Polish Polar Res. 1-17.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evaluation of a Proposed Significant Natural Area at Mt Iron, Wanaka
EVALUATION OF A PROPOSED SIGNIFICANT NATURAL AREA AT MT IRON, WANAKA R3762 EVALUATION OF A PROPOSED SIGNIFICANT NATURAL AREA AT MT IRON, WANAKA Coprosma shrubland on the southwest faces at the Allenby Farms site, Mt Iron. Contract Report No. 3762 March 2017 (Revised and updated) Project Team: Kelvin Lloyd - Report author: vegetation and flora Mandy Tocher - Report author: herpetofauna Brian Patrick - Report author: invertebrates Prepared for: Allenby Farms Ltd P.O. Box 196 Wanaka 9343 DUNEDIN OFFICE: 764 CUMBERLAND STREET, DUNEDIN 9016 Ph 03-477-2096, 03-477-2095 HEAD OFFICE: 99 SALA STREET, P.O. BOX 7137, TE NGAE, ROTORUA Ph 07-343-9017, 07-343-9018; email [email protected], www.wildlands.co.nz CONTENTS 1. INTRODUCTION 1 2. SITE CONTEXT 1 3. METHODS 1 4. ECOLOGICAL CONTEXT 4 5. INDIGENOUS VEGETATION AND HABITATS 5 5.1 Kānuka scrub and shrubland 5 5.2 Coprosma scrub and shrubland 6 5.3 Exotic grassland and herbfield 7 5.4 Swale turf 8 5.5 Cushionfield 8 6. FLORA 8 6.1 Species richness 8 6.2 Threatened and At Risk plant species 12 6.3 Pest plants 12 7. BIRDS 13 8. LIZARDS 14 8.1 Overview 14 8.2 “Remove from SNA” zone 14 8.3 Alternate SNA 18 9. INVERTEBRATES 18 9.1 Overview 18 9.2 Mixed Coprosma-dominant shrubland 18 9.3 Kānuka scrub and shrubland 19 9.4 Rock outcrop habitats 19 9.5 Open grassland and turf 19 10. PEST ANIMALS 20 11. ECOLOGICAL VALUES 20 11.1 District Plan (2009) - Section 6c Significance 20 11.2 Proposed District Plan - Section 6c Significance from Policy 33.2.1.9 22 11.3 Significance summary 23 12. -
Cuverville Island Lecointe Is
Gourdin Astrolabe Island Island Mikklesen Harbor oker Passage Cr Hydrurga Cierva Cove Dallmann Bay Rocks Two Hummock Is Brabant Is. Cuverville Island Lecointe Is. ANTARCTICMelchior Brialmont Islands TREATY Sprightly Cove Islands Cuverville Island visitor site guide 64˚41’S, 62˚38’W - North Errera Channel Gerlache Strait Enterprise Is. The Waifs Portal Point Key features Anvers Is. Foyn Harbour Spigot Peak Orne Harbour Gouvernøren Harbour - Extensive colony of gentoo penguins in the Nansen Is. Orne Is. Charlotte Bay Georges Point Wilhelmina Bay Antarctic Peninsula CUVERVILLE IS. - Glacial and ice scenery Ronge Is. Arthur Danco Is. Harbour Neumayer Channel Beneden Head (Palmer Station) Dorian Bay Waterboat Point Jougla Pt. Doumer Is. Priest Is. Paradise Py Point Bay Andvord Bay Neko Harbour Peltier Channel Wiencke Is. Almirante la Brown Station ctic Peninsu Antar Description Lemaire Channel TOPOGRAPHY This 2km by 2.5km island is a steep-sided dome, two-thirds of which is covered by a permanent ice-cap. The northern shore is a beach of cobbles and boulders, approx 1.5km long, backed by steep vegetation- covered cliffs toward the east and gentler slopes to the west. FAUNA Confirmed breeders: gentoo penguin (Pygoscelis papua), kelp gull (Larus dominicanus), Antarctic tern (Sterna vittata), snowy sheathbill (Chionis alba), blue-eyed shag (Phalacrocorax atriceps), Wilson’s storm- petrel (Oceanites oceanicus), skuas (Catharacta spp.), snow petrel (Pagodroma nivea), pintado petrel (Daption capense). Weddell seals (Leptonychotes weddellii) and Antarctic fur seals (Arctocephalus gazella) regularly haul out. Leopard seals (Hydrurga leptonyx) often hunt near-shore. FLORA Deschampsia antarctica, Colobanthus quitensis; swards of moss species; and lichen species including Xanthoria spp., Buellia spp., Caloplaca spp. -
Studies of Plant Communities of the Antarctic Peninsula Near Palmer
combining our raw concentration data with depth adjusted Allnutt. 1982-a. Comparative ecology of plankton communities in estimates of water body volume. In conjunction with loading seven Antarctic oasis lakes. Journal of Plankton Research, 4(2), 271-286. estimates, we will then estimate nutrient residence times, to Parker, B.C., G.M. Simmons, Jr., R.A. Wharton, Jr., K.G. Seaburg, and gain some sense of nitrogen and phosphorus dynamics in these F.G. Love. 1982-b. Removal of organic and inorganic matter from lakes. Antarctic lakes by aerial escape of blue-green algal mats. Journal of Work in the future will center on modeling of diffusion pro- Phycology, 18, 72-78. Rast, W., and G.F. cesses for nutrients within the lakes. Specifically, we will be Lee. 1978. Summary analysis of the North American (U.S. Portion) OFCD eutrophication project: Nutrient loading—lake response looking at the rate of diffusion of ammonia into the upper waters relationships and trophic state indices. (U.S. EPA. EPA-G0013-78-008.) of Lake Fryxell and its conversion to available (and limiting) Corvallis, Oregon: Corvallis Environmental Research Laboratory. nitrate. This will permit comparison of internal versus external Simmons, G.M., Jr., B.C. Parker, F.C.T. Allnutt, D.P. Brown, D.D. loading and will further aid in determining why this lake is Cathey, and K.G. Seaburg. 1980. Ecosystem comparison of oasis more productive than its oligotrophic neighbor, Lake Hoare. lakes and soils. Antarctic Journal of the U.S., 14(5), 181-183. We wish to thank George Simmons and his students for their Strickland, J.D.H., and T.R. -
TAXON:Cerastium Fontanum SCORE:11.5 RATING
TAXON: Cerastium fontanum SCORE: 11.5 RATING: High Risk Taxon: Cerastium fontanum Family: Caryophyllaceae Common Name(s): common mouse-ear Synonym(s): Cerastium caespitosum Gilib. ex Asch. common mouse-ear chickweed Cerastium fontanum subsp. triviale (Spenn.) Jalas mouse-ear chickweed Cerastium holosteoides Fr. Cerastium triviale Link Cerastium vulgare Hartm. Assessor: Chuck Chimera Status: Assessor Approved End Date: 6 Nov 2015 WRA Score: 11.5 Designation: H(HPWRA) Rating: High Risk Keywords: Herbaceous Weed, Temperate, Widely Naturalized, Mat-Forming, Wind-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) Low tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) y 303 Agricultural/forestry/horticultural weed 304 Environmental weed 305 Congeneric -
Lquat Arctic Alpine Plants
The Late -Quaternary History of Arctic and Alpine Plants and their future in a warming world Hilary H. Birks University of Bergen How do we reconstruct the history of flora and vegetation? Where do we find our evidence and how do we interpret it? The history of the history What were past climates like and how did they change? How did plants survive climate change? The most recent glacial climate – the Younger Dryas How did arctic and alpine plants react to Holocene warming? What does the future hold for Arctic and Alpine plants? 1 1. Evidence of past flora and its changes Fossils • Pollen - microscopic • Macrofossils – can be seen with naked eye. Seeds, fruits, leaves, etc. Molecular DNA analyses of living arctic alpines can complement the fossil record. Find different populations in space today and deduce past migrations Fossil DNA extraction from sediments or plant remains is becoming increasingly sophisticated Pollen grains and spores • Walls are sporopollenin, very resistant to decay • Preserve well in anaerobic environments, e.g. lake sediments, peats • Can be extracted from the sediment matrix using chemicals to remove the organic and inorganic sediment components • Counted under a high-power microscope • Frequent enough to allow percentage calculations of abundance 2 BUT - in glacial and late-glacial environments: • Wind-dispersed pollen types dominate the assemblages (grasses, sedges, Artemisia ) • Arctic and alpine herbs generally produce rather little pollen • They are frequently insect pollinated • In landscapes with plants -
The Phylogenetics of Succession Can Guide Restoration: an Example from Abandoned Mine Sites in the Subarctic
Journal of Applied Ecology 2015, 52, 1509–1517 doi: 10.1111/1365-2664.12517 The phylogenetics of succession can guide restoration: an example from abandoned mine sites in the subarctic Stephanie Shooner1,2*, Chelsea Chisholm1,3 and T. Jonathan Davies1,4 1Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, Quebec H3A 1B1, Canada; 2Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, Quebec H4B 1R6, Canada; 3Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen Ø, Denmark; and 4African Centre for DNA Barcoding, University of Johannesburg, APK Campus, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa Summary 1. Phylogenetic tools have increasingly been used in community ecology to describe the evo- lutionary relationships among co-occurring species. In studies of succession, such tools may allow us to identify the evolutionary lineages most suited for particular stages of succession and habitat rehabilitation. However, to date, these two applications have been largely sepa- rate. Here, we suggest that information on phylogenetic community structure might help to inform community restoration strategies following major disturbance. 2. Our study examined phylogenetic patterns of succession based on a chronosequence of three abandoned subarctic mine spoil heaps (waste piles) dating from the early 1970s, mid-1970s and early 1980s. The vegetation at each mine site was compared to the surrounding vegetation, and community structure on mines was explored assuming species pools at nested spatial scales. 3. We found that the adjacent vegetation was more phylogenetically clustered than the vege- tation on the mines, with mines demonstrating weaker phylogenetic community structure. -
Global Southern Limit of Flowering Plants and Moss Peat Accumulation Peter Convey,1 David W
RESEARCH/REVIEW ARTICLE Global southern limit of flowering plants and moss peat accumulation Peter Convey,1 David W. Hopkins,2,3,4 Stephen J. Roberts1 & Andrew N. Tyler3 1 British Antarctic Survey, National Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK 2 Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK 3 Environmental Radioactivity Laboratory, School of Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK 4 School of Life Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK Keywords Abstract Antarctic plants; distribution limits; peat accumulation; dating. The ecosystems of the western Antarctic Peninsula, experiencing amongst the most rapid trends of regional climate warming worldwide, are important ‘‘early Correspondence warning’’ indicators for responses expected in more complex systems else- Peter Convey, British Antarctic Survey, where. Central among responses attributed to this regional warming are National Environment Research Council, widely reported population and range expansions of the two native Antarctic High Cross, Madingley Road, Cambridge flowering plants, Deschampsia antarctica and Colobanthus quitensis. However, CB3 0ET, UK. E-mail: [email protected] confirmation of the predictions of range expansion requires baseline knowl- edge of species distributions. We report a significant southwards and westwards extension of the known natural distributions of both plant species in this region, along with several range extensions in an unusual moss community, based on a new survey work in a previously unexamined and un-named low altitude peninsula at 69822.0?S71850.7?W in Lazarev Bay, north-west Alexander Island, southern Antarctic Peninsula. These plant species therefore have a significantly larger natural range in the Antarctic than previously thought. -
A Guide to Frequent and Typical Plant Communities of the European Alps
- Alpine Ecology and Environments A guide to frequent and typical plant communities of the European Alps Guide to the virtual excursion in lesson B1 (Alpine plant biodiversity) Peter M. Kammer and Adrian Möhl (illustrations) – Alpine Ecology and Environments B1 – Alpine plant biodiversity Preface This guide provides an overview over the most frequent, widely distributed, and characteristic plant communities of the European Alps; each of them occurring under different growth conditions. It serves as the basic document for the virtual excursion offered in lesson B1 (Alpine plant biodiversity) of the ALPECOLe course. Naturally, the guide can also be helpful for a real excursion in the field! By following the road map, that begins on page 3, you can determine the plant community you are looking at. Communities you have to know for the final test are indicated with bold frames in the road maps. On the portrait sheets you will find a short description of each plant community. Here, the names of communities you should know are underlined. The portrait sheets are structured as follows: • After the English name of the community the corresponding phytosociological units are in- dicated, i.e. the association (Ass.) and/or the alliance (All.). The names of the units follow El- lenberg (1996) and Grabherr & Mucina (1993). • The paragraph “site characteristics” provides information on the altitudinal occurrence of the community, its topographical situation, the types of substrata, specific climate conditions, the duration of snow-cover, as well as on the nature of the soil. Where appropriate, specifications on the agricultural management form are given. • In the section “stand characteristics” the horizontal and vertical structure of the community is described. -
Phyton, Annales Rei Botanicae, Horn
ZOBODAT - www.zobodat.at Zoologisch Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Litera ure Zeitschrift/Jour al: Phyton, Annales Rei Botanicae, Horn Jahr/Year: 1997 Band/Volume: 37_1 Autor(en)/Author(s): Boscaiu Monica, Marhold Karol, Ehrendorfer Friedrich Artikel/Article: The Cerastium alpinum Group (Caryophyllaceae) in the High Mountains of Poland and Slovakia. 1-17 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at PHYTON ANNALES REI BOTANICAE VOL. 37, FASC. 1 PAG. 1-160 10. 9. 1997 Phyton (Horn, Austria) Vol. 37 Fasc. i 1-17 10. 9. 1997 The Cerastium alpinum Group (Caryophyllaceae) in the High Mountains of Poland and Slovakia By Monica BOSCAIU *), Karol MARHOLD **) and Friedrich EHRENDORFER ***) Received November 6, 1996 Key words: Caryophyllaceae, Cerastium alpinum, Cerastium eriophorum. - Distribution, karyology, phytocoenology, taxonomy. - Flora of Poland and Slovakia. Summary BO^CAIUM., MAEHOLDK. & EHRENDORFER F. 1997. The Cerastium alpinum group (Caryophyllaceae) in the high mountains of Poland and Slovakia. - Phyton (Horn, Austria) 37 (1): 1-17. - English with German summary. The Cerastium alpinum group is represented in the Polish and Slovakian West Carpathians by the two closely related species, i.e., Cerastium alpinum L. (2n = 72) and C. eriophorum KIT. (2n = 36). While C. alpinum is confined to a local area on the *) Dr. Monica BOSCAIU, Institut für Botanik der Universität Wien, Rennweg 14, A-1030 Wien, Austria **) Dr. Karol MARHOLD, Institute of Botany, Slovak Academy of Sciences, Dübravskä cesta 14, SK-842 23 Bratislava, Slovak Republic ***) em. Univ. Prof. Dr. Friedrich EHRENDORFER, Österreichische Akademie der Wissenschaften und Institut für Botanik der Universität Wien, Renn weg 14, A-1030 Wien, Austria ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Slovakian and Polish side of Mt. -
Co-Extinction of Mutualistic Species – an Analysis of Ornithophilous Angiosperms in New Zealand
DEPARTMENT OF BIOLOGICAL AND ENVIRONMENTAL SCIENCES CO-EXTINCTION OF MUTUALISTIC SPECIES An analysis of ornithophilous angiosperms in New Zealand Sandra Palmqvist Degree project for Master of Science (120 hec) with a major in Environmental Science ES2500 Examination Course in Environmental Science, 30 hec Second cycle Semester/year: Spring 2021 Supervisor: Søren Faurby - Department of Biological & Environmental Sciences Examiner: Johan Uddling - Department of Biological & Environmental Sciences “Tui. Adult feeding on flax nectar, showing pollen rubbing onto forehead. Dunedin, December 2008. Image © Craig McKenzie by Craig McKenzie.” http://nzbirdsonline.org.nz/sites/all/files/1200543Tui2.jpg Table of Contents Abstract: Co-extinction of mutualistic species – An analysis of ornithophilous angiosperms in New Zealand ..................................................................................................... 1 Populärvetenskaplig sammanfattning: Samutrotning av mutualistiska arter – En analys av fågelpollinerade angiospermer i New Zealand ................................................................... 3 1. Introduction ............................................................................................................................... 5 2. Material and methods ............................................................................................................... 7 2.1 List of plant species, flower colours and conservation status ....................................... 7 2.1.1 Flower Colours ............................................................................................................. -
From Cacti to Carnivores: Improved Phylotranscriptomic Sampling And
Article Type: Special Issue Article RESEARCH ARTICLE INVITED SPECIAL ARTICLE For the Special Issue: Using and Navigating the Plant Tree of Life Short Title: Walker et al.—Phylotranscriptomic analysis of Caryophyllales From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales Joseph F. Walker1,13, Ya Yang2, Tao Feng3, Alfonso Timoneda3, Jessica Mikenas4,5, Vera Hutchison4, Caroline Edwards4, Ning Wang1, Sonia Ahluwalia1, Julia Olivieri4,6, Nathanael Walker-Hale7, Lucas C. Majure8, Raúl Puente8, Gudrun Kadereit9,10, Maximilian Lauterbach9,10, Urs Eggli11, Hilda Flores-Olvera12, Helga Ochoterena12, Samuel F. Brockington3, Michael J. Moore,4 and Stephen A. Smith1,13 Manuscript received 13 October 2017; revision accepted 4 January 2018. 1 Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048 USA 2 Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108 USA 3 Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK 4 Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, Oberlin, OH 44074-1097 USA 5 Current address: USGS Canyonlands Research Station, Southwest Biological Science Center, 2290 S West Resource Blvd, Moab, UT 84532 USA 6 Institute of Computational and Mathematical Engineering (ICME), Stanford University, 475 Author Manuscript Via Ortega, Suite B060, Stanford, CA, 94305-4042 USA This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. -
Diversity and Origin of the Central Mexican Alpine Flora
diversity Article Diversity and Origin of the Central Mexican Alpine Flora Victor W. Steinmann 1, Libertad Arredondo-Amezcua 2, Rodrigo Alejandro Hernández-Cárdenas 3 and Yocupitzia Ramírez-Amezcua 2,* 1 Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Del. Sta. Rosa Jáuregui, Querétaro 76230, Mexico; [email protected] or [email protected] 2 Private Practice, Pátzcuaro, Michoacán 61600, Mexico; [email protected] 3 Herbario Metropolitano, División de Ciencias Biológicas y de la Salud, Departamento de Biología, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco #186, Colonia Vicentina, Iztapalapa, Ciudad de México 09340, Mexico; [email protected] * Correspondence: [email protected] Abstract: Alpine vegetation is scarce in central Mexico (≈150 km2) and occurs on the 11 highest peaks of the Trans-Mexican Volcanic Belt (TMVB). Timberline occurs at (3700) 3900 m, and at 4750 m vascular plants cease to exist. The alpine vascular flora comprises 237 species from 46 families and 130 genera. Asteraceae (44), Poaceae (42), and Caryophyllaceae (21) possess 45% of the species; none of the remaining families have more than 10 species. Four species are strict endemics, and eight others are near endemics. Thirteen species are restricted to alpine vegetation but also occur outside the study area. Seventy-seven species are endemic to Mexico, 35 of which are endemic to the TMVB. In terms of biogeography, the strongest affinities are with Central or South America. Fifteen species are also native to the Old World. Size of the alpine area seems to not be the determining factor for its floristic diversity. Instead, the time since and extent of the last volcanic activity, in addition to the distance from other alpine islands, appear to be important factors affecting diversity.