Vacuum Tube Radio Receiver
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SSB Exciter Circuits Using a New Beam-Deflection Tube
8/24/2008 7360 Circuits SSB Exciter Circuits Using a New Beam-Deflection Tube Practical Circuit Data for Modulation, Frequency Conversion and Detection BY H. C. VANCE K2FF Extracted from QST March 1960 The new beam deflection tube described here appears to be a bulb-full of versatility, with more applications than were visualized when the tube was under development as an improved type of balanced modulator. This article tells how the 7360 can be put to work in a number of ways in the amateur field, particularly in SSB transmission and reception. A new beam-deflection tube, the RCA-7360, incorporates novel design features which, with suitable circuits, allow it to be used in many kinds of applications with improved performance at frequencies at least as high as 100 megacycles. The tube was originally developed to provide a high degree of stable carrier suppression when used as a balanced modulator in single-sideband service. More than 60 dB of carrier suppression has been obtained with it as a balanced modulator in SSB exciters of both the filter and phasing types. It is of course equally valuable in double-sideband suppressed carrier service. Frequency conversion, product detection, synchronous detection, single-ended to push-pull phase inversion, switching circuits, fader circuits and compressor- expander-limiter circuits are among the many other interesting applications in which the unique properties of this new tube have been found to be valuable. In this article circuits will be described which make use of the 7360 as a balanced modulator, a frequency mixer and a product detector. -
US2959674.Pdf
Nov. 8, 1960 T. R. O "MEARA 2,959,674 GAIN CONTROL FOR PHASE AND GAIN MATCHED MULTI-CHANNEL RADIO RECEIVERS Filed July 2, 1957 2. Sheets-Sheet 2 PETARD CONVERTER TUBE Ë????Q. F SiGNAL OUTPUT OSC. S. G. INPUT INVENTOR. 77/OMAS A. O’MEAAA AT 7OAPWA 3 2,959,674 United States Patent Office Patented Nov. 8, 1960 1. 2 linear type. By a linear type frequency changer is meant a device with output current or voltage which is a linear 2.959,674 function of either the RF input signal or local oscillator GAIN CONTROL FOR PHASE AND GAN signal alone and with a conversion transconductance MATCHED MULT-CHANNELRADIO RE. 5 characteristic which varies linearly with the magnitude of CEIVERS the voltage at the local oscillator input to the device. Thomas R. O'Meara, Los Angeles, Calif., assignor, by This means that, if instead of being an alternating voltage, meSne assignments, to the United States of America as the RF signal input to the device were maintained at a represented by the Secretary of the Navy constant D.C. voltage and the oscillator signal were re 0. placed by a D.C. voltage excursion, then a plot of the Filed July 2, 1957, Ser. No. 669,691 output current or voltage of the device versus the local oscillator signal voltage would be a straight line. Simi 3 Claims. (Cl. 250-20) larly, if the local oscillator signal voltage input to the device were kept at a constant D.C. value, instead of This invention relates to a gain control for electronic 5 being an A.C. -
Valves Were Expensive in the Early Days of Radio and So Designers
By RODNEY CHAMPNESS, VK3UG would become gassy. Occasionally, even today, a valve with a purple glow inside it will be seen and this is often an indication that the glass to metal pin seal is not perfect and air has leaked VICTORIA into the valve. Incandescent light globes were the first items to have metal pins or wires protruding through a glass envelope. However, this created no real problem, since the vacuum created was satisfac- tory for their operation and the glass- to-metal seals were not as critical. In some cases, the globe was filled with an inert gas such as nitrogen to prevent Above: the Kriesler 11-41 was a popular evaporation of the filament. 4-valve reflex receiver from the 1950s. One problem with valves was that the metals used inside them (ie, for the elements and filaments) had to Valves were expensive in the early be carefully selected, otherwise they days of radio and so designers came up could emit gases when they became hot. These gases could then "poison" with clever techniques to minimise the a valve and adversely affect its per- valve count. One technique was known formance. So early attempts at making valves as "reflexing" and involved using the into viable amplifying devices encoun- same valve to work as both an RF or IF tered many difficulties. However, their potential to revolutionise radio was amplifier and as an audio amplifier. obvious and so a great deal of effort was put into solving these problems. It is for these and other reasons that valves were by far the most expensive nOMPONENTS such as tuning ca- had a small amount of gas left inside, and fragile components in early valve pacitors, inductors (both fixed and due to manufacturing limitations. -
Basic Electronics
14 Basic Electronics In this chapter, we lead you through a study of the basics of electronics. After completing the chapter, you should be able to Understand the physical structure of semiconductors. Understand the essence of the diode function. Understand the operation of diodes. Realize the applications of diodes and their use in the design of rectifiers. Understand the physical operation of bipolar junction transistors. Realize the applications of bipolar junction transistors. Understand the physical operation of field-effect transistors. Realize the application of field-effect transistors. Perform rapid analysis of transistor circuits. REFERENCES 1. Giorgio Rizzoni, Principles and Applications of Electrical Engineering, McGraw Hill, 2003. 2. J. R. Cogdel, Foundations of Electronics, Prentice Hall, 1999. 3. Donald A., Neaman, Electronic Circuit Analysis and Design, McGraw Hill, 2001. 4. Sedra/Smith, Microelectronic Circuits, Oxford, 1998. 1 Basic Electronics 2 14.1 INTRODUCTION Electronics is one of the most important fields in existence today. It has greatly influenced everything since early 1900s. Everyone nowadays realize the impact of electronics on our daily life. Table 14-1 shows many important areas with tremendous impact of electronics. Table 14-1 Various Application Areas of Electronics Area Examples of Applications Automotives Electronic ignition system, antiskid braking system, automatic suspension adjustment, performance optimization. Aerospace Airplane controls, spacecrafts, space missiles. Telecommunications Radio, television, telephones, mobile and cellular communications, satellite communications, military communications. Computers Personal computers, mainframe computers, supercomputers, calculators, microprocessors. Instrumentation Measurement equipment such as meters and oscilloscopes, medical equipment such as MRI, X- ray machines, etc. Microelectronics Microelectronic circuits, microelectromechanical systems. Power electronics Converters, Radar Air traffic control, security systems, military systems, police traffic radars. -
1999-2017 INDEX This Index Covers Tube Collector Through August 2017, the TCA "Data Cache" DVD- ROM Set, and the TCA Special Publications: No
1999-2017 INDEX This index covers Tube Collector through August 2017, the TCA "Data Cache" DVD- ROM set, and the TCA Special Publications: No. 1 Manhattan College Vacuum Tube Museum - List of Displays .........................1999 No. 2 Triodes in Radar: The Early VHF Era ...............................................................2000 No. 3 Auction Results ....................................................................................................2001 No. 4 A Tribute to George Clark, with audio CD ........................................................2002 No. 5 J. B. Johnson and the 224A CRT.........................................................................2003 No. 6 McCandless and the Audion, with audio CD......................................................2003 No. 7 AWA Tube Collector Group Fact Sheet, Vols. 1-6 ...........................................2004 No. 8 Vacuum Tubes in Telephone Work.....................................................................2004 No. 9 Origins of the Vacuum Tube, with audio CD.....................................................2005 No. 10 Early Tube Development at GE...........................................................................2005 No. 11 Thermionic Miscellany.........................................................................................2006 No. 12 RCA Master Tube Sales Plan, 1950....................................................................2006 No. 13 GE Tungar Bulb Data Manual................................................................. -
Suitability of a Commercial Software Defined Radio System for Passive Coherent Location
Suitability of a Commercial Software Defined Radio System for Passive Coherent Location Aadil Volkwin A dissertation submitted to the Department of Electrical Engineering, University of Cape Town, in fulfilment of the requirements for the degree of Master of Science in Engineering. Cape Town, May 2008 Dedicated to: My Parents, my Sister and my Wife. 2 Declaration I declare that this work done is my own, unaided work. This dissertation is being submitted to the Department of Electrical Engineering, University of Cape Town, in fulfilment of the requirements for the degree of Master of Science in Engineering. It has not been submitted for any degree or examination in any other university. ................................................................................ Signature of Author Cape Town 2008 3 Abstract This dissertation provides a comprehensive discussion around bistatic radar with specific reference to PCL, highlighting existing literature and work, examining the various performance metrics. In particular the performance of commercial FM radio broadcasts as the radar waveform is examined by implementation of the ambiguity function. The FM signals show desirable characteristics in the context of our application, the average range resolution obtained is 5.98km, with range and doppler peak sidelobe levels measured at -25.98dB and -33.14dB respectively. Furthermore, the SDR paradigm and technology is examined, with discussion around the design considerations. The USRP, the TVRx daughterboard and GNURadio are examined further as a potential receiver and development environment, in this light. The system meets the low cost ambitions costing just over US$1000.00 for the USRP motherboard and a single daughterboard. Furthermore it performs well, displaying desirable characteristics, The receiver's frontend provides a bandwidth of 6MHz and a tunable range between 50MHz and 800MHz, with a tuning step size as low as 31.25kHz. -
RF Communications : Systems & Circuits
ELEN 665 RF Communications : Systems & Circuits Edgar Sánchez-Sinencio [email protected] Analog and Mixed-Signal Center,Texas A&M University 1 Fall 2009 WHAT ARE THE MAIN TOPICS INVOLVED TO FULLY UNDERSTAND RF DESIGN ? IC DES S IGN ON TI AND CA DEV NI ICES U MM CO N ICROWAVE G M SI E D TECHNIQUES F R SIGNAL PROCESSING APPLICATIONS 2 Analog and Mixed Signal Center, TAMU ELEN 665 (ESS) INTRODUCTION AND MOTIVATION • HOW DO LIVING BEINGS COMMUNICATE ? • HOW CAN WE MIMIC HUMAN COMMUNICATIONS ? • WHAT ARE THE FUNDAMENTAL ARCHITECTURES OF WIRELESS RECEIVERS AND TRANSMITTERS ? • WHAT ARE THE FUNDAMENTAL PROBLEMS IN A RECEIVER? How does non-linearity play a role? 3 Analog and Mixed Signal Center, TAMU HowHow dodo livingliving beingsbeings communicate?communicate? • Communicating is something that all animals, including humans, do. It could be a dog barking a warning, a cat arching its back, or crickets chirping, animals are always sending messages to each other. • Animals and plants react to stimuli which might come from other living things or from the environment. A stimulus usually causes the organism which receives it to respond to it. Animals use all their senses to communicate. • For example, some male birds develop colorful plumage so that the females will be attracted by a visual stimulus as well as by sound. • Bees (dogs) communicate by means smelling (sniffing). • Dolphins communicate through sounds. 4 • The signals which an organism uses can be visual (sight), sensual (touch), auditory (sound) or chemical Marine mammals establish contact with specific individuals using short-range vocalizations. The most singular example of marine mammals using sound to make or maintain contact is between mother and offspring. -
Brookhaven National Laboratory
BROOKHAVEN NATIONAL LABORATORY quarterly Progress Report April 1 - June 30~ 1950 Associated Universities Inc. under contract with the United States Atomic Energy Commission. BROOKHAVEN NATIONAL LABORATORY QUARTERLY PROGRESS REPORT April 1 - June 30, 1950 Associated Universities, Inc~ under contract with the United States Atomic Energy Commission Printed at Upton, New York, for distribution to individuals and organizations associated with the national atomic energy program. July, 1950 7.00 copies FOREWORD This is the second of a series of Quarterly Progress Re ports. While most of the departments have summarized their work or used a form comparable to abstracts, the Chemistry Department has given both abstracts and complete reports on its work. The major part of the progress in the Reactor Science and Engineer ing Department is being presented simultaneously in a separate classified report. iii CONTENTS Foreword • • • iii· Physics Department • 1 Instrumentation and Health Physics Department 15 Accelerator Projeot • • 22 Chemistry Department • 28 Reactor Science and Engineering Department • 91 Biology Department • • 96 Medioal Department • • 107 PHYSICS DEPARTMENT The research progress of the Physics Department is described under five subdivisions: 1) dynamic properties of atomic nuclei, 2) stationary proper ties of nuclei, 3) high energy particle physics, 4) research in other branches of physics carried out with the use of neutrons or other nuclear techniques, and 5) theoretical topics not included under the above headings. Under sub division (1) are included investigations of radioactivity and nuclear reac tions induced by gamma rays, neutrons, and particles accelerated in the cyqlotron or Van de Graaff accelerator. Under (2) are the measurements of nuclear mass and moment. -
Front-End Receiver: Recent and Emerging Trend Ulrich L
Front-End Receiver: Recent and Emerging Trend Ulrich L. Rohde Ajay K. Poddar Enrico Rubiola Marius A. Silaghi BTU Cottbus 03046 Germany Synergy Microwave NJ USA FEMTO-ST Inst. Besancon France University of Oradea, Romania Abstract—This paper describes the recent trend of front-end receiver systems for the application in radio monitoring. The 650 MHz to 1300 MHz receiver implementation is optimized for applications such as 20 MHz to 650 MHz hunting and detecting unknown signals, identifying interference, Vin =−117 dBm (0.3 μV) ≥10 dB Vin=−47 dBm (1 mV) ≥50 dB spectrum monitoring and clearance, and signal search over wide LSB/USB, IF bandwidth 500 frequency ranges, producing signal content and direction finding Hz, of identified signals. Δf=500 Hz 0.5 MHz to 20 MHz, ≥10 dB Keywords—Receivers, Real time FFT Processing Vin=0.4μV 20 to 30 MHz, Vin= 0.5 μV ≥10 dB I. INTRODUCTION LSB/USB, IF bandwidth The emerging security threats demand an intensive data 2.5kHz, Δf=1kHz gathering for fiber or radio communication [1]. Besides the 0.5 MHz to 20 MHz, ≥10 dB fiber technology, there are varieties of wireless activities, Vin=0.6μV which are typically analyzed by off the air monitoring [2]-[9]. 20 to 30 MHz, Vin= 0.7 μV ≥10 dB The spectral density of signals these days is very high and Vin= 100 μV ≥46 dB therefore such monitoring receivers require high performance. AM, IF Bandwidth 2.5kHz, The technique in designing such receivers is a composition of fmod=1 kHz, m=0.5 0.5 MHz to 20 MHz, ≥10 dB microwave engineering of the building blocks preamplifier, Vin=1μV mixer, synthesizer and necessary filters, this paper describes 20 to 30 MHz, Vin= 1.2 μV ≥10 dB critical aspects of important building blocks of radio Crossmodulation interfering monitoring receives [10]-[20]. -
1991-07: the Story of Reflexes
VII liliLdi gp e IRa~dln~o by PETER LANKSHEAR The story of `Reflexes' This month's column is not about rubber hammers and kneecaps, but a technology that persisted throughout the history of valve radio, and one that was exploited to its greatest extent in Australia. With semiconductors available today tal detector and then reflexed the audio valves coincided with a boom in at only a few cents apiece, it is difficult back to the grid of the valve to again `midget' radios, and an increasing de- to appreciate just how expensive ampli- amplify the signal. Any problems like mand for car radios. Economies in space fication was in the early days of radio. erratic operation and distortion were of and battery consumption became import- Not only valves, but every milliampere- little consequence. ant, providing an incentive to resurrect hour of precious battery power cost a lot reflexing. of money. Any way to economise was Early superhet use From late 1933 the Americans, espe- well received. An early 'high tech' application of re- cially RCA, made some use of the 6B7 in During World War 1, much research flexing was in Edwin Armstrong's first car radios as a reflexed IF and trans- went into triode valve applications. One generation of RCA superheterodynes, in former-coupled audio amplifier, with the US Navy worker, W.H. Priess, patented 1924. To keep the number of valves to a one valve providing IF and AF amplifi- the concept of passing a signal twice minimum, the first valve was used as an cation, diode detection and AGC. -
Lee De Forest Claimet\He Got the Idea for His Triode ''Audion" From
Lee de Forest claimet\he got the idea for his triode h ''audion" from wntching a gas flame bum. John Ambrose Flen#ng thought that story ·~just so much hot air. lreJess telegraphy held excit m WIng promise at the beginning of the twentieth century. Peo ~With Imagination could seethe po.. tentlal thot 'the rematkoble new technology offered forworlct1Nk:le com munfcotion. However, no one could hove predicted the impact that the soon-to-be-developed "osdllotlon volve" ond "oudlon" Wireless-telegra phy detector& wauid have on elec tronics technology. Backpouncl. Shortly before 1900, · Guglielmo Morconl had formed his own company to develop wireless telegraphy technology. He demon strated that wireless set-ups on ships eot~ld~messageswlth nearby stations on other ships or on land. t The Marconi Company hOd also j transmitted messages across the EhQ Jish Channel. By the end of 1901. Mar coni extended the range of his equipmenttospantheAtlan1tcOcean. It was obvlgus. 1hot ~raph ~MeS with subrhatlrie cables and ihelr lnber ent flmltations woUld soon disappear, Ships· at sea would no longer be iso la1ed. No locatlon on Eorth would. be too remote to send and receive mes sages. Clear1y; the opportunity existed tor enormous tiOOnciql gain once Jelio ble equlprrient was avoltable. To that end, 1Uned electrical circuits were developed to reduce the band width of the signals produced by ,the spark transrnlf'tirs. The resonont clfcults were also used in a receiver to select one signal from omong several trans missions. Slm~deslgn principles for resonont ontennas were also being explored and applied, However, the senstflvlty and reUabltlty of the devices used to ctetectthe Wireless signals were still hln cterlng the development of commer () cial wireless-telegraph nefWorks. -
Master's Thesis
Eindhoven University of Technology MASTER Mapping a China Digital Radio (CDR) receiver on a software-defined-radio platform Cheng, Y. Award date: 2017 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Department of Mathematics and Computer Science Algorithm & Software Innovation Mapping a China Digital Radio (CDR) receiver on a Software-Defined-Radio platform Master Thesis Yan Cheng Supervisors: prof.dr.ir.C.H.(Kees) van Berkel Dr.Hong Li Eindhoven, August 2017 Abstract With the launch of the China Digital Radio (CDR) standard in hundreds of cities in China, CDR radio receiver chips are required in market. To explore fast and efficient embedded Software- Defined-Radio (SDR) CDR receiver design and realization, this thesis project used Data-Flow (DF) modeling to study architectural options of a CDR receiver design for an existing NXP SDR chip.