October 2012 Issue President’S Message from the Editor’S Desk

Total Page:16

File Type:pdf, Size:1020Kb

October 2012 Issue President’S Message from the Editor’S Desk AmateurAmateur AA RR SS SocietySociety NewsNews Newsletter of The Amateur Radio Society of India (Member of IARU) October 2012 Issue President’s message From the Editor’s desk Many amateurs – especially the newcomers who joined the elite group of VU amateurs in the past ten years – may not know how it all Dear members from the IARU Region 3 webpage started. I am including “A brief Since writing to you last time, the ARSI http://www.iaru-r3.org/15r3c/15r3c.htm. history of amateur radio in India” in AGM took place at the Bowring Institute in As circulated by the region 3 secretary, the Bangalore on Sunday the 16th September region lost the Chairman of the group of this issue. For me and for many 2012 directors who administer the regions others like me – it is nostalgic. activity. Michael Owen VK3KI passed The activities of the society and its finances Satellite activity has really taken off away suddenly on Saturday the 22nd were discussed by all those present and with the advent of the “Cubesats” – several good suggestions were made on September at his home due a medical with so many of them orbiting the improving the efficiency in working. condition. This is the second time that a serving Chairman of directors has been planet already, and more to come. Dates were finalised for the VHF hill taken away suddenly. Michael who held FitSat is an unique satellite and you topping exercise and also for the national numerous posts in IARU over the years was m a y f i n d t h e i n f o r m a t i o n field day- full details will be available on instrumental on a number of issues facing the ARSI webpage amateur radio being dealt with. interesting. As mentioned last time the Triennial The Seanet convention will also take place Hope you'll find this issue of HRN Conference of IARU Region 3 will be held in Kuala Lumpur between 23rd and 27th th as interesting as ever, in Ho Chi Minh City in Vietnam from 5 to November 2012. 9th November 2012 and details are available 73 VU2TS Gopal Madhavan VU2GMN Amateur AA RR SS Society News A BRIEF HISTORY OF AMATEUR RADIO IN INDIA he first ever amateur radio operator Radio to broadcast Gandhian protest music general population and prohibitive in India was A.C.Gooptu (callsign and uncensored news; of course, he was equipment costs, the number of licensed T2JK), licensed in 1921. Later that immediately arrested and his equipment amateur radio operators did not increase year, Mukul Bose (2HQ) became the seized. significantly over the next two decades, second ham operator, thereby creating numbering fewer than a thousand by 1970. In August 1942, after Mahatma Gandhi history - as the first ever two-way ham radio launched the Quit India Movement, the [VU2TS was issued in April 1965, and the communication in the country. British began clamping down on the licence number was 350 – Hi] By 1923, there were twenty British hams activities of Indian independence activists CW and AM were the predominant modes operating in India. In 1929, the call sign and censoring the media. at that time. The station equipment was prefix VU came into effect in India, To circumvent media restrictions, Indian mostly valve-based, obtained primarily replacing the earlier three-letter call signs. National Congress activists, led by Usha from Indian army surpluses. There were no I believe the “V” was for the Viceroy - Mehta, contacted Mumbai-based amateur “transceivers” those days, the receivers though some say it was for Queen Victoria. radio operators, "Bob" Tanna (VU2LK) were all WW-II surplus like BC-348, AR- The first ever short-wave entertainment and Printer (VU2FU) to help broadcast 88, HRO and SX-28 - the transmitters and public broadcasting station, messages to the party workers across the home-brewed using the most popular final "VU6AH", was set up in 1935 by E P country. tube those days, the 807. Of course, there Metcalfe, then vice-chancellor of Mysore were a hand-ful of hams who had home- The radio service was called the "Congress University. brewed the entire station too. Even linear Radio", and began broadcasting from 2 amps (813 finals) were home brewed. (Metcalfe was the vice chancellor and September 1942 on 7.12 MHz. The station Professor of Physics, and Principal of could be heard as far as Japanese-occupied During the mid-1960s, the modes of Central College of Bangalore. He served Burma (now Myanmar.) operation saw a major change from AM to from 1930 to 1937. Metcalfe was SSB as the preferred communication mode. By November 1942, Tanna was betrayed by instrumental in establishing a residential By 1980, the number of amateur radio an unknown radio officer and was forced to college for women in Mysore in science operators had risen to 1,500. shut down the station. and arts in the early 1930s. The Maharani's In 1984, when Rajiv Gandhi VU2RG was College, Mysore, and the Intermediate Temporary amateur radio licences were prime minister, the Government waived the College For Women, Bangalore were issued from 1946, after the end of World import duty for wireless equipment. After merged was recommended to be merged by War II. By 1948, there were 50 amateur this, the number of operators rose steadily, the committee headed by Metcalfe.) radio operators in India, although only a and by the year 2000 there were nearly dozen were active. There were fewer than fifty licence holders 10,000 licensed ham operators. As of 2011, in the mid-1930s, most of them British Following India's independence in 1947, there were more than 16,000 ham radio officers in the Indian army. the first amateur radio organization, the operators in India. Amateur Radio Club of India was With the outbreak of World War II in 1939, Amateur radio operators have played a inaugurated on 15 May 1948 at the School the British cancelled the issue of new significant part in disaster management and of Signals at Mhow in Madhya Pradesh. licences. All amateur radio operators were emergencies. sent written orders to surrender their The club headquarters was later moved to In 2005, India became one of few countries transmitting equipment to the police, both New Delhi, where it was renamed the to launch an amateur radio satellite, the for possible use in the war effort and to Amateur Radio Society of India (ARSI) on HAMSAT. The Indian Space Research prevent the clandestine use of the stations 15 May 1954. As India's oldest amateur Organisation (ISRO) launched the micro- by Axis collaborators and spies. radio organization, ARSI became India's satellite as an auxiliary payload on the representative at the International Amateur With the gaining momentum of the Indian PSLV-6. Radio Union. independence movement, ham operator VU2TS – from various sources N.A. Printer (VU2FU) set up the Azad Hind Partly due to low awareness among the Amateur Radio Society News 2 Amateur AA RR SS Society News GWALIOR, MADHYA PRADESH n 2 0 S e p t e m b e r 2 0 1 2 , A.S.O.C.Exam was held at OGwalior. WPC Officials from Bhopal took the Exam. 36 Candidates appeared in the Exam. Theeldest candidate was of age of 52 years and the youngest was 14 years. All the candidates enjoyed the exam both theory and practical. Most of the students are from Engineering colleges of different places. One of the candidate came all the way from Chandigarh. Major support given by VU2IG omR.K.Khetan Secretary of Amateur Radio Club Gwalior and President of I.E.T.E. Gwalior sub center, VU2LOL omAniketAshtikar, VU2HRR om Harsh Chaturvedi, om Ashok Agarwal Treasurer of Amateur Radio Club Gwalior. The candidates were trained by VU2JAU JayuS.Bhide. The Exam was organized in coordination of Police Junagadh Range), VU2JGI (Dr JG Krishnakumarsinhji Bhavnagar University. I.E.T.E. Gwalior sub center with Amateur Pandya, General Secretary of GIAR, from In the beginning the ham aspirants were Radio Club Gwalior. Ahmedabad ), VU2JF (MrRajenAdiecha, shown a movie on Ham radio prepared by Next batch will start soon under the Rajkot), VU2EXP ( Mr Rajesh Vagadia, VU2JGI. Some basic information was guidance of Jayu VU2JAU. Rajkot) blessed the meeting as invitees. given by VU3SEG. Local senior Hams VU3BUT ( Dr BU BHAVANAGAR, GUJARAT Tekani) and VU2FCY (Mr Rajesh Vyas) The activities of MK Bhavnagar University HAM AWARENESS MEET. The hams also graced the occasion. Amateur Radio Club were presented by and swl's of Bhavnagar, Gujarat met on VU3SEG. The activities at Rajkot were About 150 budding hams and SWLs presented by VU2EXP. 16th September 2012. attended the meet. Senior hams VU2LRE ( MrRadhakrishnan, VU2JGI and VU2LRE answered a large The meeting was arranged at the number of questions from the participants. vice-chairman of GIAR and currently IG Department of Physics, Maharaja Amateur Radio Society News 3 Amateur AA RR SS Society News The participants ranged from school students and teachers, Science- engineering-polytechnic college students and teachers, doctors, persons from various government departments e.g. Electricity supply, LIC, Bank, BSNL, Railways, Police, several retired officers and several individuals. It was decided to have a club station in the university for the benefit of trainees and new hams. GIAR has shown keen interest in helping to UHF antenna developed by VU2JF The very enthusiastic budding hams setup the club station. and several equipment from his who are awaiting the results of the shack were center of attraction for exam conducted on 29th June at Demonstration of Homebrewed rigs the participants.
Recommended publications
  • Optical Communication on Cubesats – Enabling the Next Era in Space Science –
    IEEE International Conference on Space Optical Systems and Applications (ICSOS) 2017 Optical Communication on CubeSats – Enabling the Next Era in Space Science – Alberto Carrasco-Casado Abhijit Biswas Renny Fields Brian Grefenstette Space Communications Laboratory Jet Propulsion Laboratory The Aerospace Corporation Space Radiation Laboratory NICT NASA El Segundo, USA California Institute of Technology Tokyo, Japan Pasadena, USA [email protected] Pasadena, USA [email protected] [email protected] [email protected] Fiona Harrison Suzana Sburlan Morio Toyoshima Cahill Center for Astrophysics Amazon Space Communications Laboratory California Institute of Technology Los Angeles, USA NICT Pasadena, USA [email protected] Tokyo, Japan [email protected] [email protected] Abstract—CubeSats are excellent platforms to rapidly Table 1. Classification of satellites according to their mass [2]. perform simple space experiments. Several hundreds of CubeSats have already been successfully launched in the past few Satellite type Mass (kg) years and the number of announced launches grows every year. These platforms provide an easy access to space for universities Large satellite > 1000 and organizations which otherwise could not afford it. However, Medium satellite 500 to 1000 these spacecraft still rely on RF communications, where the Mini satellite 100 to 500 spectrum is already crowded and cannot support the growing demand for data transmission to the ground. Lasercom holds the Micro satellite 10 to 100 promise to be the solution to this problem, with a potential Nano satellite 1 to 10 improvement of several orders of magnitude in the transmission Pico satellite 0.1 to 1 capacity, while keeping a low size, weight and power.
    [Show full text]
  • [AMSAT-F] ANS Bulletin Francophone 302
    F6HBN-83FR De: [email protected] de la part de JC-Aveni [[email protected]] Envoyé: dimanche 28 octobre 2012 19:58 À: AMSAT- F; Amsat Francophone; Bernard Pidoux; bernard Pidoux Objet: [AMSAT-F] ANS Bulletin Francophone 302 Indicateur de suivi: Assurer un suivi État de l'indicateur: Rouge SB SAT@FRANCA $F-ANS-302-1 ANS bulletin en français 302-1 AMSAT NEWS SERVICE BULLETIN ANS 302 Capture sur Internet et traduction par TK5GH. Information sur l’AMSAT-NA dispo à l’URL : http://www.amsat.org (ou via) AMSAT-NA 850 Sligo Avenue, Suite 600 Silver Spring, Marylet 20910-4703 TEL : 301-589-6062 888-322-6728 FAX : 301-608-3410 Pour s’abonner à la liste du forum voyez à l’URL : http://www.amsat.org/amsat/listserv/menu.html =============================================================== L’ANS est un bulletin hebdomadaire libre d’accès issu de l’AMSAT North America le Radio Amateur Satellite Corporation. Il regroupe toutes les informations des acteurs de cette activité qui partagent le même intérêt pour les projets, les constructions, les lancements, et les opérations sur les satellites radio amateurs. ================================================================ Dans cette édition on trouvera : * Election des directeurs AMSAT 2012 * Fox-1 Satellite en développement * AMSAT News Service a un nouvel éditeur : EMike McCardel, KC8YLD * Japan PRISM Satellite commence son service Ham en AX.25 Store-and-Forward * WS4FSM hôte d'un des plus grand contact ARISS par le nombre d'auditeurs * Raport dispo sur le projet japonnais de sat UNISEC Satellite * 3 cartes FUNcube-2 pour le Clyde Space for UKube-1 Nanosatellite * Corée du Sud, Brésil, Ukraine prêts au vol orbital * NASA Accepte des applications d'élèves pour le HASP Ballon stratos 1 * ARISS Statut du 22 octobre 2012 ANS-302 AMSAT News Service Weekly Bulletins ------------------------------------------------------------------------ AMSAT Board Elects Senior Officers for 2012 Rappel de la liste des Dirigeants importants de la direction de l'AMSAT-NA avant l'ouverture des rencontres du 25 octobre au Symposium.
    [Show full text]
  • A Sample AMS Latex File
    PLEASE SEE CORRECTED APPENDIX A IN CORRIGENDUM, JOSS VOL. 6, NO. 3, DECEMBER 2017 Zea, L. et al. (2016): JoSS, Vol. 5, No. 3, pp. 483–511 (Peer-reviewed article available at www.jossonline.com) www.DeepakPublishing.com www. JoSSonline.com A Methodology for CubeSat Mission Selection Luis Zea, Victor Ayerdi, Sergio Argueta, and Antonio Muñoz Universidad del Valle de Guatemala, Guatemala City, Guatemala Abstract Over 400 CubeSats have been launched during the first 13 years of existence of this 10 cm cube-per unit standard. The CubeSat’s flexibility to use commercial-off-the-shelf (COTS) parts and its standardization of in- terfaces have reduced the cost of developing and operating space systems. This is evident by satellite design projects where at least 95 universities and 18 developing countries have been involved. Although most of these initial projects had the sole mission of demonstrating that a space system could be developed and operated in- house, several others had scientific missions on their own. The selection of said mission is not a trivial process, however, as the cost and benefits of different options need to be carefully assessed. To conduct this analysis in a systematic and scholarly fashion, a methodology based on maximizing the benefits while considering program- matic risk and technical feasibility was developed for the current study. Several potential mission categories, which include remote sensing and space-based research, were analyzed for their technical requirements and fea- sibility to be implemented on CubeSats. The methodology helps compare potential missions based on their rele- vance, risk, required resources, and benefits.
    [Show full text]
  • Thermal Analysis of a Small Satellite in Post- Mission Phase
    Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 2458-9403 Vol. 6 Issue 2, February - 2019 Thermal Analysis of a Small Satellite in Post- Mission Phase Ahmed Elhefnawy Ahmed Elweteedy Space Technology Center Military Technical College Cairo, Egypt Cairo, Egypt [email protected] [email protected] Abstract— The objective of satellite thermal perigee altitude of 354 km, an apogee altitude of 1447 control is maintaining all satellite components km and an inclination of 71˚. A passive thermal control within their operational temperature range for system was used, with a small electric heater for the different missions. Most small satellites are battery. Thermal models were developed within both designed to have passive thermal control system. MATLAB/Simulink and ESATAN/ESARAD In this paper the thermal analysis of a small environments. satellite in post-mission phase is introduced. The Dinh [4] illustrated the modeling of a nanosatellite European Student Earth Orbiter (ESEO) satellite using Thermal Desktop software. The satellite has a was chosen in this study. This phase starts at the passive thermal control system. It was designed to end of the operational phase and should last at operate in LEO with altitude of 400 km. least 2 years for the chosen satellite. A finite Bulut et al [5] described the thermal control system difference thermal model using a commercial of Turksat-3U Nanosatellite [6]. The satellite orbit is software “Thermal Desktop” was described for the sun-synchronous orbit with altitude 600 km and selected satellite. Model results verification were inclination 98˚. The satellite has passive thermal performed by varying design variables and seeing control system.
    [Show full text]
  • And Cubesats) Has Come: Analyzing the Numbers
    SSC13-IX-01 The Long-Threatened Flood of University-Class Spacecraft (and CubeSats) Has Come: Analyzing the Numbers Michael Swartwout Saint Louis University 3450 Lindell Boulevard St. Louis, Missouri 63103; (314) 977-8240 [email protected] ABSTRACT We have covered the statistical history of university-class small satellites for nearly a decade, revisiting the numbers every two years. In every previous paper, we have promised/threatened that the number of university-class missions will increase, only to spend the next paper explaining why that flood has not happened – but is definitely going to happen next year. This year, at last, we can break the cycle: the flood of university-class spacecraft has come, in the form of CubeSats; more than 30 are known to be manifested for 2013, with equal (or greater) numbers for 2014. For this paper, we will revise previous studies in two ways: 1) Include the results of the past two years, which will show a continued upward trend in the number of university- class missions, a continued downward trend in the size of the spacecraft, and a not-so-continued dominance of the flagship universities. Have we hit a second turning point in the history of CubeSats, where they switch from novelties to actually-useful missions? (The preliminary answer: maybe.) 2) Expand the study to consider other small spacecraft mission types: specifically the professionally-built CubeSats. We will perform side-by-side comparison of the two. The results will be used in a brave but ultimately naive attempt to predict the next few years in university-class and CubeSat-class flights: numbers, capabilities, and mix of participants.
    [Show full text]
  • A Statistical and Personal History of University-Class Satellites
    SSC18-WKVIII-03 Reliving 24 Years in the Next 12 Minutes: A Statistical and Personal History of University-Class Satellites Michael Swartwout Saint Louis University 3450 Lindell Blvd, St. Louis, MO 63103; 314-977-8214 [email protected] ABSTRACT In 2018, university-class satellites -- spacecraft built by university students for the express purpose of student training -- are widely accepted as a means to recruit undergraduate students into the space workforce, train them effectively before graduation and retain them in the field after graduation. Hundreds of undergraduates at dozens of schools around the world have directly contributed to missions that operated on-orbit. The spacecraft themselves are capable of performance research-grade science or demonstrate new enabling technologies. This was not always the case. For the first forty years of spaceflight, there were exceedingly few university-class missions; those that flew were expensive, marginally-performing and had modest success rates. What changed? Why are university-class missions now commonplace? And, with respect to on-orbit success, are they as good (or as bad) as rumor and hearsay make them out to be? In this paper and all-too-brief talk, the history of university-class spacecraft will be discussed, with an emphasis on the types of missions and their success rates. Beginning in 1994 (the author's first time attending this conference, as a wide-eyed student) and reaching through to 2018 (the author's 21st, now as a world-weary professor) a statistical and anecdotal review of
    [Show full text]
  • The First One Hundred Cubesats: a Statistical Look
    Swartwout, M. (2013): JoSS, Vol. 2, No. 2, pp. 213-233 (Peer-reviewed Article available at www.jossonline.com) www.DeepakPublishing.com www.JoSSonline.com The First One Hundred CubeSats: A Statistical Look Michael Swartwout Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, Missouri, USA Abstract The concept of CubeSats was publicly proposed in 2000, with the first CubeSats launched in 2003. By the end of 2012, more than one hundred CubeSats have been launched, and 80 more are manifested for launches in 2013, with at least that many expected in 2014. Ten years ago, CubeSats were routinely dismissed by industry profes- sionals as being too small to be worth flying; now, NASA is the majority launch broker, and a significant share of the manifests are filled by U.S. DoD-sponsored, industry-built CubeSat missions. How did initial perceptions of CubeSats evolve to this state? Are CubeSats toys, tools, or merely another source of orbital debris? With so many CubeSats now in orbit, it is now possible to make a data-based assessment of these missions. Us- ing data collected from a variety of sources, this study evaluates the on-orbit performance of CubeSats. The history of CubeSat missions is reviewed, with the missions classified according to size, origin, mission life, and on-orbit performance. It is shown that several correctable design/implementation errors plague the university side of Cube- Sat missions, and that the P-POD launch container, not the CubeSat specification, is the true enabling technology for this class of mission. Poly-Picosatellite Orbital Deployer (P-POD), a stan- 1.
    [Show full text]
  • KW-Kurzantennen: Stets Gefragt
    2/w 2012 6 HB Swiss Radio Amateurs HB9MPN / HB9EPE - S. 24: Digitale Betriebsart ROS HB9AMC - S. 46: KW-Spektrum massiv bedroht ! HE9JAT - S. 65: Die Faszination eines SWL KW-Kurzantennen: stets gefragt WWW.USKA.CH HB9CRU Communications Gregor Koletzko - HB9CRU Zugerstrasse 45 6312 Steinhausen Mobil: 076 – 379 20 50 - 9.30 – 12.30 h E-Mail: [email protected] Neu bei HB9CRU Alles für den Amateurfunk Neu von FLEX-Radio-Systems Software Defined Radio Transceiver der dritten Generation Lieferbar ab Ende Jahr 2012 Reservieren Sie Ihren neuen SDR-Transceiver schon heute per Mail, um einer der Ersten zu sein! Ab Lager sofort lieferbar: - FLEX - 1500 KW-SDR-TRX, 5W - FLEX - 3000 KW-SDR-TRX, 100W - FLEX - 5000A KW-SDR-TRX, 100W Transistor-Endstufen mit HF-VOX von RM - ITALY, ideal für QRP-Transceiver: - HLA-150V plus - HLA-300V plus - FLEX - 6500 KW-SDR- Transceiver - BLA-350 - FLEX - 6700 KW/VHF-SDR-Transceiver - FLEX - 6700R KW-VHF-SDR-Receiver Technische Details und Preise: Technische Details: siehe www.hb9cru.ch siehe www.hb9cru.ch www.hb9cru.ch Unter www.hb9cru.ch finden Sie unser Produkteprogramm mit mehr als 1200 Artikeln Für eine Bestellung senden Sie am liebsten ein Email, einen Brief oder ein Fax mit Ihren Wünschen. Telefonische Auskünfte erhalten Sie unter 076 – 379 20 50 (9.30 bis 12.30 Uhr). Bitte, Telefonzeiten einhalten! HBradio 6/2012 Edi, HB9MTN (S. 2f) Ruth, IT9ESZ/HB9LFM (S. 18f) Willi, HB9PZK (S. 29f) Impressum Inhalt - Table des matières Thema - Thème Organ der Union Schweizerischer Kurzwellen- Die „Bierdosenantenne“ – keine Bier-Idee !.................................................................2 Amateure Organe de l’Union des Amateurs Suisses „L’antenne canette“ – c’est pas de la bibine !................................................................5 d’Ondes courtes HF Activity Organo dell’Unione Radioamatori di Onde Amateurfunk auf eine andere Art................................................................................8 Corte Svizzeri SSB-Field Day 2012.
    [Show full text]
  • [AMSAT-F] ANS Bulletin Francophone 337
    F6HBN-83FR De: [email protected] de la part de JC-Aveni [[email protected]] Envoyé: lundi 3 décembre 2012 12:42 À: Amsat Francophone; AMSAT- F; Bernard Pidoux; Bernard Pidoux Objet: [AMSAT-F] ANS Bulletin Francophone 337 Indicateur de suivi: Assurer un suivi État de l'indicateur: Rouge SB SAT@FRANCA $F-ANS-337-1 ANS bulletin en français 337-1 AMSAT NEWS SERVICE BULLETIN ANS 337 Capture sur Internet et traduction par TK5GH. Information sur l’AMSAT-NA dispo à l’URL : http://www.amsat.org (ou via) AMSAT-NA 850 Sligo Avenue, Suite 600 Silver Spring, Marylet 20910-4703 TEL : 301-589-6062 888-322-6728 FAX : 301-608-3410 Pour s’abonner à la liste du forum voyez à l’URL : http://www.amsat.org/amsat/listserv/menu.html =============================================================== L’ANS est un bulletin hebdomadaire libre d’accès issu de l’AMSAT North America le Radio Amateur Satellite Corporation. Il regroupe toutes les informations des acteurs de cette activité qui partagent le même intérêt pour les projets, les constructions, les lancements, et les opérations sur les satellites radio amateurs. ================================================================ Dans cette édition on trouvera : * Journal AMSAT de nov/déc prévision * En attente de traversée Atlantique par le South Texas Balloon. * AMSAT-UK : Récepteur 10m Satellite * Ellen Ochoa, KB5TZZ, nommée 11e Directeur du Johnson Space Center * 5-Minutes Auteur Guide pour l'AMSAT Journal * von Karman Institute, lectures sur les technos CubeSat et applications * Conférence du 2013 Southeastern VHF Society le 19 & 13 avril 2013 * Réseau Hudson Valley Satcom de décembre 1 * Etudiants italiens hôtes d'un contact ARISS =========================================================== Le journal AMSAT a été envoyé à notre édition.
    [Show full text]
  • Corrigendum: a Methodology for Cubesat Mission Selection
    www. JoSSonline.com www.DeepakPublishing.com Corrigendum: A Methodology for CubeSat Mission Selection. Original Article at: http://www.jossonline.com/wp-content/uploads/2018/02/Request-for-Correction-Final-A-Methodology- for-CubeSat-Mission-Selection-Zea.pdf Luis Zea, Victor Ayerdi, Sergio Argueta, and Antonio Muñoz Universidad del Valle de Guatemala, Guatemala City, Guatemala The appendix of this article contained mistakes on the “Note” and “Ref.” columns. The paper has been updated to include the corrected table. Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 6, No. 3, p. 664 APPENDIX A: LIST OF CUBESATS 2002-AUGUST 2016 The starting point to develop this table was the lists presented in (Swartwout, 2013) and (Swartwout, 2016), from which the year, name, size and organization and result (S- success, F-failure, RF-rocket failure) were taken in part, as well as NASA’s Space Science Data Center (NSSDC) Database (NASA, 2014) and the eoPortal (eoPortal, 2016). The other fields were identified in a CubeSat-by-CubeSat basis. The mission type was identified as one of the following: A-astronomy/astrophysics, BR-basic research (to conduct life or physical sciences experiments, earthquake prediction research, etc.), C-commercial (to develop a product or provide a service commercial in nature), CM-communication, E- education (to train students and/or engineers), S-science, SE-space environment, or T-technology demonstration (to increase the technology readiness level TRL of a specific technology). Some CubeSats have had more than one of these mission types, for example university missions that not only have the purpose of training its students but also con- duct a scientific mission.
    [Show full text]
  • Development of Nano-Satellite Origamisat-1 with Highly Functional Deployable Membrane
    Development of Nano-Satellite OrigamiSat-1 with Highly Functional Deployable Membrane By Hiroki NAKANISHI1),Hiraku SAKAMOTO1), Hiroshi FURUYA1), Masahiko YAMAZAKI2), Yasuyuki MIYAZAKI2), Akihito WATANABE3), Kazuki WATANABE4), Ayako TORISAKA-KAYABA5), and Mitsushige ODA1) 1)Tokyo Institute of Technology, Tokyo, Japan 2)Nihon University, Chiba, Japan 3)Sakase Adtech, Co., Ltd., Fukui, Japan 4)WEL Research Co., Ltd., Chiba, Japan 5)Tokyo Metropolitan University This paper discusses a design of a 3U CubeSat, which will demonstrate an advanced membrane space structure in orbit. The objective of the CubeSat development is the establishment of research/development hub which enables the realization of innovative space deployable structures. The 3U CubeSat is designed as a pilot project to achieve the objective. This paper describes the CubeSat missions derived from the bigger development objective, and explains the system design of the CubeSat. Key Words: Gossamer Structures, Small Satellites, Nano Satellites, CFRP Boom 1. Introduction be launched in FY2018 using Epsilon rocket. Advanced lightweight space structures, especially membrane 2. Objective of CubeSat Development structures, have been widely studied for enabling future space applications. Applications that will benefit from such structures In order to establish a research and development hub for includes deorbiting system, solar array, reflectors, sun shield, space deployable structures, the present authors focus on the phased array antenna, solar sail, aerobrake/aerocapture system, following three key activities. and occulter. However, it is difficult to predict deployment dynamics and deployed shapes of space membrane structures (F1) Development of space demonstration scheme for ad- through ground tests. This is because the effects of gravity and vanced space deployable structures atmosphere have significant impact on the behavior of mem- (F2) Development of design and verification methodologies brane structures on the ground.
    [Show full text]
  • WORLD SPACECRAFT DIGEST by Jos Heyman 1998 Version: 10 July 2016 © Copyright Jos Heyman
    WORLD SPACECRAFT DIGEST by Jos Heyman 1998 Version: 10 July 2016 © Copyright Jos Heyman 1998 001A (25131) Name: Lunar Prospector Country: USA Launch date: 7 January 1998 Re-entry: 31 July 1999 Launch site: Cape Canaveral Launch vehicle: Athena 2 Orbit: 99 x 100 km, inclination: 90.1 ° The Lunar Prospector was the third mission in NASA's Discovery series of spacecraft and was built by Lockheed Martin. The mission objective was to place the spacecraft in a lunar orbit from which it spend a year mapping the surface of the Moon whilst at the same time looking for reservoirs of water which might be in the polar caps. The 126 kg spacecraft carried a series of instruments which evolved from Apollo instrumentation from the seventies: 1. the Gamma Ray Spectrometer (GSR) which provided global maps of the elemental composition of the surface layer of the Moon; 2. the Alpha Particle Spectrometer (APS) to detect radon outgassing on the lunar surface; 3. the Neutron Spectrometer (NS) to detect water ice; 4. the Electron Reflectometer (ER) to map the lunar magnetic fields; 5. the Magnetometer (MAG), another instrument to map the lunar magnetic fields; 6. the Doppler Gravity Experiment (DGE) to determine the lunar gravity field. Also carried was a small container with the ashes of Eugene Shoemaker, a famous discoverer of comets who had passed away in 1997. This container was designated as Celestis-2 and the payload was also known as Luna 1 flight. The spacecraft did not carry a control computer, instead it was fully controlled by a team on Earth.
    [Show full text]