Subject Index

Total Page:16

File Type:pdf, Size:1020Kb

Subject Index STP1042-EB/Jul. 1989 Subject Index A A 450/A 450M-86A, 151, 153 A 480/A 480M-84A, 151,153 Acicular ferrite, see Intragranular ferrite A 508-84a, 100-101,107, 114, 117 plates A 508/A 508-86, 115 AFNOR NF A 81460, 195 A 516/A 516M-84, 196 AISI 1215 steel, 51-66 A 530/A 530M-85a, 151,153 chemical analysis, 53, 56 A 533/A 533M-85b, 100-101, 106 experimental procedure, 53 A 588, 34 hardness, 53, 58 A 751, 1 machinability, 54-55, 58, 60-64 A 771-83, 124-125 MnS inclusion A 788, 202, 208 aspect ratio, residual effect, 53, 59 A 858/A 858M-86, 122 size, residual effect, 53, 58 A 860/A 860M-86, 122 oxide inclusion, 53-54, 59 E 8, 212 properties, 53-54, 56-59 E 23, 212 residual levels investigated, 52-53 E 45-76, 193 roto-bar rejection rate, 53, 56 E 112, 125, 212 tensile ductility and strength, residual ef- E 139-83, 126-127 fect, 57 E 618-81, 51, 53 Alloy steel G 5-82, 154 high strength, 266 G 31-72(1985), 154 relative cost of restricting residual levels, G 48-76(1980), 154 32-33 Auger spectroscopy, 100 Alumina inclusions, machinability, 72 Austenitic stainless steel Aluminum carbide contents, 160 content during ladle refining, 42-43 high temperature ductility, 164 deoxidation constant, 41 see also Titanium stabilized austenitic Aluminum oxide, 76 stainless steel Arc length, 243-258 Austenitization back-gouging, 257 martensitic 12% chromium steel, 88 deposit nitrogen and oxygen level effects, temperature, 113 251-256 Automatic screw machine test, 53-54 SMA electrodes, 257 Axisyrnmetric specimens, 100 specimen extraction and testing, 248 Ashby-Orowan equation, 225 ASTM Standards B A 20/A20M-86a, 117 A 240-85, 151,153 Ball bearing steels, calcium, 70 A 242, 34 Biaxial stress rupture A 255-67, 36 tests, D9I, 127 A 262-85a, 150, 154, 158-162, 164 titanium stabilized austenitie stainless A 266-69, 115 steel, 132, 135 A 266-84a, 114, 117, 123 Borides, 163 A 266-85, 115 Boron, 150 A 269-85, 151,153 corrosion resistance of Type 304 stainless A 352/A 352M-85, 122 steel and, 152 A 376, 6 D9 levels, 125-126 A 430, 6 stress rupture life effect, 128-130 303 Copyright*1989 by ASTM lntcrnational www astm org 304 RESIDUAL AND UNSPECIFIED ELEMENTS IN STEEL Boron (cont.) Caustic embrittlement, 5-6 tertiary creep and, 146 Charpy impact test titanium stabilized austenitic stainless steel fracture appearance transition tempera- effect, 145-147 ture, 269, 271 see also Titanium stabilized austenitic weld metal, 239-240 stainless steel Charpy toughness, 100, 170 British Standards 4060 50E, 169 butt weld, 180-184 British Standards 5762:1979, 175 DC straight polarity deposits, 186 Butt weld de-embrittling treatment, 104, 106 charpy toughness, 180-184 forged and plate steel, 106, 108 chemical analyses, 174-177 Charpy V notch crack tip opening displacement, 184-185 fracture energy, 104 cutting scheme, 174 impact test properties, X-70 line pipe steel, fractographic examination, 186-188 291-292 microstructural observations, 177-179 specimens, 103, 288 tensile and hardness data, 179-183 transition curves, heat affected zone, 294 Chromium, 51 Cleanness, calcium treatment and, 69-72 Cleavage, 100 isolated regions, welds, 186, 188 C stress, critical, 108, 110 Calcium Clinch River breeder reactor, 203 alloys, see Inclusion control C-Mn-Ni welds, 179, 182-183 ball bearing steels, 70 Cold cracking carbo-nitriding, 70-71 heat affected zone, 296 cleanness and, 69-72 hydrogen induced, 296-297 cold upsetting, 71-72 Cold formability, residuals and, 35-36 fatigue life, 70-71 Cold upsetting, calcium treatment, 71-72 machinability, 72-73 Columbium-vanadium steel, low carbon, 286 Calcium-aluminum, deoxidation constant, Compact tension specimens, 103 41 Constituent ratios Calcium oxide, 77 LN steel, 275-276 Calcium sulfide, 77 Ti-oxide bearing steel, 275-276 Carbides, 83, 150 Continuous casting, 26 martensitic 12% chromium steel, 98-99 growth of, 28 precipitation reactions, 215 percent of U. S. production, 28 strengthening, 202, 227 trends, 11, 13 Carboborides, 163 Continuous cooling transformation diagram Carbon LN steel, 273-274 content effect on heat affected zone tough- Ti-oxide bearing steel, 273-275 ness, 269, 271-273 Copper, 51, 150, 202-227 equivalent, 114, 120-122 average monthly residual, scrap, 19, 21 interstitial, 225 corrosion resistance, 208 segregation, negative, 114 Type 304 stainless steel and, 151-152, Carbo-nitriding, calcium treatment, 70-71 154-158 Carbon-manganese steels, 169, 243 dilatometry, 212 welds, mechanical property, 179, 181 factors favorably affecting hot workability, Carbon steel forgings, 114 34 chemical composition, 115, 122 hardenability, 208 heat analyses and product analyses, 117, iron-copper phase diagram, 207-208 119 laboratory-produced steels, 221-223 heat treatment, 114, 116-117 light microscopy, examination, 212 impact test results, 117-118 load-elongation curve, 224 mechanical property test machinability and, 51-52 locations, 114, 116 materials, 204-206 results, 117-120 particles, 215-216, 220 INDEX 305 precipitation, grain boundary, 213, 218 D procedure, 209-212 D9, 124-125 regression analysis, scrap, 16, 19 boron effect restriction, hot shortness and, 34-35 ductility, 130-131 tensile/impact testing, 212 stress rupture life, 128-130, 132-134 values of purchased scrap grades, 22 creep curves, modified by additions of bo- yield strength, 224 ron phosphorus, 130 annealed, 224 in-reactor creep behavior, 135, 139-141 PWHT/AC, 226-227 neutron-induced swelling, 141, 143 PWHT/FC, 224-226 phosphorus and boron levels, 125-126 see also Weld metal, embrittlement phosphorus effects Copper alloys, elimination, 7 ductility, 130-131 Corrosion, 7 stress rupture life, 128-129 Corrosion resistance precipitate-free zones, 146 copper and, 208 swelling behavior, 136, 139 Type 304 stainless steel, 150-165 unirradiated, 133-139 boron effects, 152 as-received condition, 136 copper and molybdenum effects, 151- carbide and Laves distribution, 135, 138 152, 154-158 creep cavitation, 134, 137 corrosion rates, 158 high phosphorus-high boron heat, 135, effect of alloy boron content and sensitiz- 138 ing treatment, 161-162 MC precipitates, 135, 139 intergranular corrosion rates, 158-159 phase identification, 134-135, 137 materials, 152-154 DgI, 127-128 potentiodynamic anodic polarization Deoxidation, 38 curves, 155-157 Deoxidation constant, aluminum, 41 reference standards, 160 Dephosphorization, 40 Counterfeit bolts, 25 Desuifurization, 38 Cracking Diffusion deoxidation, 43-44 hydrogen induced, 286 Dilatometry solidification, 297 production forgings, 213 Crack tip opening displacement, 169, 175 residual copper, 212 butt weld, 184-185 DIN 50602, 193 C-Mn-Ni deposits, 188 Dissociation, ladle lining, 42-43 scatter in values, 189-190 Dropweight tear test, 300 Creep, 124 Ductile to brittle transition temperature, 101, Creep resistance, 83 107-108 Creep test, martensitic 12~ chromium steel, Ductility, optimum, 261 96-97 CrMo steel, HAZ tempering characteristics, 264-265 E 2-1/4Cr-lMo steel, 202 chemical analysis, 205 Electric arc furnaces, 26 critical temperatures, 213 Electric furnace steelmaking, 26-27 laboratory-produced trends, 11-12 residual copper, 221-223 Electron microscopy, see Production forgings yield and tensile strengths, 223 Electroslag remelting, 202, 204, 206 CrMoV steel, HAZ tempering characteristics, ferrite matrix, 216, 220 264-265 Embrittlement, effect of phosphorus segrega- Current supply, 243-258 tion, 296 AC, 244 End quench hardenability test, 36 DC reverse polarity, 186 Engineered bar products deposit nitrogen and oxygen level effects, maximum levels of residual content, 29 251-256 nickel-copper ratio, 34 SMA welding, 243-244 Erosion-corrosion, in feedwater and wet welding, 170, 174 steam piping, 7 306 RESIDUAL AND UNSPECIFIED ELEMENTS IN STEEL F microstructure, 269 niobium content, 271-272 Fatigue life, calcium treatment, 70-71 scanning electron fractographs, 295 Fatigue limit, versus tensile strength, 70-71 shelf energy, 295 Fe-AI-Ca-O-S system, equilibrium diagram, simulated coarse-grained microstructure, 73-74 290 Ferritic steel, see Sulfur, weldability and tempering characteristics of CrMo and Formability, 26 CrMoV steels, 264-265 Fractography, temper embrittlement, 103- toughness, 286, 296 104 carbon or niobium content effect, 269, Fracture appearance transition temperature, 271-273 3OO heating temperature effect, 269, 271 charpy impact test, 269, 271 test, 267 sulfur content and, 278-279, 281 underbead hardness, 192 X-70 line pipe steel, 291 weld thermal cycle, 288-289 Fracture surface Heat analyses and product analyses, carbon heat affected zone, 296-296 steel forgings, 117, 119 martensitic 12% chromium steel, 93, 96 Heat treatment, 101,103 microstructure below, 279, 281 carbon steel forgings, 114, 116-117 Fracture toughness, 7, 104-105, 169 inter-critical, 114, 117 effect of reaustenitization and temper, 104, temper embrittlement, 101, 103 107 Hollomon-Jaffe parameter, 261-262 temper embrittlement, 104-105 Homogenization Free-machining steel, 51 martensitic 12% chromium steel, 85, 87 Fuel cladding, 125 Furnace, advanced procedures, 14 temper embrittlement, 113 Hot ductility test, 6 Hot shortness, 26 G copper restriction, 34-35 Huey test, 159-160, 164 Galvanized material, in scrap, 24 Gas metal arc weld, 193 Hydrogen, 192 induced cold cracking, 296-297 Gas-shielded welding, nitrogen, 256-257 induced cracking, resistance, 286 Grain size, 266 Graphitization, 5-6 sensitivity and sulfur, 198 weld deposit content, 195 weldment effects, 196-197 I-I Hardenability, 26 end quench test, 36 I residual copper, 208 Impact test residual levels and,
Recommended publications
  • Steels & Stainless Steels “Mini-CAS”
    “Mini-CAS” course on Mechanical and Materials Engineering for Accelerators, 6/11/20-22/01/21 Steels & Stainless Steels Stefano Sgobba, EN-MME-MM, CERN - 20/11/2020 [email protected] Outline 1. Introduction to steels and stainless steels: • Iron and steel, major players in the history of mankind • Stainless steels, a 100 years of know-how 2. Rules for the selection and specification of stainless steels • Metallurgy of general purpose and advanced stainless steels grades/processes for specific applications 3. Steelmaking routes to secure the final quality of the product 4. Stability of the properties: precipitations and transformations • Considerations for welding • Case study: steel for the new CMS HG-CAL detector 5. Thermal treatments, sensitization, corrosion failures 6. Conclusions 20/11/2020 S. Sgobba - Steels & Stainless Steels 2 A. Berveglieri, R. Valentini, La Metallurgia Italiana, 1. Steels and stainless steel June 2001, p. 49ff Remains of Etruscan furnaces, exploited from the end of the Iron Age (9th – 8th century BC) to the 1st century BC Residues, exploited until 1969… Fe3O4 + CO 3FeO + CO2 FeO + CO Fe + CO2 FeO + C Fe + CO 20/11/2020 S. Sgobba - Steels & Stainless Steels 3 1. Steels and stainless steel C. Lemonnier, La Belgique, Paris, Hachette (1888) R. F. Tylecote. A history of metallurgy. The Metals Society, London, 2nd impr. 1979 20/11/2020 S. Sgobba - Steels & Stainless Steels 4 1. Steels and stainless steel Courtesy of TISCO /CN, hot rolling stainless steel plate mills, 2018 20/11/2020 S. Sgobba - Steels & Stainless Steels 5 1. Steels and stainless steel Courtesy of Sandvik Stainless Services 20/11/2020 S.
    [Show full text]
  • Corrosion Hardness Effect of Steel Screws by Nanoindentation
    CORROSION HARDNESS EFFECT OF STEEL SCREWS BY NANOINDENTATION Prepared by Duanjie Li, PhD 6 Morgan, Ste156, Irvine CA 92618 · P: 949.461.9292 · F: 949.461.9232 · nanovea.com Today's standard for tomorrow's materials. © 2017 NANOVEA INTRODUCTION As the most common failure mechanism in industry, corrosion of materials costs hundreds of billions of dollars annually to the U.S. economyi. It is critical to implement optimal corrosion control practices to improve lifecycle and asset management. Accelerated corrosion tests can substantially increase the measurement speed compared to those carried out in natural weathering. Laboratory corrosion tests that closely simulate the atmospheric effects on the corrosion mechanism of materials significantly facilitate the quality control and R&D of new materials and protective coatings for applications in aggressive environments. IMPORTANCE OF NANOINDENTATION TEST ON CORRODED METALS The mechanical properties of materials deteriorate during the corrosion process. For example, lepidocrocite (γ-FeOOH) and goethite (α-FeOOH) form in the atmospheric corrosion of carbon steel. Their loose and porous nature results in absorption of moisture and in turn further acceleration of the corrosion process ii . Akaganeite (β-FeOOH), another form of iron oxyhydroxide, is generated on the steel surface in chloride containing environments iii . Nanoindentation can control the indentation depth in the range of nanometers and microns, making it possible to quantitatively measure the hardness and Young’s modulus of the corrosion products formed on the metal surface. It provides physicochemical insight in corrosion mechanisms involved so as to select the best candidate material for the target applications. MEASUREMENT OBJECTIVE In this application, we showcased that the Nanovea Mechanical Tester in Nanoindentation mode measures the effect of rust in the corrosive media on the evolution of the mechanical properties of two types of steel screws.
    [Show full text]
  • Reclaimed Metals in Various Applications
    This packet provides information about how and why to use reclaimed metals in various applications. July Material Summary #1 Performance of Weathering Steel in Highway Bridges Material Summary #2 High-Performance Steel Reclaimed TxDOT Experience Summary of TxDOT experience using reclaimed metals in various applications Metals If you have questions or comments regarding this packet, contact: Rebecca Davio, TxDOT’s recycling coordinator (512) 416-2086 or [email protected] Almost all metals include some recycled Material Brief content. Steel and aluminum are used routinely in the road construction One of the keys to controlling the amount of industry, and they are both infinitely material thrown into landfills is to reuse reusable and recyclable. products as many times as possible. Reuse For example, aluminum sign blanks can conserves natural resources because fewer be used over and over again at less cost new products have to be manufactured. In than buying new blanks. Hydrostripping fact, reusing a material is often more resource- is a process that allows the reuse of ful than recycling it. Reuse eliminates exorbitant waste disposal Americans throw away enough fees and allows consumers to obtain raw aluminum every three months materials at a fraction of their original cost. to rebuild our entire commer- Furthermore, reuse reduces the quantity of cial air fleet. materials dumped in landfills while lessening damage to the environment. 1 aluminum signs that is much more effec- jumped by 27 percent. The Federal High- tive than sanding. Overview way Administration (FHWA) estimates nearly one-third of America’s 578,000 The process involves a high-pressure Steel bridges need to be repaired or replaced.
    [Show full text]
  • Corrosion-Fatigue Evaluation of Uncoated Weathering Steel Bridges
    applied sciences Article Corrosion-Fatigue Evaluation of Uncoated Weathering Steel Bridges Yu Zhang, Kaifeng Zheng, Junlin Heng * and Jin Zhu Department of Bridge Engineering, School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China * Correspondence: [email protected]; Tel.: +86-182-8017-6652 Received: 19 July 2019; Accepted: 19 August 2019; Published: 22 August 2019 Featured Application: The new findings highlight the enhancement in corrosion-fatigue performance of steel bridges by using the uncoated weathering steel. Besides, an innovative approach has been established to simulate the corrosion-fatigue process in uncoated weathering steel bridges, providing deep insights into the service life of the bridges. The approaches suggested in the article can be used (not limited to) as a reference for the research and design of uncoated weathering steel bridges. Abstract: Uncoated weathering steel (UWS) bridges have been extensively used to reduce the lifecycle cost since they are maintenance-free and eco-friendly. However, the fatigue issue becomes significant in UWS bridges due to the intended corrosion process utilized to form the corrodent-proof rust layer instead of the coating process. In this paper, an innovative model is proposed to simulate the corrosion-fatigue (C-F) process in UWS bridges. Generally, the C-F process could be considered as two relatively independent stages in a time series, including the pitting process of flaw-initiation and the fatigue crack propagation of the critical pitting flaw. In the proposed C-F model, Faraday’s law has been employed at the critical flaw-initiation stage to describe the pitting process, in which the pitting current is applied to reflect the pitting rate in different corrosive environments.
    [Show full text]
  • Corrosion Control Plan for Bridges
    Contents Introduction There is essentially no argument that the American infrastructure is in Introduction ................................................. i poor shape and there is little indication that significant improvement is on the horizon. Acknowledgments ....................................ii The amount of money needed to correct this problem is Executive Summary ..................................2 staggering, especially considering the current state of the economy. Crumbling Infrastructure ........................4 One reason for this is the age profile of the nation’s bridges. Figure 1 1 Introduction to Corrosion ......................6 shows this profile taken from the 2010 National Bridge Inventory . It shows bridges are approaching the maximum age distribution of Bridges to Everywhere ............................7 around 50 years. Most bridges were built for a 50 year design life, which means state highway departments will have to maintain those Corrosion Basics ...................................... 11 bridges beyond their original design lives, which will be challenging because they were built to lower design standards than those used Corrosion in Concrete ........................... 14 today. Exposure Conditions ............................. 18 Corrosion Control ................................... 21 The Highway Ahead .............................. 27 References ................................................. 29 Figure 1: Distribution of bridges by age (2010 NBI data) When the Eisenhower Interstate System was created,
    [Show full text]
  • Plate Weathering Steels for Unpainted Bridges And
    ArcelorMittal USA Plate Weathering Steel: For unpainted bridges and general construction The Weathering Process Alloy content and environmental conditions are key factors influ- encing the formation of an oxide film on steel. Under appropriate atmospheric conditions, Weathering steel develops a durable, tightly adherent protective oxide coating. The appearance, texture and maturity of this coating depend on three interrelated factors: time, degree of exposure and atmospheric environment. With time, the oxide coating changes from a “rusty” red-orange to a dark purple-brown patina. The moderately rough texture becomes more distinct as the coating thickens. This weathering process ex- tends over a period of time and depends on the following factors: • Degree of exposure has a strong influence on the weathering pro- cess. Steel exposed to rain, sun and wind weathers more quickly than steel in a sheltered location. The oxide on a sheltered surface Introduction tends to be rougher, less dense and less uniform. The rich patina of Weathering Steel is being seen more often in un- • Atmospheric environment painted applications for bridges, utility and sign poles, structures and also impacts oxide devel- highway guardrails. opment. Frequent wet-dry cycles – for instance mois- The aesthetic values of this weathered and textured material, and ture in the form of rainfall more importantly, the practical values of Weathering Steel make and dew that is dried by this steel particularly useful for applications where strength, ease of wind and sun – are key to fabrication and appearance are paramount. This brochure provides the weathering process. owners, designers, structural engineers, bridge engineers and con- • The degree of atmospheric tractors important information about Weathering Steel including its contamination also has its use, handling, fabrication, availability, properties and specifications.
    [Show full text]
  • Weathering Steel in Bridge Replacement of Rail Overbridges
    8th Australian Small Bridges Conference Weathering Steel in Bridge Replacement of Rail Overbridges Peter Ticaric Jacobs Group Australia, John Steele, Felix Lie ABSTRACT In 2014, the Institute of Public Works Engineering Australasia (IPWEA) undertook a road asset management project in consultation with the Local Councils of NSW. The Councils reported back that there were 1894 timber bridges under their ownership and of these, 504 were in poor condition. A further 950 of these bridges were in fair condition, but deteriorating rapidly and soon to be classified as poor. The required funding to continue the service life of these bridges was estimated to be in the order of $220 million, with a continuous $30 million per year to maintain a satisfactory standard. Most of these timber bridges are unsafe and inadequate for loads of modern traffic. The cost to replace the bridges was estimated to be in the order of $470 million. There is a similar situation with bridges on the NSW Country Rail Network where 84 of the 373 overbridges in 2007 were timber bridges with an additional number of the steel girder bridges having timber decks. These bridges are gradually being replaced to improve the safety and load capacity of the rail crossings and reduce the maintenance commitment. The challenge for the industry is to come up with solutions to replace these bridges that have low construction and ongoing maintenance costs. Despite advantages with lighter weight and speed of construction, steel girder bridges have not been included in the mix of these design solutions due to the cost of applying and maintaining the coatings on the steel.
    [Show full text]
  • Wu Yingjie ETDPITT2017.Pdf
    PROCESSING, MICROSTRUCTURES AND PROPERTIES OF ULTRA-HIGH STRENGTH, LOW CARBON AND V-BEARING DUAL-PHASE STEELS PRODUCED ON CONTINUOUS GALVANIZING LINES by Yingjie Wu B. Eng. in Welding Technology and Engineering, Nanchang Hangkong University, 2014 Submitted to the Graduate Faculty of Swanson School of Engineering in partial fulfillment of the requirements for the degree of Master of Science University of Pittsburgh 2017 UNIVERSITY OF PITTSBURGH SWANSON SCHOOL OF ENGINEERING This thesis was presented by Yingjie Wu It was defended on July 11, 2017 and approved by Ian Nettleship, Ph.D., Associate Professor, Department of Mechanical Engineering and Materials Science Patrick Smolinski, Ph.D., Associate Professor, Department of Mechanical Engineering and Materials Science John F. Oyler, Ph.D., Adjunct Associate Professor, Department of Civil and Environment Engineering Thesis Advisor: Anthony J. DeArdo, Ph.D., Professor, Department of Mechanical Engineering and Materials Science ii Copyright © by Yingjie Wu 2017 iii PROCESSING, MICROSTRUCTURES AND PROPERTIES OF ULTRA-HIGH STRENGTH, LOW CARBON AND V-BEARING DUAL-PHASE STEELS PRODUCED ON CONTINUOUS GALVANIZING LINES Yingjie Wu, M.S. University of Pittsburgh, 2017 One of the most popular elements in weight reduction programs in the automotive industry is high strength zinc coated dual-phase steel produced on continuous hot dipped galvanizing lines. The high strength is needed for mass reduction, while the protective zinc coating is needed to prevent corrosion of the thin gage cold rolled steel. The present study was aimed to explore an optimized way to produce such dual-phase steels with ultra-high tensile strength (UTS > 1280MPa), good global ductility (TE > 18%), excellent local ductility (sheared-edge ductility, HER > 40%) and products of UTS × TE > 22000 MPa × %, conforming to data of AHSS Generation III steel.
    [Show full text]
  • The Effects of Rust on the Gas Carburization of AISI 8620 Steel
    The Effects of Rust on the Gas Carburization of AISI 8620 Steel by Xiaolan Wang A Thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Master of Science in Material Science July 2008 Approved: ___________________ Richard D. Sisson, Jr. Director of Manufacturing and Materials Engineering George F. Fuller Professor Abstract The effects of rust on the carburization behavior of AISI 8620 steel have been experimentally investigated. AISI 8620 steel samples were subjected to a humid environment for time of 1 day to 30 days. After the exposure, a part of the samples was cleaned by acid cleaning. Both cleaned and non-cleaned samples have been carburized, followed by quenching in mineral oil, and then tempered. To determine the effect of rust on gas carburizing, weight gained by the parts and the surface hardness were measured. Surface carbon concentration was also measured using mass spectrometry. Carbon flux and mass transfer coefficient have been calculated. The results show that acid cleaning removes the rust layer effectively. Acid cleaned samples displayed the same response to carburization as clean parts. Rusted parts had a lower carbon uptake as well as lower surface carbon concentration. The surface hardness (Rc) did not show a significant difference between the heavily rusted sample and clean sample. It has been observed that the carbon flux and mass transfer coefficient are smaller due to rust layer for the heavily rusted samples. These results are discussed in terms of the effects of carbon mass transfer on the steel surface and the resulting mass transfer coefficient.
    [Show full text]
  • Mechanisms of the Atmospheric Corrosion of Weathering Steel. Mehmet Baha Kuban Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1986 Mechanisms of the Atmospheric Corrosion of Weathering Steel. Mehmet Baha Kuban Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Kuban, Mehmet Baha, "Mechanisms of the Atmospheric Corrosion of Weathering Steel." (1986). LSU Historical Dissertations and Theses. 4307. https://digitalcommons.lsu.edu/gradschool_disstheses/4307 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a 17”x 23” black and white photographic print.
    [Show full text]
  • Evaluation of the Use of Painted and Unpainted Weathering Steel on Bridges
    KENTUCKY TRANSPORTATION CENTER 176 Raymond Building, University of Kentucky 859. 257. 4513 www.ktc.uky.edu Evaluation of the Use of Painted and Unpainted Weathering Steel on Bridges Kentucky Transportation Center Research Report — KTC-16-09/SPR10-407-1F DOI: http://dx.doi.org/10.13023/KTC.RR.2016.09 KTC’s Mission We provide services to the transportation community through research, technology transfer, and education. We create and participate in partnerships to promote safe and effective transportation systems. © 2016 University of Kentucky, Kentucky Transportation Center Information may not be used, reproduced, or republished without KTC’s written consent. Kentucky Transportation Center 176 Oliver H. Raymond Building Lexington, KY 40506-0281 (859) 257-4513 www.ktc.uky.edu Research Report KTC-16-09/SPR10-407-1F Evaluation of the Use of Painted and Unpainted Weathering Steel on Bridges By Theodore Hopwood II Program Manager, Research Sudhir Palle Engineer Associate IV Bobby W. Meade Research Investigator And Rick Younce Transportation Technician II Kentucky Transportation Center College of Engineering University of Kentucky Lexington, Kentucky In cooperation with Kentucky Transportation Cabinet Commonwealth of Kentucky The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky, the Kentucky Transportation Center, the Kentucky Transportation Cabinet, the United States Department of Transportation, or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. The inclusion of manufacturer names or trade names is for identification purposes and should not be considered an endorsement.
    [Show full text]
  • Steel Bridge Design Handbook
    U.S. Department of Transportation Federal Highway Administration Steel Bridge Design Handbook Bridge Steels and Their Mechanical Properties Publication No. FHWA-HIF-16-002 - Vol. 1 December 2015 FOREWORD This handbook covers a full range of topics and design examples intended to provide bridge engineers with the information needed to make knowledgeable decisions regarding the selection, design, fabrication, and construction of steel bridges. Upon completion of the latest update, the handbook is based on the Seventh Edition of the AASHTO LRFD Bridge Design Specifications. The hard and competent work of the National Steel Bridge Alliance (NSBA) and prime consultant, HDR, Inc., and their sub-consultants, in producing and maintaining this handbook is gratefully acknowledged. The topics and design examples of the handbook are published separately for ease of use, and available for free download at the NSBA and FHWA websites: http://www.steelbridges.org, and http://www.fhwa.dot.gov/bridge, respectively. The contributions and constructive review comments received during the preparation of the handbook from many bridge engineering processionals across the country are very much appreciated. In particular, I would like to recognize the contributions of Bryan Kulesza with ArcelorMittal, Jeff Carlson with NSBA, Shane Beabes with AECOM, Rob Connor with Purdue University, Ryan Wisch with DeLong’s, Inc., Bob Cisneros with High Steel Structures, Inc., Mike Culmo with CME Associates, Inc., Mike Grubb with M.A. Grubb & Associates, LLC, Don White with Georgia Institute of Technology, Jamie Farris with Texas Department of Transportation, and Bill McEleney with NSBA. Joseph L. Hartmann, PhD, P.E. Director, Office of Bridges and Structures Notice This document is disseminated under the sponsorship of the U.S.
    [Show full text]