2. Background on Species Distribution Modelling

Total Page:16

File Type:pdf, Size:1020Kb

2. Background on Species Distribution Modelling A new tool for predicting distribution patterns of African dragonflies in space and time: sensitivity analyses of model parameters and environmental variables A thesis submitted in partial fulfilment of the requirements of the degree of Doctor of Natural Sciences (Dr. rer. nat.) of the Faculty of Environment and Natural Resources, Albert-Ludwigs-Universität Freiburg im Breisgau, Germany Submitted by Nirmal Ojha from Nepal Freiburg im Breisgau 2014 Dean: Prof. Dr. Barbara Koch Supervisor: Prof. Dr. Axel Drescher 2nd Reviewer : Prof. Dr. Carsten F. Dormann Date of thesis' defence : 19 Nov 2013 Acknowledgements Firstly I would like to thank the Faculty of Environment and Natural Resources for accepting my application for pursuing a doctoral degree. Many thanks go to Prof Dr Axel Drescher for supervising my research work. My warm thanks to Prof Dr Carsten F Dormann for accepting to review my work. Special thanks are due to Prof Dr Gertrud Schaab from the Hochschule Karlsruhe who supervised my work offering her guidance throughout the entire period of my work. I am grateful to the office of the Chancellor of the Hochschule Karlsruhe and helpful team of the Institute of Applied Research (IAF) for providing me the work space and allowing me to use the facilities. Acknowledgement is also due to Christian Stern who organised each year the necessary ArcGIS developer’s license in timely manner. I am thankful to Dr Viola Clausnitzer, Dr Frank Suhling, Dr K. D-B Dijkstra and Jens Kipping for providing me the records of dragonflies’ locations. The discussions and feedbacks offered by them on the initial predicted distributions of some species contributed in improving the modelling tool, thereby better prediction results. My appreciations are also to the former members of the working group G(V)ISЯ at the IAF while being part of the BIOTA Africa project for their friendship, moral support and cordial working environment making part of the journey enjoyable. Thanks also to Dorothea Heim who helped translating the extended summary in German. I am indebted to Prof Dr Prajwal Lal Pradhan from the Institute of Engineering, Pulchowk Campus Nepal. He has been motivational figure and his advice and moral support has led me to this position today. Finally, I would like to express sincere gratitude to my parents for their support. Page| iii Page| iv Abstract In the last few decades, Africa has been a dynamic continent regarding the changes in landscape, population and climate. To identify effects of the changes in environmental conditions on biodiversity, species distribution modelling (SDM) can be of use and SDM has been used in wide array of ecological applications such as determining hotspots, planning of reserves, designing survey for biodiversity inventory, or assessing the impacts of environmental change on biodiversity. Odonata which require both terrestrial and aquatic ecosystem for a lifecycle, is suitable species to consider as flagship species for many ecological studies. Here, a logistic regression based new SDM tool, the ‘SpeeDi Tool' is presented focusing on modelling the distribution of African Odonata species using the Odonata Database of Africa. The use of geographic information system (GIS) in pre- and post- processing is integral part of the SDM workflow and GIS and statistical modelling is integrated in the SpeeDi Tool. The user centred approach for the development of the SpeeDi Tool offers usability and achievement of the goal (i.e. predicting the distribution range) with ease. Pseudagrion kersteni , a widely spread dragonfly species in sub-Saharan Africa, is taken as species of interest to demonstrate the use and ability of the SpeeDi Tool. An expert-drawn watershed based range map from IUCN serves the purpose for visually comparing the modelled spatial distribution and, thus, enables to evaluate the predicted range. The SpeeDi Tool has several modelling parameters, some of which have been new in SDM field, namely, elastic-net factor which has not been applied to SDM using background samples until now, soft buffer threshold (SBT) which is a new concept introduced here, and weights for samples. In addition to the use of background samples, it introduces the modelling by using presence samples with absence and / or background samples; the combination of presence, absence and background samples is a new option not found in existing SDM tools yet. In order to gain confidence in using the SpeeDi Tool, several sensitivity analyses are performed using P. kersteni samples for different modelling approaches for applying different modelling parameters and for using different environmental geodatasets. These sensitivity analyses are thought for determining the optimum values of different regression parameters to maximise the model’s performance, and for finding the important environmental variables and their effects on the prediction of distribution ranges. The concept similar to that of a virtual species is used to evaluate general applicability of the SpeeDi Tool. The sensitivity analyses of modelling parameters showed a) the elastic-net regularisation is superior to L1 or L2 regularisation, b) the uncertainty in population prevalence in background samples can be reduced by applying SBT, c) weights can be effective in reducing effects of sampling bias, d) the number of background samples is sensitive for fitting the model, and e) product interaction of variables are necessary for better prediction of distribution range. The sensitivity of environmental datasets showed a) monthly climate datasets should be preferred over synthesised bioclimatic datasets, b) predicted distributions using land-cover datasets with different classification schemes are not much different but the contribution of land cover classes in different datasets indicated that false interpretation regarding ecological significance of these classes can be possible. Further, the results for the modelling of A. minuscula showed that there is not much difference in distribution range when modelled at spatial resolutions of 1 km and 8 km. The results also indicated that modelling extent should not extend too far beyond the species’ native region. Page| v Page| vi Table of Contents Acknowledgements ................................................................................................................................ iii Abstract ................................................................................................................................................... v List of Figures ........................................................................................................................................... x List of Tables .......................................................................................................................................... xiii List of Boxes ............................................................................................................................................ xv List of acronyms ...................................................................................................................................... xv 1. Introduction ..................................................................................................................................... 1 Background .............................................................................................................................. 1 The thesis’ aims and limits....................................................................................................... 2 Outline of the thesis ................................................................................................................ 3 2. Background on species distribution modelling ............................................................................... 5 Three types of species distribution models ............................................................................. 5 Uses of species distribution modelling .................................................................................... 6 Empirical methods for species distribution modelling ............................................................ 8 Use of presence, absence and background data in species distribution modelling ............. 10 General characteristics and assumptions of statistical species distribution models ............ 12 Commonly used data in statistical species distribution models ........................................... 15 Incorporating statistics and GIS for species distribution modelling ...................................... 16 Summary and main considerations ....................................................................................... 18 3. Quality-in-use for development of species distribution modelling tool ....................................... 20 Context of use ........................................................................................................................ 20 Quality measures ................................................................................................................... 21 3.2.1. Functionality .................................................................................................................. 22 3.2.2. Reliability ....................................................................................................................... 22 3.2.3. Usability ......................................................................................................................... 23 3.2.4.
Recommended publications
  • Dragonflies and Damselflies of the Western Cape
    BIODIVERSITY OBSERVATIONS RESEARCH PAPER (CITIZEN SCIENCE) Dragonflies and damselflies of the Western Cape - OdonataMAP report, August 2018 Author(s): Journal editor: Underhill LG, Loftie-Eaton M and Pete Laver Navarro R Manuscript editor: Pete Laver Received: August 30, 2018; Accepted: September 6, 2018; Published: September 06, 2018 Citation: Underhill LG, Loftie-Eaton M and Navarro R. 2018. Dragonflies and damselflies of the Western Cape - OdonataMAP report, August 2018. Biodiversity Observations 9.7:1-21 Journal: https://journals.uct.ac.za/index.php/BO/ Manuscript: https://journals.uct.ac.za/index.php/BO/article/view/643 PDF: https://journals.uct.ac.za/index.php/BO/article/view/643/554 HTML: http://thebdi.org/blog/2018/09/06/odonata-of-the-western-cape Biodiversity Observations is an open access electronic journal published by the Animal Demography Unit at the University of Cape Town, available at https://journals.uct.ac.za/index.php/BO/ The scope of Biodiversity Observations includes papers describing observations about biodiversity in general, including animals, plants, algae and fungi. This includes observations of behaviour, breeding and flowering patterns, distributions and range extensions, foraging, food, movement, measurements, habitat and colouration/plumage variations. Biotic interactions such as pollination, fruit dispersal, herbivory and predation fall within the scope, as well as the use of indigenous and exotic species by humans. Observations of naturalised plants and animals will also be considered. Biodiversity Observations will also publish a variety of other interesting or relevant biodiversity material: reports of projects and conferences, annotated checklists for a site or region, specialist bibliographies, book reviews and any other appropriate material.
    [Show full text]
  • ESM-Table 1A/B. Species of the Suborders Anisoptera (A) and Zygoptera (B) Included in This Study; Ind
    ESM-Table 1a/b. Species of the suborders Anisoptera (a) and Zygoptera (b) included in this study; Ind. = number of individuals analysed; ID = abbreviation of species name; Loc. = number of sample sites (localities). (a) Suborder: Anisoptera (b) Suborder: Zygoptera Family: Aeshnidae Family: Calopterygidae Species Ind. Loc. ID Species Ind. Loc. ID Aeshna cyanea 1 1 Aecy Phaon iridipennis 39 19 Pi Aeshna ellioti ellioti 1 1 Aelel Calopteryx haemorrhoidales 21 5 ch Aeshna ellioti usambarica 1 1 Aelus Calopteryx splendens 20 6 cs Aeshna grandis 1 1 Aegr Calopteryx virgo 51cv Aeshna rileyi 1 1 Aerl Coryphaeschna adnexa 1 1 Corad Family: Clorocyphidae Coryphaeschna perrensi 1 1 Corpe Anaciaeschna isosceles 1 1 Anaiso Chlorocypha aphrodite 1 1 Cap Anaciaeschna triangulifera 1 1 Anatri Platycypha amboniensis 21PA Anax imperator 88 16 Ai Platycypha auripes 2 1 Pau Anax junius 11Aj Platycypha caligata 56 11 Pc Anax parthenope 11Ap Anax speratus 21 4 As Family: Megapodagrionidae Anax ephippiger 19 4 Ae Brachytron pratense 1 1 Brpr Amanipodagrion gilliesi 11Ag Gynacantha manderica 1 1 Gyma Heteagrion sp. 2 1 Hsp Gynacantha usambarica 10 4 Gu Gynacantha villosa 1 1 Gyvill Family: Pseudolestidae Family: Gomphidae Rhipidolestes hiraoi 1 1 Rhd Paragomphus geneii 32 9 Pg Family: Coenagrionidae Family: Libellulidae Pseudagrion acaciae 42Pa Pseudagrion bicoerulans 22 4 Pb Nesciothemis farinosum 92Nf Pseudagrion commoniae 2 1 Pco Orthetrum brachiale 92Ob Pseudagrion gamblesi 2 1 Pga Orthetrum chrysostigma 34 9 Oc Pseudagrion hageni 21Ph Orthetrum coerulescens
    [Show full text]
  • The Dragonfly Larvae of Namibia.Pdf
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/260831026 The dragonfly larvae of Namibia (Odonata) Article · January 2014 CITATIONS READS 11 723 3 authors: Frank Suhling Ole Müller Technische Universität Braunschweig Carl-Friedrich-Gauß-Gymnasium 99 PUBLICATIONS 1,817 CITATIONS 45 PUBLICATIONS 186 CITATIONS SEE PROFILE SEE PROFILE Andreas Martens Pädagogische Hochschule Karlsruhe 161 PUBLICATIONS 893 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Feeding ecology of owls View project The Quagga mussel Dreissena rostriformis (Deshayes, 1838) in Lake Schwielochsee and the adjoining River Spree in East Brandenburg (Germany) (Bivalvia: Dreissenidae) View project All content following this page was uploaded by Frank Suhling on 25 April 2018. The user has requested enhancement of the downloaded file. LIBELLULA Libellula 28 (1/2) LIBELLULALIBELLULA Libellula 28 (1/2) LIBELLULA Libellula Supplement 13 Libellula Supplement Zeitschrift derder GesellschaftGesellschaft deutschsprachiger deutschsprachiger Odonatologen Odonatologen (GdO) (GdO) e.V. e.V. ZeitschriftZeitschrift der derder GesellschaftGesellschaft Gesellschaft deutschsprachigerdeutschsprachiger deutschsprachiger OdonatologenOdonatologen Odonatologen (GdO)(GdO) (GdO) e.V.e.V. e.V. Zeitschrift der Gesellschaft deutschsprachiger Odonatologen (GdO) e.V. ISSN 07230723 - -6514 6514 20092014 ISSNISSN 072307230723 - - -6514 65146514 200920092014 ISSN 0723 - 6514 2009 2014 2009
    [Show full text]
  • Odonata from Highlands in Niassa, with Two New Country Records
    72 Odonata from highlands in Niassa, Mozambique, with two new country records Merlijn Jocque1,2*, Lore Geeraert1,3 & Samuel E.I. Jones1,4 1 Biodiversity Inventory for Conservation NPO (BINCO), Walmersumstraat 44, 3380 Glab- beek, Belgium; [email protected] 2 Aquatic and Terrestrial Ecology (ATECO), Royal Belgian Institute of Natural Sciences (RBINS), Vautierstraat 29, 1000 Brussels, Belgium 3 Plant Conservation and Population Biology, University of Leuven, Kasteelpark Arenberg 31-2435, BE-3001 Leuven, Belgium 4 Royal Holloway, University of London, Egham Surrey TW20 OEX, United Kingdom * Corresponding author Abstract. ‘Afromontane’ ecosystems in Eastern Africa are biologically highly valuable, but many remain poorly studied. We list dragonfly observations of a Biodiversity Express Survey to the highland areas in north-west Mozambique, exploring for the first time the Njesi Pla- teau (Serra Jecci/Lichinga plateau), Mt Chitagal and Mt Sanga, north of the provincial capital of Lichinga. A total of 13 species were collected. Allocnemis cf. abbotti and Gynacantha im­ maculifrons are new records for Mozambique. Further key words. Dragonfly, damselfly, Anisoptera, Zygoptera, biodiversity, survey Introduction The mountains of the East African Rift, stretching south from Ethiopia to Mozam- bique, are known to harbour a rich biological diversity owing to their unique habi- tats and long periods of isolation. Typically comprised of evergreen montane forests interspersed with high altitude grassland/moorland habitats, these montane archi- pelagos, often volcanic in origin, have been widely documented as supporting high levels of endemism across taxonomic groups and are of international conservation value (Myers et al. 2000). While certain mountain ranges within this region have been relatively well studied biologically e.g.
    [Show full text]
  • Download Download
    Biodiversity Observations http://bo.adu.org.za An electronic journal published by the Animal Demography Unit at the University of Cape Town The scope of Biodiversity Observations consists of papers describing observations about biodiversity in general, including animals, plants, algae and fungi. This includes observations of behaviour, breeding and flowering patterns, distributions and range extensions, foraging, food, movement, measurements, habitat and colouration/plumage variations. Biotic interactions such as pollination, fruit dispersal, herbivory and predation fall within the scope, as well as the use of indigenous and exotic species by humans. Observations of naturalised plants and animals will also be considered. Biodiversity Observations will also publish a variety of other interesting or relevant biodiversity material: reports of projects and conferences, annotated checklists for a site or region, specialist bibliographies, book reviews and any other appropriate material. Further details and guidelines to authors are on this website. Lead Editor: Arnold van der Westhuizen – Guest Editor: K-D B Dijkstra SHOOT THE DRAGONS WEEK, ROUND 1: ODONATAMAP GROWS BY 1,200 RECORDS Les G Underhill, Alan D Manson, Jacobus P Labuschagne and Ryan M Tippett Recommended citation format: Underhill LG, Manson AD, Labuschagne JP, Tippett RM 2016. Shoot the Dragons Week, Round 1: OdonataMAP grows by 1,200 records. Biodiversity Observations 7.100: 1–14. URL: http://bo.adu.org.za/content.php?id=293 Published online: 27 December 2016 – ISSN 2219-0341
    [Show full text]
  • Okavango) Catchment, Angola
    Southern African Regional Environmental Program (SAREP) First Biodiversity Field Survey Upper Cubango (Okavango) catchment, Angola May 2012 Dragonflies & Damselflies (Insecta: Odonata) Expert Report December 2012 Dipl.-Ing. (FH) Jens Kipping BioCart Assessments Albrecht-Dürer-Weg 8 D-04425 Taucha/Leipzig Germany ++49 34298 209414 [email protected] wwwbiocart.de Survey supported by Disclaimer This work is not issued for purposes of zoological nomenclature and is not published within the meaning of the International Code of Zoological Nomenclature (1999). Index 1 Introduction ...................................................................................................................3 1.1 Odonata as indicators of freshwater health ..............................................................3 1.2 African Odonata .......................................................................................................5 1.2 Odonata research in Angola - past and present .......................................................8 1.3 Aims of the project from Odonata experts perspective ...........................................13 2 Methods .......................................................................................................................14 3 Results .........................................................................................................................18 3.1 Overall Odonata species inventory .........................................................................18 3.2 Odonata species per field
    [Show full text]
  • The Genera of the Afrotropical Aeshnini: Afroaeschna Gen
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/289953182 The genera of the afrotropical aeshnini: Afroaeschna gen. nov.'pinheyschna gen. nov. and zosteraeschna gen... Article in Odonatologica · September 2011 CITATIONS READS 3 26 2 authors, including: Gunther Theischinger Office of Environment and Heritage 87 PUBLICATIONS 312 CITATIONS SEE PROFILE Available from: Gunther Theischinger Retrieved on: 16 November 2016 Odonatologica 40(3): 227-249 SeptemberI, 2011 The generaof the Afrotropical “Aeshnini”: Afroaeschna gen. nov., Pinheyschna gen. nov. and Zosteraeschna gen. nov., with the description of Pinheyschna waterstoni spec. nov. (Anisoptera: Aeshnidae) G. Peters¹ and G. Theischinger² 1 Museum fur Naturkunde Berlin, Invalidenstr. 43, 10115 Berlin, Germany; [email protected] 2 Water Science, Office of Environment and Heritage, Department of Premier and Cabinet, — PO Box 29, Lidcombe NSW 1825, Australia; [email protected] Received February 14, 2011 / Reviewed and Accepted March 14, 2011 The genericnamesAfroaeschna, Pinheyschna and Zosteraeschna areintroduced for 3 of groups Afrotropical dragonfly species, traditionallyassigned tothe paraphyletic taxon Aeshna. The phylogenetic relationships of these monophylawhich are not im- mediately related to each other are discussed. The Ethiopianpopulations of Pinhey- schna n. are described and characterized gen. as a new sp. (Pinheyschna waterstoni). Zosteraeschna ellioti (Kirby, 1896) and Z. usambarica (Forster, 1906) are regarded as distinct species. Only synonymy, information on status (if feasible) and distribution for the of the are given remaining species group, and a preliminary key tothe adults of all but onespecies is presented. INTRODUCTION After the last transferof American species into the huge and hierarchically dif- ferentiated monophyletic taxon Rhionaeschna Förster (VON ELLENRIEDER, about 40 remainedin the traditional Aeshna 2003) species genus Fabricius, 1775.
    [Show full text]
  • Biodiversity Observations
    Biodiversity Observations http://bo.adu.org.za An electronic journal published by the Animal Demography Unit at the University of Cape Town The scope of Biodiversity Observations consists of papers describing observations about biodiversity in general, including animals, plants, algae and fungi. This includes observations of behaviour, breeding and flowering patterns, distributions and range extensions, foraging, food, movement, measurements, habitat and colouration/plumage variations. Biotic interactions such as pollination, fruit dispersal, herbivory and predation fall within the scope, as well as the use of indigenous and exotic species by humans. Observations of naturalised plants and animals will also be considered. Biodiversity Observations will also publish a variety of other interesting or relevant biodiversity material: reports of projects and conferences, annotated checklists for a site or region, specialist bibliographies, book reviews and any other appropriate material. Further details and guidelines to authors are on this website. Lead Editor: Arnold van der Westhuizen – Paper Editor: H Dieter Oschadleus ODONATAMAP: PROGRESS REPORT ON THE ATLAS OF THE DRAGONFLIES AND DAMSELFLIES OF AFRICA, 2010–2016 Les G Underhill, Rene Navarro, Alan D Manson, Jacobus (Lappies) P Labuschagne and Warwick R Tarboton Recommended citation format: Underhill LG, Navarro R, Manson AD, Labuschagne JP, Tarboton WR 2016. OdonataMAP: progress report on the atlas of the dragonflies and damselflies of Africa, 2010–2016. Biodiversity Observations 7.47: 1–10. URL: http://bo.adu.org.za/content.php?id=240 Published online: 15 August 2016 – ISSN 2219-0341 – Biodiversity Observations 7.47: 1–10 1 PROJECT REPORT The importance of dragonflies and damselflies The Odonata (dragonflies and damselflies) are superb indicators of ODONATAMAP: PROGRESS REPORT ON THE ATLAS the quality of fresh water (Simaika & Samways 2009a, 2010, Bush et OF THE DRAGONFLIES AND DAMSELFLIES OF al.
    [Show full text]
  • Bibliografie Der Wirbellosen Tiere (Evertebrata) Oberösterreichs (2003-2012) 841-921 841
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Beiträge zur Naturkunde Oberösterreichs Jahr/Year: 2013 Band/Volume: 0023_2 Autor(en)/Author(s): Gusenleitner Fritz Josef [Friedrich], Aescht Erna, Schwarz Martin Artikel/Article: Bibliografie der Wirbellosen Tiere (Evertebrata) Oberösterreichs (2003-2012) 841-921 841 Beitr. Naturk. Oberösterreichs 23/2 841-921 14.6.2013 Bibliografie der Wirbellosen Tiere (Evertebrata) Oberösterreichs (2003-2012) F. GUSENLEITNER, E. AESCHT & M. SCHWARZ Anschließend an die Bibliografien 1930-1980 (GUSENLEITNER F. & J. GUSENLEITNER 1983), 1981-1990 (GUSENLEITNER F. 1992) sowie 1991-2002 (GUSENLEITNER F. & E. AESCHT 2003) wurde auch hier die Einteilung der Zitate nach systematischen Kriterien gewählt. Die Titel der Arbeiten enthalten oft keinen Hinweis auf die Landesbezogenheit, es wurden jedoch auch Zitate ausgewählt, die nur wenige Angaben zur oberösterreichi- schen Fauna enthalten. Zusätzlich wurden auch Gesamtbibliografien von bedeutenden Oberösterreichern aufgenommen. Ein Oberösterreichbezug ist durch ein vorgestelltes "" erkennbar. Vereinzelt wurden Arbeiten außerhalb des definierten Zeitabschnittes als Nachträge aufgenommen. Inhalt Seite Anzahl Seite Anzahl der der Zitate Zitate Protozoa 842 222 Plecoptera 867 7 Diverse Evertebrata- 853 4 Mantodea 868 1 Stämme Orthoptera 868 18 Nematoda 855 2 Thysanoptera 869 1 Annelida 855 4 Hemiptera 869 17 Mollusca 855 71 Coleoptera 870 83 Tentaculata 859 6 Mecoptera 874 1 Arthropoda Neuropterida 875 108 Arachnida 859 18 Hymenoptera 882 169 Acari 860 6 Diptera 890 24 Araneae 861 11 Trichoptera 892 2 Crustacea 861 23 Lepidoptera 892 102 Myriapoda 863 6 Mehrere Taxa betreffend 897 96 Insecta Parasitologie 902 208 Diplura 863 1 Personalia 916 51 Protura 863 1 Allgemeine und 918 62 Collembola 864 6 historische Arbeiten Ephemeroptera 864 5 Zitierte Bibliografien 921 5 Odonata 864 62 842 Protozoa AESCHT E.
    [Show full text]
  • Developing an Odonate-Based Index for Monitoring Freshwater Ecosystems in Rwanda: Towards Linking Policy to Practice Through Integrated and Adaptive Management
    Antioch University AURA - Antioch University Repository and Archive Student & Alumni Scholarship, including Dissertations & Theses Dissertations & Theses 2020 Developing an Odonate-Based Index for Monitoring Freshwater Ecosystems in Rwanda: Towards Linking Policy to Practice through Integrated and Adaptive Management Erasme Uyizeye Follow this and additional works at: https://aura.antioch.edu/etds Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, and the Environmental Sciences Commons Department of Environmental Studies DISSERTATION COMMITTEE PAGE The undersigned have examined the dissertation entitled: Developing an Odonate-Based Index for Monitoring Freshwater Ecosystems in Rwanda: Towards Linking Policy to Practice through Integrated and Adaptive Management, presented by Erasme Uyizeye, candidate for the degree of Doctor of Philosophy, and hereby certify that it is accepted*. Committee Chair: Beth A. Kaplin, Ph.D. Antioch University New England, USA Committee member: Lisabeth Willey, Ph.D. Antioch University New England, USA Committee member: Viola Clausnitzer, Ph.D. Senckenberg Museum of Natural History Görlitz, Germany. Defense Date: April 17th, 2020. Date Approved by all Committee Members: April 30th, 2020. Date Deposited: April 30th, 2020. *Signatures are on file with the Registrar’s Office at Antioch University New England. Developing an Odonate-Based Index for Monitoring Freshwater Ecosystems in Rwanda: Towards Linking Policy to Practice through Integrated and Adaptive Management By Erasme Uyizeye A dissertation submitted in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Environmental Studies at Antioch University New England Keene, New Hampshire 2020 ii © 2020 by Erasme Uyizeye All rights reserve iii Dedication I dedicate this dissertation to my daughter who was born in the midst of this doctoral journey, my wife who has stayed by my side, my father for his words of encouragement (1956-1993) & my mother for her unwavering support and love.
    [Show full text]
  • 1997, a Odonata, Specifically on the Dragonflies of Ghana Published
    67-86 Odonatologica 30(1): March 1, 2001 An annotated list of Odonata collected in Ghana in 1997, a checklist of Ghana Odonata, and comments on West African odonate biodiversity and biogeography G. O’Neill¹ and D.R. Paulson² 1 Department of Biology, University of Puget Sound, Tacoma, WA 98416, United States (present address: 14 Lehigh Ave., Wilmington, DE 19805, United States) 2 Slater Museum of Natural History, University of Puget Sound, Tacoma, WA 98416, United States; — e-mail: [email protected] Received August 8, 2000 / Revised and Accepted September 4, 2000 made 8 in southern Collections were at localities Ghana during the summer of 1997. coastal Three regions were sampled: savanna, wooded savanna, and rainforest. 71 spp. were collected, 24 of which are new for the country, bringing the Ghana to A of known from is list 123 spp. list spp. the country included. Trithemis dejouxi Pinhey, 1978, is raised to specific rank. Individual variation in Phaon iridipennis and Palpopleura lucia is quantified. West African Odonata biodiversity and biogeography are discussed. INTRODUCTION To four studies date, only have focused specifically on the dragonflies ofGhana (KARSCH, 1893;NEVILLE, 1960;MARSHALL& GAMBLES, 1977;D’ANDREA & CARFI, 1994). Little has been published about the biology of the species and list of known from occurring there, no species the country has been compiled. From these papers and others, especially PINHEY (1962a), 99 species ofOdonata have been recorded in Ghana to date. The landscape of Ghana varies from wet forest to dry savanna due to a sharp rainfall gradient. The southern portion of the country is covered by wet, semi- moist and semi-dry forests, while farthernorth, in central Ghana, forest gives way the tall short to grasses, shrubs, and scattered trees of the savanna (SAYER et al., Terrestrial exhibit 1992).
    [Show full text]
  • 070339 Guido Dijkstra Binnenwerk.Indd
    Demise and rise : the biogeography and taxonomy of the Odonata of tropical Africa Dijkstra, K.D.B. Citation Dijkstra, K. D. B. (2007, May 16). Demise and rise : the biogeography and taxonomy of the Odonata of tropical Africa. Retrieved from https://hdl.handle.net/1887/11969 Version: Corrected Publisher’s Version Licence agreement concerning inclusion of doctoral thesis in License: the Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/11969 Note: To cite this publication please use the final published version (if applicable). Demise and rise the biogeography and taxonomy of the Odonata of tropical Africa Klaas-Douwe B. Dijkstra Dijkstra, K.-D.B. 2007 Demise and rise: the biogeography and taxonomy of the Odonata of tropical Africa PhD Th esis, Leiden University Front cover photos: Gomphidia gamblesi (above) and Kintampo Falls, Ghana, by K.-D. B. Dijkstra Back cover photo: the author in Ankasa, Ghana, by Eric F. Th omassen Lay-out: Guido O. Keijl Printed by Finesse Druk, Heerhugowaard Demise and rise the biogeography and taxonomy of the Odonata of tropical Africa Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van de Rector Magnifi cus prof. mr. P.F. van der Heijden, volgens besluit van het College voor Promoties, te verdedigen op woensdag 16 mei 2007, klokke 13.45 uur. door Klaas-Douwe Benediktus Dijkstra geboren te Kampen in 1975 Promotiecommissie Promotor: Prof. dr. E. Gittenberger (Nationaal Natuurhistorisch Museum Naturalis; Universiteit Leiden) Co-promotor: Dr. V. Clausnitzer (Philipps-Universität Marburg, Duitsland) Referent: Dr. M.L. May (Rutgers University, New Brunswick, Verenigde Staten) Overige leden: Prof.
    [Show full text]