXECUTIVE SUMMARY The first session of the Global Cryosphere Watch (GCW) Tropical Regions Cryosphere Workshop opened at 09:00 hours on Tuesday, 04 July 2017. -
Native American Sacred Sites and the Department of Defense
Native American Sacred Sites and the Department of Defense Item Type Report Authors Deloria Jr., Vine; Stoffle, Richard W. Publisher Bureau of Applied Research in Anthropology, University of Arizona Download date 01/10/2021 17:48:08 Link to Item http://hdl.handle.net/10150/272997 NATIVE AMERICAN SACRED SITES AND THE DEPARTMENT OF DEFENSE Edited by Vine Deloria, Jr. The University of Colorado and Richard W. Stoffle The University of Arizona® Submitted to United States Department of Defense Washington, D. C. June 1998 DISCLAIMER The views and opinions expressed here are solely those of the authors and do not necessarily represent the views of the U. S. Department of Defense, the U.S. Department of the Interior, or any other Federal or state agency, or any Tribal government. Cover Photo: Fajada Butte, Chaco Culture National Historic Park, New Mexico NATIVE AMERICAN SACRED SITES AND THE DEPARTMENT OF DEFENSE Edited by Vine Deloria, Jr. The University of Colorado and Richard W. Stoffle The University of Arizona® Report Sponsored by The Legacy Resource Management Program United States Department of Defense Washington, D. C. with the assistance of Archeology and Ethnography Program United States National Park Service Washington, D. C. June 1998 TABLE OF CONTENTS List of Tables vii List of Figures ix List of Appendices x Acknowledgments xii Foreward xiv CHAPTER ONE INTRODUCTION 1 Scope of This Report 1 Overview of Native American Issues 3 History and Background of the Legacy Resources Management Program 4 Legal Basis for Interactions Regarding -
Volcano Above Clouds
® Original broadcast: November 25, 2003 BEFORE WATCHING Volcano Above the Clouds 1Define the word “ecosystem” for your students. (An ecosystem comprises the interactions among PROGRAM OVERVIEW populations in a community and their physical surroundings.) Ask NOVA joins climbers scaling Mount students to provide examples of Kilimanjaro as they travel through local ecosystems. ecosystems ranging from a cloud 2 Have students locate Mount forest to a glaciated mountaintop. Kilimanjaro on a map. Ask students what they think the climate would The program: be like there. Do students think that • chronicles the quest of ecosystems would be different naturalist Robin Buxton, who between the base of the mountain and its peak? Assign students to was disabled by polio in take notes on the areas listed in the childhood, to reach the top of “Climbing Kilimanjaro” activity on Africa’s highest mountain. page 2. • features specially adapted plants that grow in cold and high altitudes. • describes the danger that Mount Kilimanjaro could suffer a AFTER WATCHING landslide, like Mount St. Helens in Washington, that triggers a 1 Group dynamics play an important catastrophic eruption. role in research expeditions. Ask • shows how scientists take temperature readings in the volcano’s students to give examples from the crater to help them predict how far below the surface the magma program of times when the group’s lies. ability to work together was impor- tant to reach its goal or to ensure • follows scientists as they search for the source of fresh water found the survival of group members. at the mountain’s base. (Examples may include times when • reveals how warm air from the volcano and global warming may the porters disagreed about how to be contributing to the evaporation of Mount Kilimanjaro’s glaciers, put up the tent, when the porters which could disappear within 20 years. -
VV D C-A- R 78-03 National Space Science Data Center/ World Data Center a for Rockets and Satellites
VV D C-A- R 78-03 National Space Science Data Center/ World Data Center A For Rockets and Satellites {NASA-TM-79399) LHNAS TRANSI]_INT PHENOMENA N78-301 _7 CATAI_CG (NASA) 109 p HC AO6/MF A01 CSCl 22_ Unc.las G3 5 29842 NSSDC/WDC-A-R&S 78-03 Lunar Transient Phenomena Catalog Winifred Sawtell Cameron July 1978 National Space Science Data Center (NSSDC)/ World Data Center A for Rockets and Satellites (WDC-A-R&S) National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt) Maryland 20771 CONTENTS Page INTRODUCTION ................................................... 1 SOURCES AND REFERENCES ......................................... 7 APPENDIX REFERENCES ............................................ 9 LUNAR TRANSIENT PHENOMENA .. .................................... 21 iii INTRODUCTION This catalog, which has been in preparation for publishing for many years is being offered as a preliminary one. It was intended to be automated and printed out but this form was going to be delayed for a year or more so the catalog part has been typed instead. Lunar transient phenomena have been observed for almost 1 1/2 millenia, both by the naked eye and telescopic aid. The author has been collecting these reports from the literature and personal communications for the past 17 years. It has resulted in a listing of 1468 reports representing only slight searching of the literature and probably only a fraction of the number of anomalies actually seen. The phenomena are unusual instances of temporary changes seen by observers that they reported in journals, books, and other literature. Therefore, although it seems we may be able to suggest possible aberrations as the causes of some or many of the phenomena it is presumptuous of us to think that these observers, long time students of the moon, were not aware of most of them. -
O Records of Sugar Biomarker and Diatoms
Quaternary Research (2021), 1–14 doi:10.1017/qua.2021.26 Research Article The Holocene lake-evaporation history of the afro-alpine Lake Garba Guracha in the Bale Mountains, Ethiopia, based on δ18O records of sugar biomarker and diatoms Lucas Bittnera,b* , Graciela Gil-Romerac,d, Dai Gradye, Henry F. Lambe,f, Eva Lorenza, Mikaela Weinerg, Hanno Meyerg, Tobias Brommb, Bruno Glaserb and Michael Zecha aHeisenberg Chair of Physical Geography with focus on paleoenvironmental research, Institute of Geography, Technische Universität Dresden, 01069 Dresden, Germany; bInstitute of Agronomy and Nutritional Sciences, Soil Biogeochemistry, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany; cDepartment of Ecology, Philipps-Marburg University, 35037 Marburg, Germany; dDepartment of Geo-environmental Processes and Global Change, Pyrenean Institute of Ecology, CSIC, 50059 Zaragoza, Spain; eDepartment of Geography and Earth Sciences, Aberystwyth University, Aberystwyth SY23 3DB, UK; fDepartment of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland and gAlfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, TelegrafenbergA45, 14473 Potsdam, Germany Abstract In eastern Africa, there are few long, high-quality records of environmental change at high altitudes, inhibiting a broader understanding of regional climate change. We investigated a Holocene lacustrine sediment archive from Lake Garba Guracha, Bale Mountains, Ethiopia, (3,950 m asl), and reconstructed high-altitude lake evaporation history using δ18O records derived from the analysis of compound-specific δ18 δ18 ‰ ‰ sugar biomarkers and diatoms. The Odiatom and Ofuc records are clearly correlated and reveal similar ranges (7.9 and 7.1 , respec- tively). The lowest δ18O values occurred between 10–7 cal ka BP and were followed by a continuous shift towards more positive δ18O values.