The Chemistry of Nitrosation

Total Page:16

File Type:pdf, Size:1020Kb

The Chemistry of Nitrosation Durham E-Theses The role of L-ascorbic acid in S-nitrosothiol decomposition and aspects of the nitrosation of thiones Holmes, Anthony J. How to cite: Holmes, Anthony J. (2000) The role of L-ascorbic acid in S-nitrosothiol decomposition and aspects of the nitrosation of thiones, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4228/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 The Role of L-Ascorbic Acid in 5-Nitfosothiol Decomposition and Aspects of the Nitrosation of Thiones Anthony J. Holmes BSc GRSC Thesis submitted for the degree of Doctor of Philosophy University of Durham September 2000 The copyright of this thesis rests with the author. No quotation from it should he published in any form, including Electronic and the Internet, without the author's prior written consent. All information derived from this thesis must he acknowledged a|)propriately. JUN 2001 Abstract Abstract Ascorbic acid has been found to promote nitrosothiol decomposition via two pathways. In the first, ascorbic acid acts as a reducing agent for added or adventitious copper (II), producing copper (I). This reacts with the nitrosothiol, giving nitric oxide and disulfide as the ultimate products. The reaction requires only small quantities of ascorbic acid, and is catalytic in copper. The second pathway requires higher concentrations of ascorbic acid, the stoichiometry being one mole of ascorbic acid to two moles of nitrosothiol. The products are nitric oxide and thiol, and the reaction has been interpreted in terms of rate limiting nucleophilic attack by ascorbate at the nitroso nitrogen, followed by decomposition of the 0-nitroso ascorbate formed to nitric oxide and dehydroascorbic acid. The rate equation is first order in both the nitrosothiol and ascorbic acid, and the entropy of activation is significantiy negative. pH - rate profiles reveal the ascorbate dianion is much more reactive than the monoanion, and that the neutral form has negligible reactivity. Nitrosation of thione-containing nitrogen heterocycles by nitrous acid leads to the equilibrium formation of ^SNO"^ species; large equilibrium constants are observed. The reactions exhibit many of the features generally observed in nitrosation, including catalysis by hahdes and thiocyanate, and some participation by dinitrogen trioxide as a nitrosating agent. The nitrosation rate constants are large, approaching values representing the encounter-controUed limit. The =SNO+ species are generally unstable, decomposing under acidic conditions to nitric oxide and a disulfide. Decomposition of J-nitrosated 4-thiopyridine showed hydrolysis occurs at pH 7.4, re-forming the thione. The nitroso species reacts rapidly with ascorbate, forming nitric oxide and thione. Declaration and Copyright Declaration The work in this thesis was carried out in the Chemistry Department at the University of Durham between 1" October 1997 and 30* September 2000. It has not been submitted for any other degree and is the author's own work, except where acknowledged by reference. Copyright The copyright of this thesis rests with the author. No quotation from it should be pubhshed without prior written consent and information derived from it should be acknowledged. No part of this thesis may be reproduced, stored in a retrieval system or transmitted in any form or by any means without the written consent of the author. m Acknmvkdgments Acknowledgements I would like to thank my supervisor, Professor Lyn WiUiams, for his help during my PhD studies. I acknowledge the financial support received from the EPSRC, and the University of Durham and ICI for graduate scholarships. I feel I should probably thank all my lab colleagues for giving me plenty to laugh at over the last three years, especially Darren, Paul, Dave, Andy, Seve, Lynsey and Linda. I wovild put in some siUy nicknames for them all, but Two Pint Wonder Darren would hit me. Ah, too late. Dave must be cursed for his persistence in leading me into pubhc houses (hope you're not superstitious Dave). Thank you also to Colin Greenhalgh, for keeping all the equipment running. A special thank you is due to my fiancee vKathrynV for all her support, including the unfortunate task of proof reading this vast white elephant. May chicken dippers be on the menu for the many years of married life to come! I would also like to thank my family for all their support throughout my PhD studies and the rest of my education. Indeed, the whole of my life. I will contemplate joining the real world eventually. Thanks also to Kathryn's parents for their kindness and hospitality. I would also like to thank my friend Craig, who hasn't really seen much of me over the last three years, and when he has we've been too drunk to recognise each other. That bit was a joke, by the way... A special thank you is extended to one Anthony J. Holmes, who wrote this thing. I bet you all wished he hadn't! I hope I haven't offended anybody during the above, other than those people I intended to. There are many other people I would like to thank, but there isn't space. Actually, there is a httie bit of space. Just enough to praise the brilliance of the Goons, Fawlty Towers, Monty Python (but not the circus), Mr. Bean (I want to be him). Black Adder, Just a Minute, the News Quiz, the NOW! Show, and the other ones. In addition, I must say: Hooray! for glue, pens, paper, chairs, tables, food, and all of those other htde objects we all use and take for granted every day. There's still a bit of space left so I suppose I should really use it to thank the people I said I would thank if I had enough space to do so. Well, here goes. Thank you to iv Dedication To the view along the East Coast and Midland Mainlines, without which this would have been completed sooner Contents Chapters 1-2 Introduction 1 Introduction - The Chemistry of Nitrosation 1 1.1 Reagents for Use in Nitrosation 2 1.1.1 Acidified Nitrous Acid and the Nitrosonium Ion 2 1.1.2 Dinitrogen Trioxide 4 1.1.3 Dinitrogen Tetroxide, Nitrogen Dioxide, Nitric Oxide, and Peroxynitrite 6 1.1.4 Nitrosyl Hahdes and Nitrosyl Thiocyanate 7 1.1.5 Nitrosonium Salts 9 1.1.6 Nitrosation by Nitroso Compounds 9 1.2 Substrates for Nitrosation 9 1.2.1 N-Nitrosation 10 1.2.2 C-Nitrosation 13 1.2.2.1 Ahphatic and Ahcychc C-Nitrosation 13 1.2.2.2 Aromatic C-Nitrosation 14 1.2.3 0-Nitrosation 16 1.2.3.1 Nitrosation of Ascorbic Acid 18 1.2.4 J-Nitrosation 20 1.2.4.1 Nitrosation of Thiones 22 1.3 References 24 2 Introduction - The Chemistry and Physiology of Nitric Oxide and 5-Nitrosothiols 27 2.1 Nitric Oxide 28 2.1.1 Physical Properties of Nitric Oxide 28 2.1.2 The Chemistry of Nitric Oxide 29 2.1.2.1 Reactivity as a Free Radical 29 2.1.2.2 Co-ordination Chemistry of Nitric Oxide 31 2.1.2.3 The Atmospheric Chemistry of Nitric Oxide 32 2.1.3 Physiology of Nitric Oxide 33 2.1.3.1 Biosynthesis of Nitric Oxide 33 2.1.3.2 Vasodilation 35 2.1.3.3 Platelet Aggregation 36 2.1.3.4 Immune Defence 37 2.1.3.5 Apoptosis 37 2.1.3.6 Neurotransmission 38 VI Contents 2.1.3.7 Other Processes 39 2.1.3.8 Nitric Oxide in Medicine 39 2.2 Nitrosotiiiols 40 2.2.1 Physical Properties of J-Nitrosothiols 40 2.2.2 The Chemistry of J-Nitrosotiiiols 41 2.2.2.1 Thermal and Photochemical Decomposition 42 2.2.2.2 Hg2+ / Ag+ Promoted Decomposition 42 2.2.2.3 Cu+ Catalysed Decomposition of J'-Nitrosothiols 43 2.2.2.4 Decomposition by Seleno Compovmds 47 2.2.2.5 Reaction of Nitrosothiols witii Thiols 47 2.2.2.6 Nitrosothiol Decomposition by Other Sulfiir Nucleophiles 50 2.2.2.7 Reaction Between Nitrosothiols and Nitrogen Nucleophiles 50 2.2.2.8 Reaction of Nitrosothiols with Hydrogen Peroxide and Superoxide 51 2.2.2.9 Ascorbic Acid and Nitrosothiol Decomposition 52 2.2.3 J'-Nitrosothiol Physiology 53 2.3 References 55 Chapters 3-6 Ascorbic Acid in the Decomposition Reactions of 5-Nitrosothiols 3 Identification of Two Pathways for Ascorbic Acid Mediated 5-Nitrosothiol Decomposition 60 3.1 Introduction 61 3.1.1 Structure and Properties of Ascorbic Acid 61 3.1.2 Redox Chemistry of Ascorbic Acid 62 3.1.2.1 Autoxidation 63 3.1.2.2 Catalysis by Transition Metal Ions 63 3.1.2.3 Ascorbic Acid and Thiols: Redox Interactions 65 3.1.3 Physiology of Ascorbic Acid 66 3.1.4 Aims 68 3.2 Initial Studies 68 3.2.1 Effect of Metal Chelation 70 3.2.2 Estabhshing the Stoichiometry 73 3.2.3 Product Studies 75 3.2.3.1 Source of the Increasing Absorbance at 340 nm 75 3.2.3.2 Determination of Sulfur Containing Products 77 vu Contents 3.2.3.3 Determination of Nitrogen Containing Products 82 3.2.3.4 Summary of Products 83 3.3 Further Studies on the Copper Dependent Pathway 84 3.3.1 Varying the Copper Concentration 84 3.3.2 Varying the Ascorbic Acid Concentration 85 3.3.3 Reversal of GSSG Inhibition of GSNO Decomposition 86 3.4 Conclusion 90 3.5 References 92 4 Kinetics and Mechanism of the Copper Independent Reaction
Recommended publications
  • Amyl Nitrite Or 'Jungle Juice'
    Young People and Other Drugs Amyl Nitrite or ‘Jungle Juice’ Amyl nitrite is an inhalant that belongs to a class As with any drug, the use of nitrites is not risk-free. of chemicals called alkyl nitrites. This group of Some of the harms associated with its use include: drugs can be called ‘poppers’. They are often injuries related to inhaling the vapour referred to by their brand name, with ‘Jungle (e.g., rashes, burns) Juice’ probably being the most well-known of these. allergic reactions accidents and falls Inhaling amyl nitrite relaxes the body and gives vision problems (isopropyl nitrite) a ‘rush’ that lasts for one to two minutes. It is commonly used to enhance sexual pleasure and in rare cases, blood disorders induce a feeling of euphoria and well-being. MOST IMPORTANTLY, AMYL NITRITE OR JUNGLE JUICE MUST NEVER BE DRUNK. Drinking amyl can result in death due to it interfering with the ability of the blood to transport oxygen. What is amyl nitrite? Over the years, to bypass legal restrictions, nitrites have been sold as such things as liquid incense or Amyl nitrite is an inhalant that belongs to a class of room odoriser. Jungle Juice, which can be sold as chemicals called alkyl nitrites. Amyl nitrite is a highly a leather cleaner, is a common product name of flammable liquid that is clear or yellowish in colour. amyl nitrite. It has a unique smell that is sometimes described as ‘dirty socks’. It is highly volatile and when exposed to the air evaporates almost immediately at How is Jungle Juice used? room temperature.
    [Show full text]
  • Primary-Explosives
    Improvised Primary Explosives © 1998 Dirk Goldmann No part of the added copyrighted parts (except brief passages that a reviewer may quote in a review) may be reproduced in any form unless the reproduced material includes the following two sentences: The copyrighted material may be reproduced without obtaining permission from anyone, provided: (1) all copyrighted material is reproduced full-scale. WARNING! Explosives are danegerous. In most countries it's forbidden to make them. Use your mind. You as an explosives expert should know that. 2 CONTENTS Primary Explosives ACETONE PEROXIDE 4 DDNP/DINOL 6 DOUBLE SALTS 7 HMTD 9 LEAD AZIDE 11 LEAD PICRATE 13 MEKAP 14 MERCURY FULMINATE 15 "MILK BOOSTER" 16 NITROMANNITE 17 SODIUM AZIDE 19 TACC 20 Exotic and Friction Primers LEAD NITROANILATE 22 NITROGEN SULFIDE 24 NITROSOGUANIDINE 25 TETRACENE 27 CHLORATE-FRICTION PRIMERS 28 CHLORATE-TRIMERCURY-ACETYLIDE 29 TRIHYDRAZINE-ZINC (II) NITRATE 29 Fun and Touch Explosives CHLORATE IMPACT EXPLOSIVES 31 COPPER ACETYLIDE 32 DIAMMINESILVER II CHLORATE 33 FULMINATING COPPER 33 FULMINATING GOLD 34 FULMINATING MERCURY 35 FULMINATING SILVER 35 NITROGEN TRICHLORIDE 36 NITROGEN TRIIODIDE 37 SILVER ACETYLIDE 38 SILVER FULMINATE 38 "YELLOW POWDER" 40 Latest Additions 41 End 3 PRIMARY EXPLOSIVES ACETONE PEROXIDE Synonyms: tricycloacetone peroxide, acetontriperoxide, peroxyacetone, acetone hydrogen explosive FORMULA: C9H18O6 VoD: 3570 m/s @ 0.92 g/cc. 5300 m/s @ 1.18 g/cc. EQUIVALENCE: 1 gram = No. 8 cap .75 g. = No. 6 cap SENSITIVITY: Very sensitive to friction, flame and shock; burns violently and can detonate even in small amounts when dry. DRAWBACKS: in 10 days at room temp. 50 % sublimates; it is best made immediately before use.
    [Show full text]
  • Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics
    Review Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics Joel Mintz 1,†, Anastasia Vedenko 2,†, Omar Rosete 3 , Khushi Shah 4, Gabriella Goldstein 5 , Joshua M. Hare 2,6,7 , Ranjith Ramasamy 3,6,* and Himanshu Arora 2,3,6,* 1 Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA; [email protected] 2 John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; [email protected] (A.V.); [email protected] (J.M.H.) 3 Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; [email protected] 4 College of Arts and Sciences, University of Miami, Miami, FL 33146, USA; [email protected] 5 College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA; [email protected] 6 The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA 7 Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA * Correspondence: [email protected] (R.R.); [email protected] (H.A.) † These authors contributed equally to this work. Abstract: Nitric oxide (NO) is a short-lived, ubiquitous signaling molecule that affects numerous critical functions in the body. There are markedly conflicting findings in the literature regarding the bimodal effects of NO in carcinogenesis and tumor progression, which has important consequences for treatment. Several preclinical and clinical studies have suggested that both pro- and antitumori- Citation: Mintz, J.; Vedenko, A.; genic effects of NO depend on multiple aspects, including, but not limited to, tissue of generation, the Rosete, O.; Shah, K.; Goldstein, G.; level of production, the oxidative/reductive (redox) environment in which this radical is generated, Hare, J.M; Ramasamy, R.; Arora, H.
    [Show full text]
  • Mechanisms of Nitric Oxide Reactions Mediated by Biologically Relevant Metal Centers
    Struct Bond (2014) 154: 99–136 DOI: 10.1007/430_2013_117 # Springer-Verlag Berlin Heidelberg 2013 Published online: 5 October 2013 Mechanisms of Nitric Oxide Reactions Mediated by Biologically Relevant Metal Centers Peter C. Ford, Jose Clayston Melo Pereira, and Katrina M. Miranda Abstract Here, we present an overview of mechanisms relevant to the formation and several key reactions of nitric oxide (nitrogen monoxide) complexes with biologically relevant metal centers. The focus will be largely on iron and copper complexes. We will discuss the applications of both thermal and photochemical methodologies for investigating such reactions quantitatively. Keywords Copper Á Heme models Á Hemes Á Iron Á Metalloproteins Á Nitric oxide Contents 1 Introduction .................................................................................. 101 2 Metal-Nitrosyl Bonding ..................................................................... 101 3 How Does the Coordinated Nitrosyl Affect the Metal Center? .. .. .. .. .. .. .. .. .. .. .. 104 4 The Formation and Decay of Metal Nitrosyls ............................................. 107 4.1 Some General Considerations ........................................................ 107 4.2 Rates of NO Reactions with Hemes and Heme Models ............................. 110 4.3 Mechanistic Studies of NO “On” and “Off” Reactions with Hemes and Heme Models ................................................................................. 115 4.4 Non-Heme Iron Complexes ..........................................................
    [Show full text]
  • Nitrosamines EMEA-H-A5(3)-1490
    25 June 2020 EMA/369136/2020 Committee for Medicinal Products for Human Use (CHMP) Assessment report Procedure under Article 5(3) of Regulation EC (No) 726/2004 Nitrosamine impurities in human medicinal products Procedure number: EMEA/H/A-5(3)/1490 Note: Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Table of contents Table of contents ...................................................................................... 2 1. Information on the procedure ............................................................... 7 2. Scientific discussion .............................................................................. 7 2.1. Introduction......................................................................................................... 7 2.2. Quality and safety aspects ..................................................................................... 7 2.2.1. Root causes for presence of N-nitrosamines in medicinal products and measures to mitigate them............................................................................................................. 8 2.2.2. Presence and formation of N-nitrosamines
    [Show full text]
  • A Nitric Oxide/Cysteine Interaction Mediates the Activation of Soluble Guanylate Cyclase
    A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase Nathaniel B. Fernhoffa,1, Emily R. Derbyshirea,1,2, and Michael A. Marlettaa,b,c,3 Departments of aMolecular and Cell Biology and bChemistry, University of California, Berkeley, CA 94720; and cCalifornia Institute for Quantitative Biosciences and Division of Physical Biosciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Contributed by Michael A. Marletta, October 1, 2009 (sent for review August 22, 2009) Nitric oxide (NO) regulates a number of essential physiological pro- high activity of the xsNO state rapidly reverts to the low activity of cesses by activating soluble guanylate cyclase (sGC) to produce the the 1-NO state. Thus, all three sGC states (basal, 1-NO, and xsNO) second messenger cGMP. The mechanism of NO sensing was previ- can be prepared and studied in vitro (7, 8). Importantly, these ously thought to result exclusively from NO binding to the sGC heme; results define two different states of purified sGC with heme bound however, recent studies indicate that heme-bound NO only partially NO (7, 8), one with a high activity and one with a low activity. activates sGC and additional NO is involved in the mechanism of Further evidence for a non-heme NO binding site was obtained maximal NO activation. Furthermore, thiol oxidation of sGC cysteines by blocking the heme site with the tight-binding ligand butyl results in the loss of enzyme activity. Herein the role of cysteines in isocyanide, and then showing that NO still activated the enzyme NO-stimulated sGC activity investigated. We find that the thiol mod- (14).
    [Show full text]
  • Accelerating Effect of Ascorbic Acid on A/-Nitrosamine Formation and Nitrosation by Oxyhyponitrite1
    [CANCER RESEARCH 39, 3871-3874, October 1979] 0008-5472/79/0039-OOOOS02.00 Accelerating Effect of Ascorbic Acid on A/-Nitrosamine Formation and Nitrosation by Oxyhyponitrite1 Shaw-Kong Chang,2 George W. Harrington,5 Marc Rothstein,3 William A. Shergalis,4 Daniel Swern, and Saroj K. Vohra. Department of Chemistry, Temple University. Philadelphia. Pennsylvania 19122, and the Fels Research Institute. Temple University, Philadelphia. Pennsylvania 19140 ABSTRACT ments to be made readily during the initial and intermediate stages of reaction. DPP as used in this study avoids this The reaction of nitrite ion with ascorbic acid and its effect on difficulty and allows reactions to be studied in situ, yielding the rate of nitrosation of secondary amines have been investi interesting results. The use of DPP as an analytical method for gated by differential pulse polarography in aqueous acidic A/-nitrosamines and as a technique to study some of the chem solution. Ascorbic acid shows nonuniform behavior: it accel istry of W-nitrosamines has been previously reported by us (6- erates the nitrosation of N-methylaniline between pH 1.00 and 8, 31, 32). 1.95, allows the nitrosation of diphenylamine and iminodiace- tonitrile, but inhibits the nitrosation of secondary amines, such MATERIALS AND METHODS as dimethylamine, diethylamine, proline, hydroxyproline, N- methylaminoacetonitrile, N-methylaminopropionitrile, and sar- Instrumentation. The instrumentation, cells, and conditions cosine. The nitrosating agent generated by the reaction be used for DPP and spectral studies have been previously de tween ascorbic acid and nitrite ion appears to be oxyhyponitrite scribed (6, 7). The pH was measured with a Leeds & Northrup ion (N2CV2).
    [Show full text]
  • 207/2015 3 Lääkeluettelon Aineet, Liite 1. Ämnena I
    207/2015 3 LÄÄKELUETTELON AINEET, LIITE 1. ÄMNENA I LÄKEMEDELSFÖRTECKNINGEN, BILAGA 1. Latinankielinen nimi, Suomenkielinen nimi, Ruotsinkielinen nimi, Englanninkielinen nimi, Latinskt namn Finskt namn Svenskt namn Engelskt namn (N)-Hydroxy- (N)-Hydroksietyyli- (N)-Hydroxietyl- (N)-Hydroxyethyl- aethylprometazinum prometatsiini prometazin promethazine 2,4-Dichlorbenzyl- 2,4-Diklooribentsyyli- 2,4-Diklorbensylalkohol 2,4-Dichlorobenzyl alcoholum alkoholi alcohol 2-Isopropoxyphenyl-N- 2-Isopropoksifenyyli-N- 2-Isopropoxifenyl-N- 2-Isopropoxyphenyl-N- methylcarbamas metyylikarbamaatti metylkarbamat methylcarbamate 4-Dimethyl- ami- 4-Dimetyyliaminofenoli 4-Dimetylaminofenol 4-Dimethylaminophenol nophenolum Abacavirum Abakaviiri Abakavir Abacavir Abarelixum Abareliksi Abarelix Abarelix Abataceptum Abatasepti Abatacept Abatacept Abciximabum Absiksimabi Absiximab Abciximab Abirateronum Abirateroni Abirateron Abiraterone Acamprosatum Akamprosaatti Acamprosat Acamprosate Acarbosum Akarboosi Akarbos Acarbose Acebutololum Asebutololi Acebutolol Acebutolol Aceclofenacum Aseklofenaakki Aceklofenak Aceclofenac Acediasulfonum natricum Asediasulfoni natrium Acediasulfon natrium Acediasulfone sodium Acenocoumarolum Asenokumaroli Acenokumarol Acenocumarol Acepromazinum Asepromatsiini Acepromazin Acepromazine Acetarsolum Asetarsoli Acetarsol Acetarsol Acetazolamidum Asetatsoliamidi Acetazolamid Acetazolamide Acetohexamidum Asetoheksamidi Acetohexamid Acetohexamide Acetophenazinum Asetofenatsiini Acetofenazin Acetophenazine Acetphenolisatinum Asetofenoli-isatiini
    [Show full text]
  • Does N-Nitrosomelatonin Compete with S-Nitrosothiols As a Long
    nalytic A al & B y i tr o Singh et al., Biochem Anal Biochem 2016, 5:1 s c i h e m m Biochemistry & e DOI: 10.4172/2161-1009.1000262 i h s c t r o i y B ISSN: 2161-1009 Analytical Biochemistry Commentary Open Access Does N-Nitrosomelatonin Compete with S-Nitrosothiols as a Long Distance Nitric Oxide Carrier in Plants? Neha Singh, Harmeet Kaur, Sunita Yadav and Satich C Bhatla* Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, India Plants transmit a variety of signaling molecules from roots to of proteins [13]. aerial parts, and vice-versa, in response to their growth conditions Determination of GSNO in plant samples still presents a (environment, nutrients, stress factors etc.). A signaling molecule challenge due to several technical obstacles and cumbersome sample should be produced quickly, induce a defined effect within the cell preparation procedures. It can also be affected by light, metal-catalyzed and be removed or metabolized rapidly when not required. Nitric SNO decomposition, enzymatic degradation catalyzed by GSNO oxide (NO) plays significant signaling roles in plant cells since it has reductase, and a reduction in the S-NO bond caused by reductants and all the above-stated features. It is a gaseous free radical, can gain or endogenous thiols [13]. Two different approaches to detect GSNO have lose an electron, has short half-life ( ̴ 30 sec) and it can exist in three been reported in higher plants: immunohistochemical analysis using interchangeable forms, namely the radical (NO•), the nitrosonium commercial antibodies against GSNO and liquid chromatography- cation (NO+) and as nitroxyl radical (NO).
    [Show full text]
  • II.1.8 Alkyl Nitrites by Yasuo Seto
    1.8 II.1.8 Alkyl nitrites by Yasuo Seto Introduction Alkyl nitrites are highly volatile organic solvents of aliphatic alcohol esters of nitrites [1]. Amyl nitritea, butyl nitrite and isobutyl nitrite are the representative alkyl nitrites; their boiling points are 98, 78 and 67 °C, respectively. Amyl nitrite is being widely used as a detoxicant for cyanide poisoning, because alkyl nitrites oxidize hemoglobin in erythrocytes to yield methemogloblin, which is bound with cyanide to inactivate it [1]. Alkyl nitrites also show a coronary artery-di- lating eff ect, and had been, therefore, used for the treatment of angina pectoris many years ago [2]; the pharmacological eff ect of the dilation of the coronary arteries was found due to the action of nitrogen monoxide produced by decomposition of alkyl nitrites [3]. Th ey are being mainly used as materials for manufacturing drugs or as reagents for synthesis in industries; they are also used as aromatics. Because of their pharmacological eff ect, alkyl nitrites are being abused as uncontrolled inhalant drugs and causing a social problem [4]. Although there are many reports on toxic and fatal cases due to alkyl nitrites [5], reports on their fatal doses are few; it is estimated that oral ingestion of 10–15 mL of each alkyl nitrite causes serious methe- moglobinemia [6]. Th e LD50 value for an alkyl nitrite is reported to be 205 mg/kg. Th ere are not many cases of analysis of alkyl nitrites in the fi eld of forensic toxicology. In this chapter, the methods for analysis of the compounds by headspace (HS)-gas chromatography (GC) and liquid-liquid extraction-GC are presented.
    [Show full text]
  • Regulation of Protein Function by S-Nitrosation and S-Glutathionylation: Processes and Targets in Cardiovascular Pathophysiology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio della Ricerca - Università di Pisa Biol. Chem. 2017; 398(12): 1267–1293 Review Eugenia Belcastro, Caroline Gaucher, Alessandro Corti, Pierre Leroy, Isabelle Lartaud and Alfonso Pompella* Regulation of protein function by S-nitrosation and S-glutathionylation: processes and targets in cardiovascular pathophysiology https://doi.org/10.1515/hsz-2017-0150 aims to provide an update of available knowledge in the Received April 26, 2017; accepted August 7, 2017; previously field, with a special focus on the respective (sometimes published online August 19, 2017 competing and antagonistic) roles played by protein S-nitrosations and S-thionylations in biochemical and cel- Abstract: Decades of chemical, biochemical and patho- lular processes specifically pertaining to pathogenesis of physiological research have established the relevance cardiovascular diseases. of post-translational protein modifications induced by processes related to oxidative stress, with critical reflec- Keywords: cardiovascular diseases; glutathione; mixed tions on cellular signal transduction pathways. A great disulfides; nitric oxide; RNS; ROS; S-glutathionylation; deal of the so-called ‘redox regulation’ of cell function is S-nitrosation. in fact mediated through reactions promoted by reactive oxygen and nitrogen species on more or less specific ami- noacid residues in proteins, at various levels within the cell machinery. Modifications involving cysteine residues Introduction have received most attention, due to the critical roles they The role of nitric oxide (NO) in several signaling routes play in determining the structure/function correlates in has been clearly established (Grisham et al., 1999; Pacher proteins. The peculiar reactivity of these residues results et al., 2007).
    [Show full text]
  • Effects of Nitric Oxide Synthase Inhibitors on Equine and Bovine Follicular Dynamics and Steroidogenesis
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 2001 Effects of Nitric Oxide Synthase Inhibitors on Equine and Bovine Follicular Dynamics and Steroidogenesis. Carlos Roberto fontes Pinto Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Pinto, Carlos Roberto fontes, "Effects of Nitric Oxide Synthase Inhibitors on Equine and Bovine Follicular Dynamics and Steroidogenesis." (2001). LSU Historical Dissertations and Theses. 430. https://digitalcommons.lsu.edu/gradschool_disstheses/430 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]