Industrial Sector Energy Consumption

Total Page:16

File Type:pdf, Size:1020Kb

Industrial Sector Energy Consumption Chapter 7 Industrial sector energy consumption Overview The industrial sector uses more delivered energy294 than any other end-use sector, consuming about 54% of the world’s total delivered energy. The industrial sector can be categorized by three distinct industry types: energy-intensive manufacturing, nonenergy-intensive manufacturing, and nonmanufacturing (Table 7-1). The mix and intensity of fuels consumed in the industrial sector vary across regions and countries, depending on the level and mix of economic activity and on technological development. Energy is used in the industrial sector for a wide range of purposes, such as process and assembly, steam and cogeneration, process heating and cooling, and lighting, heating, and air conditioning for buildings. Industrial sector energy consumption also includes basic chemical feedstocks. Natural gas feedstocks are used to produce agricultural chemicals. Natural gas liquids (NGL) and petroleum products (such as naphtha) are both used for the manufacture of organic chemicals and plastics, among other uses. In the International Energy Outlook 2016 (IEO2016) Reference case, worldwide industrial sector energy consumption is projected to increase by an average of 1.2%/year, from 222 quadrillion British thermal units (Btu) in 2012 to 309 quadrillion Btu in 2040 (Table 7-2). Most of the long-term growth in industrial sector delivered energy consumption occurs in countries outside of the Organization for Economic Cooperation and Development (OECD). From 2012 to 2040, industrial energy consumption in non- OECD countries grows by an average of 1.5%/year, compared with 0.5%/year in OECD countries. Non-OECD industrial energy consumption, which accounted for 67% of world industrial sector delivered energy in 2012, accounts for 73% of world industrial sector delivered energy consumption in 2040. Overall, total industrial sector energy use increases from 73 quadrillion Btu in 2012 to 85 quadrillion Btu in 2040 in the OECD countries, and from 149 quadrillion Btu in 2012 to 225 quadrillion Btu in 2040 in the non-OECD countries. OECD industrial sector energy use grows slowly in the IEO2016 Reference case, averaging 0.5%/year from 2012 to 2040. The industrial sector accounts for approximately 40% of total OECD delivered energy use from 2012 to 2040. In the non-OECD industrial sector, the share of delivered energy use declines from 64% in 2012 to 59% in 2040, as many emerging non-OECD economies move away from energy-intensive manufacturing, while energy use grows more rapidly in all other end-use sectors. Table 7-1. World industrial sector: major groupings and representative industries Industry grouping Representative industries Energy-intensive manufacturing Food Food, beverage, and tobacco product manufacturing Pulp and paper Paper manufacturing, printing and related support activities Basic chemicals Inorganic chemicals, organic chemicals (e.g., ethylene propylene), resins, and agricultural chemicals; includes chemical feedstocks Refining Petroleum refineries and coal products manufacturing, including coal and natural gas used as feedstocks Iron and steel Iron and steel manufacturing, including coke ovens Nonferrous metals Primarily aluminum and other nonferrous metals, such as copper, zinc, and tin Nonmetallic minerals Primarily cement and other nonmetallic minerals, such as glass, lime, gypsum, and clay products Nonenergy-intensive manufacturing Other chemicals Pharmaceuticals (medicinal and botanical), paint and coatings, adhesives, detergents, and other miscellaneous chemical products, including chemical feedstocks Other industrials All other industrial manufacturing, including metal-based durables (fabricated metal products, machinery, computer and electronic products, transportation equipment, and electrical equipment) Nonmanufacturing Agriculture, forestry, fishing Agriculture, forestry, and fishing Mining Coal mining, oil and natural gas extraction, and mining of metallic and nonmetallic minerals Construction Construction of buildings (residential and commercial), heavy and civil engineering construction, industrial construction, and specialty trade contractors 294 Delivered energy is measured as the heat content of energy at the site of use. It includes the heat content of electricity (3,412 Btu/kWh) but does not include conversion losses at generation plants in the electricity sector. Delivered energy also includes fuels (natural gas, coal, liquids, and renewables) used for combined heat and power facilities (cogeneration) in the industrial sector. U.S. Energy Information Administration | International Energy Outlook 2016 113 Industrial sector energy consumption Regional gross output and industrial energy consumption In the IEO2016 Reference case, real inflation-adjusted gross output is used to estimate industrial sector energy consumption by disaggregating economic activity into sectors and industries. Gross output includes intermediate inputs such as energy, materials, and purchased services used in production processes, providing data on all industry links that make up economic activity. In contrast, gross domestic product (GDP) and its components—which are value-added concepts—do not include intermediate inputs to industrial processes. In the IEO2016 projections, analysis of the key components of industrial gross output and how they change over time helps to explain regional changes in industrial sector energy consumption. Total gross output includes all economic activity, while industrial Figure 7-1. Global gross output by industrial energy use includes three subsectors: nonmanufacturing, subsector, 2012 and 2040 (trillion 2010 dollars) energy-intensive manufacturing, and nonenergy-intensive 295 250 manufacturing (Table 7-3). The shares of the gross output 228 sectors vary by region and over time. Worldwide, gross output from the services sector increases by 3.5%/year from 2012 to 200 2040 in the IEO2016 Reference case, and energy-intensive 30% Nonmanufacturing manufacturing increases at a similar rate of 3.4%/year. In contrast, gross output from the nonmanufacturing sector 150 grows at a slower rate of 2.9%/year. The fastest growth is Non-energy-intensive projected for the nonenergy-intensive manufacturing sector, at manufacturing 3.9%/year. This results in a long-term shift in the composition 43% 100 90 of gross output in the IEO2016 Reference case (Figure 7-1), showing a general long-term trend toward a worldwide 34% economy that is slightly less dependent on agricultural and 50 mined natural resources—two of the three nonmanufacturing 39% Energy-intensive 27% industries. A move away from resource-based or agriculture- manufacturing 27% based national output, which has long been observed in the 0 developed economies, is anticipated in the long-term outlook 2012 2040 for the world’s emerging economies. (continued on page 115) Table 7-2. World industrial sector delivered energy consumption by region and energy source, 2012–40 (quadrillion Btu) Average annual percent Energy source by region 2012 2020 2025 2030 2035 2040 change, 2012–40 OECD 73.3 77.6 80.0 81.7 83.0 84.6 0.5 Liquid fuels 27.2 28.9 29.8 30.3 30.4 30.6 0.4 Natural gas 21.0 22.7 23.4 24.2 24.9 25.7 0.7 Coal 8.5 8.7 8.8 8.9 9.0 9.0 0.2 Electricity 10.9 11.6 12.1 12.5 12.8 13.2 0.7 Renewables 5.7 5.7 5.8 5.9 5.9 6.1 0.3 Non-OECD 149.0 168.3 182.6 196.3 211.0 224.5 1.5 Liquid fuels 39.3 43.3 46.7 50.3 54.2 57.9 1.4 Natural gas 29.7 33.6 38.6 43.8 49.6 54.7 2.2 Coal 47.3 53.4 55.5 57.1 58.6 59.7 0.8 Electricity 21.0 25.5 27.9 29.7 31.5 33.1 1.6 Renewables 11.8 12.5 13.9 15.4 17.1 19.0 1.7 Total World 222.3 245.8 262.6 278.0 294.0 309.1 1.2 Liquid fuels 66.5 72.2 76.5 80.6 84.6 88.6 1.0 Natural gas 50.7 56.2 62.0 68.0 74.5 80.4 1.7 Coal 55.7 62.0 64.3 66.0 67.2 68.7 0.8 Electricity 31.9 37.2 40.0 42.2 44.3 46.3 1.3 Renewables 17.4 18.2 19.7 21.3 23.0 25.1 1.3 Note: Data on delivered industrial sector energy consumption do not include conversion losses at electricity sector generation plants. Delivered energy includes fuels (natural gas, coal, liquids, and renewables) used for combined heat and power facilities (cogeneration) in the industrial sector. 295 Details of the industries included in gross output, along with their NACE 2 codes, can be found in the IEO2016 macroeconomic documentation. 114 U.S. Energy Information Administration | International Energy Outlook 2016 Industrial sector energy consumption Globally, much of the slower growth in the nonmanufacturing sector is offset by increased growth in the services and nonenergy- intensive manufacturing sectors, whereas the energy-intensive manufacturing share of total gross output does not change. Many manufacturing industries are driven by trade. Some countries benefit from access to supply chains for technology goods; some benefit from competitive labor costs that lead to increases in nonenergy-intensive manufacturing production. Regional growth in the nonmanufacturing and services sectors differs according to the variety of industries that make up the sectors. In some regions, growth in the services sector is based on government spending, which is not necessarily linked to technological advances or access to markets. In other regions, growth in the nonmanufacturing sector is based on the availability of natural resources. On a regional basis, the largest changes in industrial sector composition in the IEO2016 Reference case are projected for the Middle East and Russia (where mining/extraction is the largest component of the nonmanufacturing sector), and for India (where agriculture is currently the largest component of the nonmanufacturing sector) as a result of development and increasing standards of living, as well as changing fuel markets. In those regions, relatively rapid increases are projected for the services sector from 2012 to 2040, with all other gross output sectors, and particularly the nonmanufacturing sector, becoming smaller.
Recommended publications
  • Determination of Lead Content in Pyrotechnics Used for Fireworks And
    Advances in Engineering Research (AER), volume 130 5th International Conference on Frontiers of Manufacturing Science and Measuring Technology (FMSMT 2017) Determination of lead content in pyrotechnics used for fireworks and firecrackers based on inductively coupled plasma optical emission spectrometric approach (ICP-OES) 1, a Wu Jun-yi 1Technical Center for Dangerous Goods Testing of Guangxi Entry-Exit Inspection and Quarantine Bureau, Beihai, Guangxi, China [email protected] Keywords: fireworks and firecrackers; pyrotechnics; lead content; determination; inductively coupled plasma optical emission spectrometric approach; ICP-OES. Abstract. Inductively coupled plasma optical emission spectrometric approach(ICP-OES) is used to determine the lead content in pyrotechnics used for fireworks and firecrackers. Element of lead is commonly found as impurity in chemical materials used for pyrotechnics in fireworks and firecrackers. Statistical analysis shows that lead content in pyrotechnics is below 5%.Concept of this method: considering the weight of the sample is 400mg,constant volume is 0.5L and the concentration of lead is below 40mg/L in sample solution, the determination scope of the method for the lead content would be between 5%.Further experiments proved that the fitting correlation coefficient of lead calibration curve is 0.9997 or higher, recovery is 92.53%‒115.63%.The allowable differential value is 0.4% between two single tests under repeatable conditions. This method can completely satisfy the requirements of the fireworks and firecrackers industry with high accuracy and good precision. Introduction In China, fireworks and firecrackers are very important consumer recreational products in people’s everyday life since ancient times. Gorgeous colors produced by fireworks and firecrackers are even the leading role of foiling festal atmosphere in every grand holiday celebrations.
    [Show full text]
  • Total Energy Intensity
    EN17 Total Energy Intensity Key message Economic growth has required less additional energy consumption over the 1990s, although total energy consumption is still increasing. However, since 2000 the rate of decrease in energy intensity has slowed, remaining almost stable to 2004. This was due to a slowdown in the rate of GDP growth, while energy consumption continued to rise strongly. Rationale Historically, economic growth has led to increased energy consumption, thus putting increased pressure on the environment. The indicator identifies to what extent there is a decoupling between energy consumption and economic growth. Fig. 1: Trends in total energy intensity, gross domestic product and total energy consumption, EU-25 Index (1990 = 100) 135 Data source: Eurostat and Ameco database, European Commission. 125 Note: Some estimates have been necessary in order to compute the EU- 25 GDP index in 1990. For some EU- 115 25 member states Eurostat data was not available for a particular year. The European Commission's annual 105 macroeconomic database (Ameco) was used as an additional data source. GDP for the missing year is estimated 95 on the basis of the annual growth rate from Ameco, rate which is applied to the latest available GDP from Eurostat. 85 This method was used for the Czech Republic (1990-94), Cyprus (1990-94), Hungary (1990), Poland (1990-94), 75 Malta (1991-1998) and for Germany (1990). For some other countries and years, however, GDP wasn’t available 65 from Eurostat or from Ameco. With the 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 purpose of estimating the EU-25, few assumptions were made.
    [Show full text]
  • Energy Consumption by Source and Sector, 2019 (Quadrillion Btu)
    U.S. energy consumption by source and sector, 2019 (Quadrillion Btu) Sourcea End-use sectorc Percent of sources Percent of sectors 70 91 Transportation Petroleum 24 3 28.2 36.7 3 5 2 <1 (37%) (37%) 1 34 40 9 Industrial 4 3 26.3 Natural gas 12 33 (35%) 32.1 16 11 (32%) 36 8 44 7 Residential 41 11.9 (16%) 12 9 22 39 Renewable energy 7 3 Commercial 11.5 (11%) 2 <1 9.4 (12%) 56 49 10 Total = 75.9 Coal <1 11.3 (11%) 90 Electric power sectorb Nuclear 100 8.5 (8%) Electricity retail sales 12.8 (35%) Total = 100.2 Electrical system energy losses 24.3 (65%) Total = 37.1 a Primary energy consumption. Each energy source is measured in different physical content of electricity retail sales. See Note 1, "Electrical System Energy Losses," at the end of units and converted to common British thermal units (Btu). See U.S. Energy Information EIA’s Monthly Energy Review, Section 2. Administration (EIA), Monthly Energy Review, Appendix A. Noncombustible renewable c End-use sector consumption of primary energy and electricity retail sales, excluding electrical energy sources are converted to Btu using the “Fossil Fuel Equivalency Approach”, see system energy losses from electricity retail sales. Industrial and commercial sectors EIA’s Monthly Energy Review, Appendix E. consumption includes primary energy consumption by combined-heat-and-power (CHP) and b The electric power sector includes electricity-only and combined-heat-and-power (CHP) electricity-only plants contained within the sector. plants whose primary business is to sell electricity, or electricity and heat, to the public.
    [Show full text]
  • The Trends of the Energy Intensity and CO2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies
    sustainability Article The Trends of the Energy Intensity and CO2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies Flavio R. Arroyo M. 1,2,* and Luis J. Miguel 1,* 1 Systems Engineering and Automatic Control, School of Industrial Engineering, Paseo del Cauce s/n, University of Valladolid, 47011 Valladolid, Spain 2 Faculty of Engineering, Physical Sciences and Mathematics, Av. Universitaria, Central University of Ecuador, Quito 170129, Ecuador * Correspondence: fl[email protected] (F.R.A.M.); [email protected] (L.J.M.) Received: 29 November 2019; Accepted: 8 December 2019; Published: 18 December 2019 Abstract: Climate change and global warming are related to the demand for energy, energy efficiency, and CO2 emissions. In this research, in order to project the trends in final energy demand, energy intensity, and CO2 emission production in Ecuador during a period between 2000 and 2030, a model has been developed based on the dynamics of the systems supported by Vensim simulation models. The energy matrix of Ecuador has changed in recent years, giving more importance to hydropower. It is conclusive that, if industrialized country policies or trends on the use of renewable energy and energy efficiency were applied, the production of CO2 emissions by 2030 in Ecuador would reach 42,191.4 KTCO2, a value well below the 75,182.6 KTCO2 that would be seen if the current conditions are maintained. In the same way, by 2030, energy intensity would be reduced to 54% compared to the beginning of the simulation period. Keywords: Business as usual (BAU); global warming; energy intensity; energy efficiency; CO2 emissions; energy policies 1.
    [Show full text]
  • ARIZONA ENERGY FACT SHEET Energy Efficiency & Energy Consumption April 2016
    ARIZONA ENERGY FACT SHEET Energy Efficiency & Energy Consumption April 2016 An Overview of Energy Efficiency Quick Facts: Energy efficiency means reducing the amount of energy Population, 2014: 6,731,484 that you need to perform a particular task. When you Population growth rate, 2006-2014: 0.79% per year practice energy efficiency, you increase or maintain your Number of households, 2014: 2,387,246 level of service, but you decrease the energy used to Source: United States Census Bureau. provide that service through efficient technologies. Examples include ENERGY STAR appliances, compact fluorescent and LED light bulbs, better insulation for Primary Energy Consumption (2013) buildings, more efficient windows, high efficiency air Primary energy consumption: 1,415 trillion Btu conditioning equipment, and vehicles with higher miles Growth rate, 2006-2013: -0.57% per year per gallon (mpg). Another distinct strategy is energy con- servation, which means that you change your behavior or Primary energy consumption per capita: 213 million Btu lifestyle to reduce energy use. Examples include carpool- Ranking, energy consumption per capita: 43 ing, using mass transit, turning thermostats down in the Ranking, total energy consumption: 27 winter and up in summer, and other behavioral changes. Ratio of consumption to production: 2.38 Improving energy efficiency is a “win-win” strategy — Energy Expenditures (2013) it saves money for consumers and businesses, reduces the need for costly and controversial new power plants, Total energy expenditures: $ 22.8 billion increases the reliability of energy supply, cuts pollution Ranking, energy expenditures: 23 and greenhouse gas emissions, and lowers energy Energy expenditures per capita: $ 3,434 imports.
    [Show full text]
  • Raw Materials Use Reduction, Replacement, and Recycling - Tong Qiu
    ENVIRONMENT AND DEVELOPMENT- Vol. II - Raw Materials Use Reduction, Replacement, and Recycling - Tong Qiu RAW MATERIALS USE REDUCTION, REPLACEMENT, AND RECYCLING Tong Qiu Department of Chemical Engineering, Tsinghua University, Beijing, People’s Republic of China Keywords: Raw materials, reduction, substitution, replacement, recycling, ecomaterials, LCA (life-cycle assessment), LCED (life-cycle engineering design) Contents 1. The Direction of Development—Ecomaterials 2. Life-Cycle Assessment 2.1. Life-Cycle Engineering Design 3. Raw Material Substitutes and Conservation 3.1. The Place of Science and Technology 3.2. Developing Clean Technology 3.3. Replacing Non-Renewable Resources with Renewable Resources 3.4. Material Re-production 3.5. Substitutes for Raw Materials Bibliography Biographical Sketch Summary This article discusses the development of ecomaterials, which is a trend in material industrial development. Furthermore, life-cycle assessment, life-cycle engineering design, and methods of reducing and replacing raw materials are also presented. Natural resources are not inexhaustible, and there are limits in terms of quantity and time to acquiring raw materials from the natural world. Industrial progress, economic development, and population growth in the twentieth century has led people to exploit natural resources in a predatory manner. With regard to mineral resources, statistics indicate that the rate of mineral resources consumption has always been higher than the rate of population growth. For example, while the world’s population doubled between 1950 andUNESCO 1990, the products using the – major EOLSS six minerals (aluminum, copper, lead, nickel, tin, and zinc) increased more than eight times. Although shortage of resources cast a shadow over the twentieth century, there was no continuous shortage of mineral resources.
    [Show full text]
  • Whyalla and EP Heavy Industry Cluster Summary Background
    Whyalla and EP Heavy Industry Cluster Summary Background: . The Heavy Industry Cluster project was initiated and developed by RDAWEP, mid 2015 in response to a need for action to address poor operating conditions experienced by major businesses operating in Whyalla and Eyre Peninsula and their supply chains . The project objective is to support growth and sustainability of businesses operating in the Whyalla and Eyre Peninsula region which are themselves either a heavy manufacturing business or operate as part of a heavy industry supply chain . The cluster is industry led and chaired by Theuns Victor, GM OneSteel/Arrium Steelworks . Consists of a core leadership of 9 CEO’s of major regional heavy industry businesses . Includes CEO level participation from the Whyalla Council, RDAWEP and Deputy CEO of DSD . There is engagement with an additional 52 Supply chain companies Future direction for the next 12 months includes work to progress three specific areas of focus: 1. New opportunities Identify, pursue and promote new opportunities for Whyalla and regional business, including Defence and other major projects; 1.1 Defence Projects, including Access and Accreditation 1.2 Collective Bidding, How to structure and market to enable joint bids for new opportunities 1.3 Other opportunities/projects for Whyalla including mining, resource processing and renewable energy 2. Training and Workforce development/Trade skill sets 2.1 Building capability for defence and heavy industry projects with vocational training and industry placement 3. Ultra High Speed Internet 3.1 Connecting Whyalla to AARnet, very high speed broadband, similar to Northern Adelaide Gig City concept Other initiatives in progress or that will be progressed: .
    [Show full text]
  • Agriculture, Forestry, and Other Human Activities
    4 Agriculture, Forestry, and Other Human Activities CO-CHAIRS D. Kupfer (Germany, Fed. Rep.) R. Karimanzira (Zimbabwe) CONTENTS AGRICULTURE, FORESTRY, AND OTHER HUMAN ACTIVITIES EXECUTIVE SUMMARY 77 4.1 INTRODUCTION 85 4.2 FOREST RESPONSE STRATEGIES 87 4.2.1 Special Issues on Boreal Forests 90 4.2.1.1 Introduction 90 4.2.1.2 Carbon Sinks of the Boreal Region 90 4.2.1.3 Consequences of Climate Change on Emissions 90 4.2.1.4 Possibilities to Refix Carbon Dioxide: A Case Study 91 4.2.1.5 Measures and Policy Options 91 4.2.1.5.1 Forest Protection 92 4.2.1.5.2 Forest Management 92 4.2.1.5.3 End Uses and Biomass Conversion 92 4.2.2 Special Issues on Temperate Forests 92 4.2.2.1 Greenhouse Gas Emissions from Temperate Forests 92 4.2.2.2 Global Warming: Impacts and Effects on Temperate Forests 93 4.2.2.3 Costs of Forestry Countermeasures 93 4.2.2.4 Constraints on Forestry Measures 94 4.2.3 Special Issues on Tropical Forests 94 4.2.3.1 Introduction to Tropical Deforestation and Climatic Concerns 94 4.2.3.2 Forest Carbon Pools and Forest Cover Statistics 94 4.2.3.3 Estimates of Current Rates of Forest Loss 94 4.2.3.4 Patterns and Causes of Deforestation 95 4.2.3.5 Estimates of Current Emissions from Forest Land Clearing 97 4.2.3.6 Estimates of Future Forest Loss and Emissions 98 4.2.3.7 Strategies to Reduce Emissions: Types of Response Options 99 4.2.3.8 Policy Options 103 75 76 IPCC RESPONSE STRATEGIES WORKING GROUP REPORTS 4.3 AGRICULTURE RESPONSE STRATEGIES 105 4.3.1 Summary of Agricultural Emissions of Greenhouse Gases 105 4.3.2 Measures and
    [Show full text]
  • Innovation in the Japanese Chemical Industry, Which Supports World Electronics Industry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Innovation in the Japanese Chemical Industry, Which Supports World Electronics Industry So Hirano I. Introduction This article focuses on innovation by outlining the history of medium- sized chemical companies in Japan and analyzes the factors that resulted in their success1). Industrialized countries always face attempts to keep pace with the economic challenges of emerging countries, which have recently entered the industrialization phase, irrespective of era or region. The development of technology standards in emerging countries allows them to enter product areas that were initially monopolized by industrialized countries. Such competitive situations result in industrialized countries losing their competitive advantage to emerging countries, which often have lower labor and production costs. In the1980s, Japan demonstrated enormous competitive strength on an international level in the electronics industry. However, in recent years, with the emergence and growth of companies based in Taiwan, China, and Korea, the market share of Japan’s electron- ics companies have fallen into a slump. Sony’s FY2012 ending deficit balance was recorded at its worst. Similarly, Panasonic and Sharp recorded large-scale deficits for the same fiscal year. Evidently, the future of Japan’s electronic industry is in jeopardy. 1) The content of this paper is largely based on Kikkawa and Hirano (2011). ――97 成城・経済研究 第204号 (2014年3月) To ensure that the decline of specific industries does not cause the overall decline of the economy, industrialized countries face the necessity of perpetually fostering new pivotal industries. However, the development of these industries is rather difficult.
    [Show full text]
  • DOCUMENT RESUME ED 291 936 CE 049 788 Manufacturing
    DOCUMENT RESUME ED 291 936 CE 049 788 TITLE Manufacturing Materials and Processes. Grade 11-12. Course #8165 (Semester). Technology Education Course Guide. Industrial Arts/Technology Education. INSTITUTION North Carolina State Dept. of Public Instruction, Raleigh. Lily. of Vocational Education. PUB DATE 88 NOTE 119p.; For related documents, see CE 049 780-794. PUB TYPE Guides - Classroom Use Guides (For Teachers) (052) EDRS PRICE Mr01/PC05 Plus Postage. DESCRIPTORS Assembly (Manufacturing); Behavioral Objectives; Ceramics; Grade 11; Grade 12; High Schools; *Industrial Arts; Learning Activities; Learning Modules; Lesson Plans; *Manufacturing; *Manufacturing Industry; Metals; Poly:iers; State Curriculum Guides; *Technology IDENTIFIERS North Carolina ABSTRACT . This guide is intended for use in teaching an introductory course in manufacturing materials and processes. The course centers around four basic materials--metallics, polymers, ceramics, and composites--and seven manufacturing processes--casting, forming, molding, separating, conditioning, assembling, and finishing. Concepts and classifications of material conversion, fundamental manufacturing materials and processes, and the main types of manufacturing materials are discussed in the first section. A course content outline is provided in the second section. The remainder of the guide consists of learning modules on the following topics: manufacturing materials and processes, the nature of manufacturing materials, testing materials, casting and molding materials, forming materials, separating materials, conditioning processes, assembling processes, finishing processes, and methods of evaluating and analyzing products. Each module includes information about the length of time needed to complete the module, an introduction to the instructional content to be covered in class, performance objectives, a day-by-day outline of student learning activities, related diagrams and drawings, and lists of suggested textbooks and references.
    [Show full text]
  • Digitalization in Chemical Distribution Download Brochure
    Digitalization in Chemical Distribution Winners & Losers f f Digitalization in Chemical Distribution | Winners & Losers The Chemical Industry moves in line with general industry trends 04 Operational Excellence 06 Profitable Growth 10 Commercial Excellence 16 Digital Trends 28 Why Deloitte 30 Your contact 34 03 The Chemical Industry moves in line with general industry trends Digitalization and Circular Economy are the Chemistry 4.0 issues Industry 1.0 2.0 3.0 4.0 Driver Mechanization Industrialization Automation Digitalization Time 1784 1870 1969 2012 Game Steam Engine, Conveyor Belt, Electronics, Big Data, Changer Water Power Electricity Computer Internet of Things Chemistry 1.0 2.0 3.0 4.0 Digitalization, Circular Driver Industrialization Substitution Globalization Economy Time 1865 1950 1980 2010 Synthetic Dyes,Fertilizers, Synthetic Fibres, Tailored Chemical Solutions, Hybrid materials, Products Soaps,Pharmaceuticals Plastics, Rubbers New Material Mixes spin electronics Large scale, Large scale, con-tinuous Scale economies, On purpose, Technology batch production production Gene Technology additive production Raw Sugar, cellulosics, Coal, tar, fat based Crude Oil Natural Gas, Renewables Materials C-cont. waste, CO2 Peer Vertically integrated, Internal and external Horizontal M&A, New eco-systems, Structure national companies Verbund structures global segment leaders Circular Economy 04 Source: VCI-Deloitte study on Digitalization & Circular economy (9/2017) Digitalization in Chemical Distribution | Winners & Losers Digitalization in Chemicals is the usage of data to boost „Operational Excellence“, „Profitable Growth“ and/or „Commercial Excellence“ Coman nternal Coman ternal erating normation echnolog echnolog Collect Analyze, interpret, Collect internal data network, visualize external data (ig data (Analytics Apply algorithms to take decisions and hsical initiate actions igital 1.
    [Show full text]
  • Investigation Into the Energy Consumption of a Data Center with a Thermosyphon Heat Exchanger
    Article Mechanical Engineering July 2011 Vol.56 No.20: 21852190 doi: 10.1007/s11434-011-4500-5 SPECIAL TOPICS: Investigation into the energy consumption of a data center with a thermosyphon heat exchanger ZHOU Feng, TIAN Xin & MA GuoYuan* College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China Received October 18, 2010; accepted February 17, 2011 A data center test model was used to analyze the energy dissipation characteristics and energy consumption of a data center. The results indicate that adequate heat dissipation from a data center cannot be achieved only from heat dissipation through the build- ing envelope during Beijing winter conditions. This is because heat dissipation through the building envelope covers about 19.5% of the total data center heat load. The average energy consumption for an air conditioner is 4 to 5 kW over a 24-h period. The temperature difference between the indoor and outdoor air for the data center with a thermosyphon heat exchanger is less than 20°C. The energy consumption of the thermosyphon heat exchanger is only 41% of that of an air conditioner. The annual energy consumption can be reduced by 35.4% with a thermosyphon system. In addition, the effect of the outdoor temperature on the en- ergy consumption of an air conditioner is greater than the indoor room temperature. The energy consumption of an air conditioner system increases by 5% to 6% for every 1°C rise in the outdoor temperature. data center, energy consumption, thermosyphon heat exchanger, ambient energy Citation: Zhou F, Tian X, Ma G Y.
    [Show full text]