Altitude Illness
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Altitude Sickness in Nepal Is About 1 in 30,000 Trekkers, Or 2-3 Deaths Per Year
Shoreland Travax Medical Summary ALTITUDE ILLNESS INTRODUCTION Altitude illness occurs when one ascends more rapidly than the body can adjust ("acclimatize") to the reduced atmospheric pressure and decreased oxygen delivery to the body's cells at the higher altitude. Factors affecting acclimatization include the altitude attained, the rate of ascent, the duration of exposure, genetic predisposition, and certain preexisting conditions. (See "Acclimatization," "Risk," and "Effect of High Altitude on Preexisting Medical Conditions.") Altitude illness is generally divided into 3 syndromes: acute mountain sickness (AMS), high altitude pulmonary edema (HAPE), and high altitude cerebral edema (HACE). See "Syndromes and Symptoms." Symptoms can range from mild to life-threatening. Although mild symptoms have been documented at relatively low altitudes of 1,200- 1,800 m (3,900-5,900 ft), serious syndromes are rarely seen below 2,500-3,000 m (8,200-9,800 ft). While death can occur from the more severe forms of altitude illness, most symptoms can be prevented or minimized by proper acclimatization and/or preventive medications. Risk and prevention strategies vary depending on the type of travel planned: travel to typical tourist destinations at relatively moderate heights or trekking in extreme high altitude situations. See "Risk of Altitude Illness" and "Prevention." ACCLIMATIZATION Acclimatization is a built-in adjustment mechanism that can optimize performance at higher altitudes. If a person ascends more rapidly than the body can adjust, symptoms occur that are referred to as altitude illness. Acclimatization seems to be determined by factors that are not known but may possibly be genetic. Some people adjust very easily to high altitude, while others cannot go above relatively moderate heights of 3,000 m (9,800 ft) without experiencing symptoms. -
Deadly High Altitude Pulmonary Disorders: Acute Mountain Sickness
Research Article Int J Pul & Res Sci Volume 1 Issue 1 - April 2016 Copyright © All rights are reserved by Michael Obrowski DOI : 10.19080/IJOPRS.2016.01.555553 Deadly High Altitude Pulmonary Disorders: Acute Mountain Sickness (AMS); High Altitude Pulmonary Edema (HAPE) and High Altitude Cerebral Edema (HACE): A Clinical Review Michael Obrowski1* and Stephanie Obrowski2 1Doctor of Medicine (M.D. – 2000); Assistant Professor of Anatomy; CEO, Chief Physician and Surgeon of Wilderness Physicians, European Union 2Doctor of Medicine (M.D. – 2019); Medical University of Łódź; President of Wilderness Physicians, European Union Submission: January 26, 2016; Published: April 15, 2016 *Corresponding author: Michael Obrowski, M.D., Doctor of Medicine (M.D. – 2000); Assistant Professor of Anatomy; CEO, Chief Physician and Surgeon of Wilderness Physicians, European Union, 43C Żeligowskiego Street, #45, Łódź, Poland 90-644, Email: Abstract Acute Mountain Sickness (AMS); High Altitude Pulmonary Edema (HAPE) and High Altitude Cerebral Edema (HACE). These three disorders, withMountain relatively Sickness, unimportant also smallcalled variationsHigh Altitude seen Sickness, in some isPulmonology specifically aTextbooks, triad of different because disorders, these are inso orderserious, of increasingthey are all seriousness: potentially deadly pulmonary disorders and we will discuss these three major, deadly disorders. Each one, starting with AMS, can progress rapidly to HAPE and then HACE. The two authors of this article have over half a century of high altitude mountaineering experience. They have also alsohad anddisaster still domedicine. have, for Since the lastspring twenty is rapidly years, approaching an NGO, Non-Profit and many Medical “weekend Organization backpackers” (Wilderness will start Physicians going into www.wildernessphysicians. -
Comparison of Health and Performance Risk for Accelerated Mars Mission Scenarios
NASA/TM-20210009779 Comparison of Health and Performance Risk for Accelerated Mars Mission Scenarios Erik Antonsen MD, PhD Baylor College of Medicine NASA Johnson Space Center, Houston, TX Mary Van Baalen, PhD; NASA Johnson Space Center, Houston, TX Integrated Medical Model Team Space Radiation Analysis Group Binaifer Kadwa, MS Lori Chappell, MS NASA Johnson Space Center, Houston, TX KBR NASA Johnson Space Center, Houston, TX Lynn Boley, RN, MS KBR Edward Semones, MS NASA Johnson Space Center, Houston, TX NASA Johnson Space Center, Houston, TX John Arellano, PhD Space Radiation Element MEI Technologies NASA Johnson Space Center, Houston, TX S. Robin Elgart, PhD University of Houston Eric Kerstman, MD NASA Johnson Space Center, Houston, TX University of Texas Medical Branch NASA Johnson Space Center, Houston, TX National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058 February 2021 NASA STI Program…in Profile Since its founding, NASA has been dedicated to the CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and NASA scientific and technical information (STI) technical conferences, symposia, seminars program plays a key part in helping NASA or other meetings sponsored or co- maintain this important role. sponsored by NASA. The NASA STI program operates under the auspices of the Agency Chief Information Officer. SPECIAL PUBLICATION. Scientific, It collects, organizes, provides for archiving, and technical, or historical information from disseminates NASA’s STI. The NASA STI NASA programs, projects, and missions, program provides access to the NTRS Registered often concerned with subjects having and its public interface, the NASA Technical substantial public interest. -
10 Interesting Facts About Mount Kilimanjaro
10 Interesting Facts About Mount Kilimanjaro 1) Mount Kilimanjaro is the tallest mountain in Africa, making it one of the seven summits. It very popular with both experienced hikers and first time adventurers because it is considered to be the easiest of the seven summits. Scaling the mountain requires no technical skills or equipment, such as rope, harness, crampons or ice axe. It is a hiking peak, not mountaineering. 2) Kilimanjaro is not only Africa’s tallest peak, but also the world’s tallest free standing mountain. The summit, named Uhuru Point, is 5,895 meters (19,341 feet) above sea level. While most high mountains are part of ranges, such as Mount Everest’s Himalayan Mountain Range, free standing mountains like Kilimanjaro are usually a result of volcanic activity. 3) Kilimanjaro lies just 205 miles from the equator, in the country of Tanzania. The equator is an imaginary line that divides the Northern Hemisphere and Southern Hemisphere. When early explorers reported seeing glaciers on the top of Kilimanjaro, people did not believe them as they thought it was impossible for ice to form so close to the hot, equatorial sun. Scientists now believe that the glaciers shrink and then regrow during the planet’s ice ages. 4) The origin of the name Kilimanjaro is not certain. The most popular answer is that the name comes from the Swahili word “Kilima” (mountain) and the Chagga word “Njaro” (whiteness). Another possibility is that Kilimanjaro is the European pronunciation of a KiChagga phrase meaning “we failed to climb it.” 5) Now approximately 30,000 people climb Kilimanjaro every year. -
Mount Kenya Kenya
MOUNT KENYA KENYA Mount Kenya (Kenya) 65 WORLD HERITAGE NOMINATION - IUCN TECHNICAL EVALUATION MOUNT KENYA (KENYA) 1. DOCUMENTATION (i) IUCN/WCMC Data Sheet(9 references) (ii) Additional Literature Consulted: Kingdon, J. 1990. Island Africa. Collins; Ojany, F.F. et. al. 1991. Proceedings of the International Workshop on Ecology and Socio-Economy of Mount Kenya Area. 204p.; Bussmann, R.W. 1994. The Forests of Mount Kenya. PhD Dissertation. Bayreuth; Bussmann, R.W. 1996. Destruction and Management Kenya’s Forests. Ambio 25(5); Davis, S.D. et. al. 1994. Centres of Plant Diversity. Vol I. IUCN; Young, T. 1984. Kenya’s Indigenous Forests. WWF/IUCN. 41p.; Allan, I. ed. 1991. Guide to Mount Kenya. Mt. Club Kenya; Boy, G. and I. Allan. 1988. Snowcaps on the Equator Bodley Head; Amin, M. et. al. 1991. On God’s Mountain. Carnerapix; Coe, M. 1967. The Ecology of the Alpine Zone on Mount Kenya. Junk; Thorsell, J. 1997. Africa’s Mountain Parks and Reserves. h African Mountain Association Meeting Proceedings UNU. In Press; Hastenrath, S. 1984. The Glaciers of Equatorial East Africa. Reidel. 353p.; Wass, P. ed. 1995. Kenya’s Indigenous Forests. IUCN; Rheker, J.R. et. al. Bibliography of East African Mountains. 1989. Laikipia Report 13. University of Bern; Ojany, F. 1993. Mt. Kenya and its Environs: A Review of Interaction between Mountain and People in an Equatorial Setting. Mt. Res. and Devel. 13(3). (iii) Consultations: 5 external reviewers, Kenya Wildlife Service Officials, Forestry Department, University of Nairobi scientists. (iv) Field Visit: J. Thorsell, January, 1997 2. SUMMARY OF NATURAL VALUES Mount Kenya, 5,199m is the second highest peak in Africa. -
5Th GRADE WEEKLY SCHEDULE
***Parents/guardians of special needs students will be contacted by their child’s special education teacher to provide accommodations and support to help their child complete these lessons. If you have not yet heard from their teacher, please reach out to them to request additional guidance.*** Week of April 23 5th GRADE WEEKLY SCHEDULE DAY SUBJECT PAGE ACTIVITY Reading& Read the passage “Standing on the Roof of Africa.” Answer questions 1-6. 4-6 Writing Daily grammar warm up DAY Math 7-10 Spiral Review & Tarsia Rules (Multiply Mixed Numbers) 1 Science 11-12 Earth Day 2020 Art 13-14 Activities that focus on SHAPE & FORM Reading& Reread the passage “Standing on the Roof of Africa.” Answer questions 7-12. 16-17 Writing Daily grammar warm up DAY 2 Math 18-20 Spiral Review & Order Up (Order and Compare Decimals) Science 21-22 I File Bowling Reading& Read the passage “Going Up a Mountain.” Answer questions 13-17. 24-26 Writing Daily grammar warm up DAY 3 Math 27-28 Spiral Review & Decimal Dynamo (Multiply Decimals) Science 29-30 I File Hockey & I File Skiing P.E. 31-32 Muscular Endurance Reading& Reread “Going Up a Mountain.” Answer questions 18-23 34-35 Writing Daily grammar warm up DAY 4 Math 36-38 Spiral Review & Operation Target (Order of Operations) Science 39-42 I File Swimming Reread the “Standing on the Roof of Africa” & “Going Up a Mountain”. Answer Reading& 44-45 questions 24-25 & complete the writing prompt. Writing Daily grammar warm up DAY 5 Math 46-47 Spiral Review & The Grass is Always Greener (Multiply Whole Numbers) Science -
Altitude Sickness
Altitude Sickness Team River Runner hosted their National Conference and Swiftwater Rescue Training out West this year. It was a great place to visit and our hosts: TRR Boise and Pilgrim’s Cove couldn’t have been more accommodating. Several participants came from low lying areas – near sea level including myself. Some attendees and myself as well experienced: • Headache • Loss of normal appetite • Nausea • Insomnia • General Fatigue We each came up with different conclusions on why we were experiencing these symptoms, in my case possible motion sickness, dehydration, etc. None of us thought Altitude Sickness may be contributing to our malaise. It wasn’t till after the conference when several of us that live near sea level and were experiencing the above symptoms figured out that a mild form of Altitude Sickness was a highly probably diagnosis. Part of my job is Risk Management so it’s well worth considering this possibility and precautions we should consider whenever traveling to locales that can trigger these issues. Most whom take Wilderness First Aid courses are taught the magic cutoff: 2400m or roughly 8,000’ (Red Cross says 7,000’). McCall Idaho is roughly 5,000’, roughly a mile high. It turns out that the 8,000’ cutoff is actually for: • HACE – High Altitude Cerebral Edema • HAPE – High Altitude Pulmonary Edema High Altitude per Wilderness EMS is actually from 1,500m to 3,500m, or starting at 4,921’ (roughly the altitude where we were staying at). A good guide is the Lake Louise Acute Mountain Sickness (AMS) Scoring System (LLS). -
Altitude Sickness Fact Sheet
Altitude Sickness Fact Sheet At high elevation, you may experience a potentially life threatening condition called altitude sickness. This is exacerbated if you ascend in elevation quickly. At 8,000 feet, there is only ~75% of the available oxygen at sea level. Oxygen decreases ~3% with each 1000 feet in elevation. Altitude sickness is caused by the body not being able to get enough oxygen. There are three types of altitude sickness: Acute Mountain Sickness, High Altitude Pulmonary Edema, and High Altitude Cerebral Edema. SYMPTOMS Acute Mountain Sickness • Lack of appetite, nausea, or vomiting • Fatigue • Dizziness • Insomnia • Shortness of breath upon exertion • Nosebleed • Persistent rapid pulse • Swelling of hands, feet, and/or face High Altitude Pulmonary Edema (HAPE) • Symptoms similar to bronchitis • Persistent dry cough • Fever • Shortness of breath even at rest High Altitude Cerebral Edema (HACE) • Headache that does not respond to medication • Difficulty walking • Altered mental state (confusion, changes in alertness, disorientation, irrational behavior) • Loss of consciousness • Increased nausea • Blurred vision or retinal hemorrhage PREVENTION If your hike starts at high elevation, spend a few days adjusting to the altitude prior to any major physical exertion. It is best to sleep no more than 1,500 feet (457.2 m) higher than you did the night before. This helps the body adjust gradually to the decreased amount of oxygen. Contact your primary care physician for an evaluation prior to travelling to areas with high elevation. FIRST AID TREATMENT If you have any of these symptoms at altitude, assume that it is altitude sickness until proven otherwise. Do not ascend any further with symptoms. -
Final Report
WORLD METEOROLOGICAL ORGANIZATION GLOBAL CRYOSPHERE WATCH REPORT No. 17 FINAL REPORT Tropical Regions Cryosphere Workshop Arusha, United Republic of Tanzania 4-6 July 2017 GCW Technical Report #17 (2017) © World Meteorological Organization, 2017 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce, or translate this publication in part or in whole should be addressed to: Chair, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 8403 P.O. Box 2300 Fax: +41 (0) 22 730 8040 CH-1211 Geneva 2, Switzerland E-mail: [email protected] NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised. The findings, interpretations and conclusions expressed in WMO publications with named authors are those of the authors alone and do not necessarily reflect those of WMO or its Members. - 1 - GROUP PHOTO Figure 1: Mount Kilimanjaro - 2 - EXECUTIVE SUMMARY The first session of the Global Cryosphere Watch (GCW) Tropical Regions Cryosphere Workshop opened at 09:00 hours on Tuesday, 04 July 2017. -
Backcountry Safety: Illnesses and Weather Hazards Sequoia National Forest
USDA ~ United States Department of Agriculture Backcountry Safety: Illnesses and Weather Hazards Sequoia National Forest The backcountry is beautiful place to visit, but also primitive and you will be on your own! We want you to enjoy your backcountry visit, and we want you to venture as safe as possible. These are some tips to remember. First and foremost, tell someone of your planned route and time of return before you travel into the backcountry! What to Pack Hyperthermia Sudden shifts in weather are one of the backcountry’s Caused by the body’s inability to cool in high heat greatest dangers. We recommend that you bring at the conditions. The body regulates the temperature by least a warm fleece or wool pullover, a waterproof jacket, sweating and releasing excess heat, but sometimes this an emergency blanket, a hat, sunglasses, sunscreen, lip is not enough especially when ambient air temperature balm, insect repellant, first-aid kit, pocket knife, flashlight is high and humid. The best way to cool the body is to or headlamp, waterproof matches, map, compass, a mirror stay hydrated and drink plenty of water in high and whistle for signaling if you are lost, plenty of water, temperatures conditions. If this is not enough, take a and extra food with you. break in a shaded area and remove some clothing to allow for more body cooling. There are three forms of Hiking in Variable Terrain heat-related illness that can lead to hyperthermia. Identify safe routes and local conditions. Test and use 1. Heat cramps is the mildest sign of heat-illness secure footing and never run down slopes. -
Volcano Above Clouds
® Original broadcast: November 25, 2003 BEFORE WATCHING Volcano Above the Clouds 1Define the word “ecosystem” for your students. (An ecosystem comprises the interactions among PROGRAM OVERVIEW populations in a community and their physical surroundings.) Ask NOVA joins climbers scaling Mount students to provide examples of Kilimanjaro as they travel through local ecosystems. ecosystems ranging from a cloud 2 Have students locate Mount forest to a glaciated mountaintop. Kilimanjaro on a map. Ask students what they think the climate would The program: be like there. Do students think that • chronicles the quest of ecosystems would be different naturalist Robin Buxton, who between the base of the mountain and its peak? Assign students to was disabled by polio in take notes on the areas listed in the childhood, to reach the top of “Climbing Kilimanjaro” activity on Africa’s highest mountain. page 2. • features specially adapted plants that grow in cold and high altitudes. • describes the danger that Mount Kilimanjaro could suffer a AFTER WATCHING landslide, like Mount St. Helens in Washington, that triggers a 1 Group dynamics play an important catastrophic eruption. role in research expeditions. Ask • shows how scientists take temperature readings in the volcano’s students to give examples from the crater to help them predict how far below the surface the magma program of times when the group’s lies. ability to work together was impor- tant to reach its goal or to ensure • follows scientists as they search for the source of fresh water found the survival of group members. at the mountain’s base. (Examples may include times when • reveals how warm air from the volcano and global warming may the porters disagreed about how to be contributing to the evaporation of Mount Kilimanjaro’s glaciers, put up the tent, when the porters which could disappear within 20 years. -
Respiratory Diseases in Relation to Changes in Atmospheric Pressure
A n n a l s o f C linical Laboratory Science, Vol. 3 , No. 2 Copyright © 1 9 7 3 , Institute for Clinical Science Respiratory Diseases in Relation to Changes in Atmospheric Pressure BROOKS H. HURD, M.D. Director of Laboratories, Grant Hospital and Clinical Associate Professor of Pathology, ■ Ohio State University, Columbus, OH 43215 ABSTRACT In this paper are reviewed the present status of respiratory diseases in relation to high and low altitude environments. High Altitude Sickness in mountaineers occurred on their initial Intkoduction exposure to high altitude without proper acclimatization time. Men living at high Mountain sickness occurs in both an altitudes have a higher total blood volume acute form and a chronic form. Only re and a greater proportion of pulmonary cently has this been studied to any degree; blood volume than that present in sea level however, the first description was by a inhabitants. Persons going to high altitudes Peruvian in 1897.8 In 1937, Hurtado de tend to develop greater blood volume in scribed a case of pulmonary edema in an the pulmonary bed. Houston had reported Indian who became acutely ill after return mountaineers who have described cases of ing home from sea level to the high alti rapid death attributed to pneumonia. This tude.7 In 1945, a 39 year old man was occurred in healthy persons who were en examined who had developed pulmonary gaged in strenuous exercise over 14,000 edema after going to a height of 11,550 feet. feet. Death in 12 to 24 hours resulted if In 1949, a 29 year old man was described the symptoms were severe and remained who died from an acute pulmonary illness untreated.