<<

STP1042-EB/Jul. 1989

Subject Index

A A 450/A 450M-86A, 151, 153 A 480/A 480M-84A, 151,153 Acicular ferrite, see Intragranular ferrite A 508-84a, 100-101,107, 114, 117 plates A 508/A 508-86, 115 AFNOR NF A 81460, 195 A 516/A 516M-84, 196 AISI 1215 , 51-66 A 530/A 530M-85a, 151,153 chemical analysis, 53, 56 A 533/A 533M-85b, 100-101, 106 experimental procedure, 53 A 588, 34 hardness, 53, 58 A 751, 1 machinability, 54-55, 58, 60-64 A 771-83, 124-125 MnS inclusion A 788, 202, 208 aspect ratio, residual effect, 53, 59 A 858/A 858M-86, 122 size, residual effect, 53, 58 A 860/A 860M-86, 122 oxide inclusion, 53-54, 59 E 8, 212 properties, 53-54, 56-59 E 23, 212 residual levels investigated, 52-53 E 45-76, 193 roto-bar rejection rate, 53, 56 E 112, 125, 212 tensile ductility and strength, residual ef- E 139-83, 126-127 fect, 57 E 618-81, 51, 53 G 5-82, 154 high strength, 266 G 31-72(1985), 154 relative cost of restricting residual levels, G 48-76(1980), 154 32-33 Auger spectroscopy, 100 Alumina inclusions, machinability, 72 Austenitic Aluminum carbide contents, 160 content during ladle refining, 42-43 high temperature ductility, 164 deoxidation constant, 41 see also Titanium stabilized austenitic Aluminum oxide, 76 stainless steel Arc length, 243-258 Austenitization back-gouging, 257 martensitic 12% steel, 88 deposit nitrogen and oxygen level effects, temperature, 113 251-256 Automatic screw machine test, 53-54 SMA electrodes, 257 Axisyrnmetric specimens, 100 specimen extraction and testing, 248 Ashby-Orowan equation, 225 ASTM Standards B A 20/A20M-86a, 117 A 240-85, 151,153 Ball bearing , calcium, 70 A 242, 34 Biaxial stress rupture A 255-67, 36 tests, D9I, 127 A 262-85a, 150, 154, 158-162, 164 titanium stabilized austenitie stainless A 266-69, 115 steel, 132, 135 A 266-84a, 114, 117, 123 Borides, 163 A 266-85, 115 Boron, 150 A 269-85, 151,153 resistance of Type 304 stainless A 352/A 352M-85, 122 steel and, 152 A 376, 6 D9 levels, 125-126 A 430, 6 stress rupture life effect, 128-130

303 Copyright*1989 by ASTM lntcrnational www astm org 304 RESIDUAL AND UNSPECIFIED ELEMENTS IN STEEL

Boron (cont.) Caustic embrittlement, 5-6 tertiary creep and, 146 Charpy impact test titanium stabilized austenitic stainless steel fracture appearance transition tempera- effect, 145-147 ture, 269, 271 see also Titanium stabilized austenitic weld metal, 239-240 stainless steel Charpy toughness, 100, 170 British Standards 4060 50E, 169 butt weld, 180-184 British Standards 5762:1979, 175 DC straight polarity deposits, 186 Butt weld de-embrittling treatment, 104, 106 charpy toughness, 180-184 forged and plate steel, 106, 108 chemical analyses, 174-177 Charpy V notch crack tip opening displacement, 184-185 fracture energy, 104 cutting scheme, 174 impact test properties, X-70 line pipe steel, fractographic examination, 186-188 291-292 microstructural observations, 177-179 specimens, 103, 288 tensile and hardness data, 179-183 transition curves, heat affected zone, 294 Chromium, 51 Cleanness, calcium treatment and, 69-72 Cleavage, 100 isolated regions, welds, 186, 188 C stress, critical, 108, 110 Calcium Clinch River breeder reactor, 203 alloys, see Inclusion control C-Mn-Ni welds, 179, 182-183 ball bearing steels, 70 Cold cracking carbo-, 70-71 heat affected zone, 296 cleanness and, 69-72 hydrogen induced, 296-297 cold upsetting, 71-72 Cold formability, residuals and, 35-36 fatigue life, 70-71 Cold upsetting, calcium treatment, 71-72 machinability, 72-73 Columbium- steel, low , 286 Calcium-aluminum, deoxidation constant, Compact tension specimens, 103 41 Constituent ratios Calcium oxide, 77 LN steel, 275-276 Calcium sulfide, 77 Ti-oxide bearing steel, 275-276 Carbides, 83, 150 Continuous casting, 26 martensitic 12% chromium steel, 98-99 growth of, 28 precipitation reactions, 215 percent of U. S. production, 28 strengthening, 202, 227 trends, 11, 13 Carboborides, 163 Continuous cooling transformation diagram Carbon LN steel, 273-274 content effect on heat affected zone tough- Ti-oxide bearing steel, 273-275 ness, 269, 271-273 , 51, 150, 202-227 equivalent, 114, 120-122 average monthly residual, scrap, 19, 21 interstitial, 225 corrosion resistance, 208 segregation, negative, 114 Type 304 stainless steel and, 151-152, Carbo-nitriding, calcium treatment, 70-71 154-158 Carbon- steels, 169, 243 dilatometry, 212 welds, mechanical property, 179, 181 factors favorably affecting hot workability, forgings, 114 34 chemical composition, 115, 122 hardenability, 208 heat analyses and product analyses, 117, -copper phase diagram, 207-208 119 laboratory-produced steels, 221-223 heat treatment, 114, 116-117 light microscopy, examination, 212 impact test results, 117-118 load-elongation curve, 224 mechanical property test machinability and, 51-52 locations, 114, 116 materials, 204-206 results, 117-120 particles, 215-216, 220 INDEX 305

precipitation, grain boundary, 213, 218 D procedure, 209-212 D9, 124-125 regression analysis, scrap, 16, 19 boron effect restriction, hot shortness and, 34-35 ductility, 130-131 tensile/impact testing, 212 stress rupture life, 128-130, 132-134 values of purchased scrap grades, 22 creep curves, modified by additions of bo- strength, 224 ron , 130 annealed, 224 in-reactor creep behavior, 135, 139-141 PWHT/AC, 226-227 neutron-induced swelling, 141, 143 PWHT/FC, 224-226 phosphorus and boron levels, 125-126 see also Weld metal, embrittlement phosphorus effects Copper alloys, elimination, 7 ductility, 130-131 Corrosion, 7 stress rupture life, 128-129 Corrosion resistance precipitate-free zones, 146 copper and, 208 swelling behavior, 136, 139 Type 304 stainless steel, 150-165 unirradiated, 133-139 boron effects, 152 as-received condition, 136 copper and molybdenum effects, 151- carbide and Laves distribution, 135, 138 152, 154-158 creep cavitation, 134, 137 corrosion rates, 158 high phosphorus-high boron heat, 135, effect of alloy boron content and sensitiz- 138 ing treatment, 161-162 MC precipitates, 135, 139 intergranular corrosion rates, 158-159 phase identification, 134-135, 137 materials, 152-154 DgI, 127-128 potentiodynamic anodic polarization Deoxidation, 38 curves, 155-157 Deoxidation constant, aluminum, 41 reference standards, 160 Dephosphorization, 40 Counterfeit bolts, 25 Desuifurization, 38 Cracking Diffusion deoxidation, 43-44 hydrogen induced, 286 Dilatometry solidification, 297 production forgings, 213 Crack tip opening displacement, 169, 175 residual copper, 212 butt weld, 184-185 DIN 50602, 193 C-Mn-Ni deposits, 188 Dissociation, ladle lining, 42-43 scatter in values, 189-190 Dropweight tear test, 300 Creep, 124 Ductile to brittle transition temperature, 101, Creep resistance, 83 107-108 Creep test, martensitic 12~ chromium steel, Ductility, optimum, 261 96-97 CrMo steel, HAZ characteristics, 264-265 E 2-1/4Cr-lMo steel, 202 chemical analysis, 205 Electric arc furnaces, 26 critical temperatures, 213 Electric furnace , 26-27 laboratory-produced trends, 11-12 residual copper, 221-223 Electron microscopy, see Production forgings yield and tensile strengths, 223 Electroslag remelting, 202, 204, 206 CrMoV steel, HAZ tempering characteristics, ferrite matrix, 216, 220 264-265 Embrittlement, effect of phosphorus segrega- Current supply, 243-258 tion, 296 AC, 244 End quench hardenability test, 36 DC reverse polarity, 186 Engineered bar products deposit nitrogen and oxygen level effects, maximum levels of residual content, 29 251-256 -copper ratio, 34 SMA welding, 243-244 Erosion-corrosion, in feedwater and wet welding, 170, 174 steam piping, 7 306 RESIDUAL AND UNSPECIFIED ELEMENTS IN STEEL

F microstructure, 269 niobium content, 271-272 Fatigue life, calcium treatment, 70-71 scanning electron fractographs, 295 Fatigue limit, versus tensile strength, 70-71 shelf energy, 295 Fe-AI-Ca-O-S system, equilibrium diagram, simulated coarse-grained microstructure, 73-74 290 Ferritic steel, see Sulfur, weldability and tempering characteristics of CrMo and Formability, 26 CrMoV steels, 264-265 Fractography, temper embrittlement, 103- toughness, 286, 296 104 carbon or niobium content effect, 269, Fracture appearance transition temperature, 271-273 3OO heating temperature effect, 269, 271 charpy impact test, 269, 271 test, 267 sulfur content and, 278-279, 281 underbead hardness, 192 X-70 line pipe steel, 291 weld thermal cycle, 288-289 Fracture surface Heat analyses and product analyses, carbon heat affected zone, 296-296 steel forgings, 117, 119 martensitic 12% chromium steel, 93, 96 Heat treatment, 101,103 microstructure below, 279, 281 carbon steel forgings, 114, 116-117 Fracture toughness, 7, 104-105, 169 inter-critical, 114, 117 effect of reaustenitization and temper, 104, temper embrittlement, 101, 103 107 Hollomon-Jaffe parameter, 261-262 temper embrittlement, 104-105 Homogenization Free-machining steel, 51 martensitic 12% chromium steel, 85, 87 Fuel cladding, 125 Furnace, advanced procedures, 14 temper embrittlement, 113 Hot ductility test, 6 Hot shortness, 26 G copper restriction, 34-35 Huey test, 159-160, 164 Galvanized material, in scrap, 24 Gas metal arc weld, 193 Hydrogen, 192 induced cold cracking, 296-297 Gas-shielded welding, nitrogen, 256-257 induced cracking, resistance, 286 Grain size, 266 Graphitization, 5-6 sensitivity and sulfur, 198 weld deposit content, 195 weldment effects, 196-197 I-I Hardenability, 26 end quench test, 36 I residual copper, 208 Impact test residual levels and, 36-37 carbon steel forgings, 117-118 martensitic 12% chromium steel, 93, 95 dynamic strain, 238 residual copper, 212 see also Impact toughness, 169, 285 Hardness, 261 laboratory-produced steels, 222-223 AISI 1215 steel, 53, 58 Inclusion, 192, 266 butt welds, 179-183 composition, predictive model, 73-76, 78 marten~itic 12% chromium steel, 88, 90- control 93 aluminum oxide, 76 postweld heat treatment, 263 calcium oxide, 77 X-70 line pipe steel, 293-294 calcium sulfide, 77 see also Underbead hardness calcium treated steels, 73-79 Heat-affected zone, 261-262, 266-267 shape control, 297 charpy V notch transition curves, 294 harmfulness, 70 cold cracking, 296 oxide, AISI 1215 steel, 53-54, 59 fracture surfaces, 296-296 phase analysis, 76-79 mechanical properties, 293-296 precipitation path, 74, 76 INDEX 307

In-reactor creep, titanium stabilized austen- continuous cooling transformation dia- itic stainless steel, 145 gram, 273-274 In-reactor stress rupture, titanium stabilized microstructure, 273,275 austenitic stainless steel, 135-136, on cooling stage, 275-276 139-141 Local rupture criterion approach, 110 Intragranular ferrite plate, 267 area ratio and length of ferrite side plate, 280, 282 M cooling time effects, 275-277 Machinability, 51, 69 fine-grained structure, 296 AISI 1215 steel, 54-55, 58, 60-64 formation, 266, 272-273 finish formed surface roughness, 54, 61- toughness effect, 279-282 62 nucleus, 269 rake face, 54-55, 62 formation, 278-281 surface roughness, 55, 63-64 nucleation test conditions, 55 cooling time effect, 276-277 tool life, residual effect, 54, 60-61 by Ti20~ particle, 281-283 calcium treatment, 72-73 transformation copper and, 51-52 effect of MnS, 278-279, 281 effect of aluminum and calcium to oxygen effect of thermal history in re- ratio, 72 gion, 278, 280 evaluation, 53, 55 Intergranular rupture, 100 steel Grade 4140, 73 Iron-copper phase diagram, 202, 207-208, island, high carbon, formation, 225 277-278 ferritic region, 207, 209 Martensitic 12% chromium steel, 83-99 Iron-oxide, slag content, 44-45 austenitization, 88 Irradiation-induced swelling, titanium stabi- carbides, 98-99 lized austenitic stainless steel, 136, chemical composition, 85-86 139, 141-143 comparison between standard and super- Isothermal transformation diagram, 88-93 clean heat dilatometry, 87-88 creep test, 96-97 l dilatometric results after austenitization, 88-89 Jominy test, 36 fracture surfaces, 93, 96 hardness, 88, 90-93 homogenization treatment, 85, 87 L influence of cooling rate on structure, 88, Ladle 91-92 phosphorus removal, 47 mechanical properties after quenching and lining, 38 tempering, 93-97 dissociation, 42-43 mechanical tests, 87 influence on deoxidation effect, 43-44 pure heat procedure, 85-86 refining, 38 quenching, 87 effect of slag type, 41-42 research objectives, 84 procedure, 40 structural examination of impact test Larson Miller parameter, representation of pieces, 96 in-reactor creep rupture, 141, 143- super clean heat, 83, 85 144 tempering temperature, 87 Lateral expansion transition temperature, tension test, 88, 90, 93-94 X-70 line pipe steel, 291 transformation temperatures, 88-93 Light microscopy MC precipitates, uniaxial stress rupture, 135, laboratory-produced steels, 221-222 139 production forgings, 213, 216 M2jC6 type carbides, production forgings, residual copper, examination, 212 215, 217 LN steel Melting yield, scrap, 14 constituent ratios, 275-276 Microalloyed steels, 285 308 RESIDUAL AND UNSPECIFIED ELEMENTS IN STEEL

Microbial corrosion, 7 P Microsegregation, Ti-oxide bearing steel, 269 Phosphorus, 285-300 Microstructure D9 levels, 125-126 LN steel, quenching on cooling stage, 275- increase in transition temperature, 297 276 microsegregation, 101 Ti-oxide bearing steel, quenching on cool- removal, ladle, 47 ing stage, 275-276 segregation, embrittlement effect, 296 Mixed sulfur, formation, 78 stress rupture life effect, 128-129 MnS titanium stabilized austenitic stainless steel IFP transformation effect, 278-279, 281 effect, 145-147 inclusion aspect ratio, AISI 1215 steel, re- see also Titanium stabilized austenitic sidual effect, 53, 59 stainless steel inclusion size, AISI 1215 steel, residual ef- Polarity, 169-170, 177, 243 fect, 53, 58 deposit nitrogen and oxygen level effects, Molybdenum, 150 251-256 corrosion resistance of Type 304 stainless Postweld heat treatment, 202-203, 232, 261- steel and, 151-152, 154-158 265 M2X carbides AC condition, production forgings, 216- molybdenum/chromium ratios, 213, 315, 217, 221 226-227 FC condition, production forgings, 213, production forgings, 213, 218-219, 226- 215-216, 219-220 227 hardness, 263 M2X carbonitrides, 219, 221 heat affected zone tempering response, 262-263 procedure, 262-263 temperature-time relationships, 262 N Postweld stress relief heat treatment, 237 Neutron-induced swelling, 141-143 Precipitation Nickel, 51 hardening, 232, 236, 238 Nickel-copper ratio, engineered bar products, strengthening, 202 34 Pressure vessel, 100 3.5% NiCrMoV steel, 38-39 Pressurized water reactor, 100 Niobium, content effect on heat affected zone Probability of cleavage fracture, 110, 111 toughness, 269, 271-273 Production forgings, 213-221 Nitrogen, 169, 243 dilatometry, 213 deposit contents, 255-257 electron microscopy, 213,215-221 arc length and current supply effects, annealed, 213, 217-218 251-256 PWHT/AC, 216-217, 221 gas-shielded welding, 256-257 PWHT/FC, 213,215-216, 219-220 welds, 186 eutectoid phase, 213, 217 interstitial, 226 iron-copper phase diagram, 225 pick-up during welding, 243-244 light microscopy, 213,216 requirement, 7 load-elongation curves, 213,215 Notch toughness, 232 M23C 6 type carbides, 215, 217 M2X carbides, 213, 218-219, 226-227 Purchased scrap, 11, 29 O

Obsolete scrap, 29 Q-R Oxide inclusion, AISI 1215 steel, 53-54, 59 Oxygen, 169, 243 Quenching, martensitic 12% chromium steel, deposit contents, 176-177, 254-255 B7 arc length and current supply effects, Reactor pressure vessel steels, 7 251-256 Refinement, 146 pick-up during welding, 243-244 Revert scrap, 29 transportation mechanism in slag, 46 Rupture, fractographic aspects, 104-105 INDEX 309

low carbon, 266 low temperature service, 266 Scrap, 28-31 making, 192 charges, 32-33 percent of U. S. production by furnace chemistry, 15-16, 19 type, 27 continuous casting, 28 producers, 11 copper levels, hot shortness and, 34-35 U. S. raw steel capability, 27 steelmaking, 26 Strain aging, welds, 188-189 "free of alloys", 29 Stress corrosion, S grade, 16, 18 Stress rupture, 124-126 home, residual levels and, 65 Stress-strain behavior, serrated, 242 homogeneity, 16 Submerged arc weld, 285 inclusion of galvanized material, 24 Sulfur inspection, 15-17 constant and fracture appearance transi- management for residual control, 32-33 tion temperature, 278-279, 281 material segregation, 19-21 content, X-70 line pipe steel, 286 melting yield, 14 weidability and, 192-201 number 1 bundle price trend, 32 critical preheat temperature, 196-200 obsolete, 29 hydrogen sensitivity, 198 versus other raw materials, 1S materials, 192-194 production as percent of consumption, 13 stress direction, 196-197, 199-200 purchased, 11, 29 sulfide shape, 199-200 ratio of purchases to steel produced, 11-12 underbead hardness, 195-196, 198 regression analysis, 16, 18 welding conditions, 196-198 relative cost to control residual levels, 32- welding tests, 193, 195 33 Super-clean heat, 83, 85 residual levels dilatometry, 87-88 cold formability and, 35-36 influence of cooling rate on structure, 88, control, 24 92 hardenability and, 36-37 Super clean steels, production, 38-46 revert, 29 equipment and sequence, 40 shredded experiments, 39-40 copper content, 23 Surface roughness, AISI 1215 steel, residual density, 23 effects, 55, 63-64 size and density, 14-15 Swelling, 124-125 sources, 14 D9, 136, 139 specifications, 15 neutron-induced, 141-143 suppliers, 22-23 resistance, D9I, 128 trends in steel industry, 11-14 titanium stabilized austenitic stainless types, 30-31 steel, 145 Segregation, 100 Sensitization, 1S0 T Shield metal arc welding, 169-170, 193, 243 electrodes, arc length, 257 Temper embrittlement, 38, 100-113 current supply, 243-244 auger electron spectroscopy, 106-107, 109 Slag, 38 fractography, 103-104 chemical composition, 41-42 heat treatment, 101,103 iron-oxide content, 44-45 homogenization, 113 oxygen transportation mechanism, 46 materials, 101-102 Solidification cracking, weld, 297 onset susceptibility, 113 Solid-solution strengthening, 202, 207-208 reversible, 101 Steam generator, 202-203 specimens and mechanical tests, 103 Steam turbines, super critical, 83 Tempering response, 261 Steel Tempering temperature, martensitic 12% chemical analyses, 171, 194, 211,245, 268 chromium steel, 87 Grade 4140, machinability, 73 Tensile ductility, AISI 1215 steel, residual ef- industry trends, 11-14 fect, 57 310 RESIDUAL AND UNSPECIFIED ELEMENTS IN STEEL

Tensile/impact testing, residual copper, 212 Transformation temperatures, martensitic Tensile strength, 114-123, 232 12% chromium steel, 88-93 against product analysis carbon content, Tubesheet forgings, 202-204 120-121 comparison of ESR and VAR, 210 AISI 1215 steel, residual effect, 57 copper level, 208 butt welds, 179-183 cross section, 204 fatigue limits versus, 70-71 heat treatment cycles, 204, 206, 210 laboratory-produced steels, 221-223 yield strength, 204, 207 production forgings, 213-215 Turbine rotors, 38, 83 residual copper, 212 martensitic 12% chromium steel, 97 step cooled and de-embrittled smooth spec- Type 304 stainless steel, 6-7 imens, 104, 107 ASTM compositional specifications, 151 test modified martensitic 12% chromium steel, 93-94 chemical composition, 153 weld metal, 234-237 corrosion test results, 156 X-70 line pipe steel, 288 potentiodynamic anodic polarization X-70 line pipe steel, as-rolled plates, 290- curves, 156-157 291 weldability, 164 Ti2Oa particles, stability, 266 see also Corrosion resistance, Type 304 Ti-oxide bearing steel, 266-283 stainless steel CMA patterns, 273 Type 316 stainless steel, 6, 125 constituent ratios, 275-276 Type 316 LN stainless steel, weldability, 163- continuous cooling transformation dia- 164 gram, 273-275 effective grain size, 279, 282 U high carbon martensite island formation, 277-278 Underbead hardness, 195-196, 198 IFP nucleus, analysis, 269-270 heat affected zone, 192 microsegregation, 269 Uniaxial stress rupture microstructure, 273, 275 boron effect, 128-130, 132-133, 143-144 analysis, 269 creep curves, 130 quenching on cooling stage, 275-276 distribution of carbides and Laves, 135, shelf energy, 295 136 size and distribution of martensite-austen- ductility, 130-131 ite constituent, 278-279 MC precipitates, 135, 139 specimen preparation, 267-268 phase identification, 134-135, 137 transformation characteristics from ~ to a, phosphorus effect, 128-129, 132-133, 143- 269 144 see also Heat affected zone titanium stabilized austenitic stainless Titanium stabilized austenitic stainless steel, steel, 128-134, 143-145 124-147 creep cavitation, 134, 137 biaxial stress rupture, 132, 135 Unspecified elements, service experience re- effect of phosphorus and boron, 145-147 lated to, 5-8 experimental procedures, 125-128 in-reactor creep, 145 V in-reactor stress rupture, 135-136, 139- 141 , 202, 204, 206 irradiation-induced swelling, 136, 139, Void swelling, 124-125 141-143 neutron-induced swelling, 141-143 W swelling, 145 uniaxial stress rupture, 128-134, 143-145 Weathering steel, 232 Tool life, residual effects, AISI 1215 steel, 54, Weld, 169-191 60-61 charpy toughness, root and subsurface re- Toughness, 100, 266 gions, 180, 184 influence of composition, 186, 188 CTOD scatter in values, 189-190 welds, 186, 188-190 deposit hydrogen content, 195 INDEX 311

deposit nitrogen contents, 186, 188 yield strength, 236, 238-239 isolated regions of cleavage, 186-188 reheated, main initiations point, 186-187 local initiation at large inclusion, 186-187 tensile test, 234-237 mechanical property, 179, 181-183 Weld pad, chemical analyses, 248, 250-251 mechanical testing, 174-175 metallographic and fractographic examina- X tion, 175, 177-179 oxygen contents, 176-177 X-70 line pipe steel, 285-300 solidification cracking, 297 as-rolled plates, mechanical properties, straight and reverse polarity, 177 290-292 strain aging, 188-189 Charpy V notch impact properties, as- toughness, 186, 188-190 rolled plates, 291-292 transverse sections, 177-178 chemical composition, 286-287 vertical-up, 179-180, 183 economics, 286 strain aging, 189 fracture appearance transition tempera- see also Butt weld ture, 291 Weldability, 5, 266 hardness, 293-294 Type 304 stainless steel, 164 lateral expansion transition temperature, Type 316 LN stainless steel, 163-164 291 see also Sulfur, weldability and materials, 286-288 Welding mechanical property tests, 288-289 current supply, 170, 174, 244 metallographic and fractographic studies, equipment, 169 289 parameters, 195 microstructure, 289-290 procedure, 246, 248 pass temperatures during rolling, 286, 288 vertical-up, 169 phosphorus content, 297 Welding electrodes, 170, 172-173,244, 246 segregation tendency of phosphorus, 296 chemical analyses, 246-247 shelf energy, 285 coating, 246, 249 solidification cracking, 297 handling characteristics, 248 splitting tendency, CVN specimens, 292- oxygen levels, 252, 260 293 Weld metal, 169, 243 sulfur content, 286 as-deposited, 177-178 tensile properties, as-rolled plates, 290- charpy impact test, 239-240 291 embrittlement, 232-242 tension tests, 288 chemical composition of materials, 234 fracture appearance transition tempera- Y ture, 234, 240 location of mechanical test specimens, Yield strength 234 residual copper, 224 postweld stress relief heat treatment, annealed, 224 237 PWHT/AC, 226-227 procedure, 233-234 PWHT/FC, 224-226 serrated stress-strain behavior, 242 tubesheet forgings, 204, 207 upper shelf energy test, 241 weld metal, embrittlement, 236, 238-239