Linear Skin Defects with Multiple Congenital Anomalies (LSDMCA): an Unconventional Mitochondrial Disorder
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
National Study of Microphthalmia, Anophthalmia, and Coloboma (MAC
16 ORIGINAL ARTICLE J Med Genet: first published as 10.1136/jmg.39.1.16 on 1 January 2002. Downloaded from National study of microphthalmia, anophthalmia, and coloboma (MAC) in Scotland: investigation of genetic aetiology D Morrison, D FitzPatrick, I Hanson, K Williamson, V van Heyningen, B Fleck, I Jones, J Chalmers, H Campbell ............................................................................................................................. J Med Genet 2002;39:16–22 We report an epidemiological and genetic study attempting complete ascertainment of subjects with microphthalmia, anophthalmia, and coloboma (MAC) born in Scotland during a 16 year period beginning on 1 January 1981. A total of 198 cases were confirmed giving a minimum live birth preva- lence of 19 per 100 000. One hundred and twenty-two MAC cases (61.6%) from 115 different fami- See end of article for lies were clinically examined and detailed pregnancy, medical, and family histories obtained. A authors’ affiliations simple, rational, and apparently robust classification of the eye phenotype was developed based on ....................... the presence or absence of a defect in closure of the optic (choroidal) fissure. A total of 85/122 Correspondence to: (69.7%) of cases had optic fissure closure defects (OFCD), 12/122 (9.8%) had non-OFCD, and Dr D FitzPatrick, MRC 25/122 (20.5%) had defects that were unclassifiable owing to the severity of the corneal or anterior Human Genetics Unit, chamber abnormality. Segregation analysis assuming single and multiple incomplete ascertainment, Western General Hospital, respectively, returned a sib recurrence risk of 6% and 10% in the whole group and 8.1% and 13.3% Edinburgh EH4 2XU, UK; in the OFCD subgroup. -
Sensitivity to Saccharomyces Cerevisiae (Coxsb/Hypoxlc Gee/Aerobk Repression/High Mobiity Group Box) JAMES R
Proc. Nati. Acad. Sci. USA Vol. 91, pp. 7345-7349, July 1994 Genetics The ORDI gene encodes a transcription factor involved in oxygen regulation and is identical to IXR1, a gene that confers cisplatin sensitivity to Saccharomyces cerevisiae (COXSb/hypoxlc gee/aerobk repressIon/hIgh mobiity group box) JAMES R. LAMBERT, VIRGINIA W. BILANCHONE, AND MICHAEL G. CUMSKY* Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92717 Communicated by Stephen J. Lippard, March 18, 1994 (receivedfor review December 23, 1993) ABSTRACT The yeast COX5a and COXSb genes encode gen-dependent processes (respiration, sterol synthesis, oxida- isoforms of subunit Va of the mitochondrial inner membrane tive damage repair), and several, like the COXS genes, exist as protein complex cytochrome c oxidase. These genes have been pairs inversely regulated by oxygen and heme (8, 9). shown to be inversely regulated at the level oftranscription by Several upstream elements that regulate the expression of oxygen, which functions through the metabolic coeffector the COX5b gene have been identified (5). These include two heme. In earlier studies we identified several regulatory ele- sites of positive control (activation elements or UASs) and ments that control tnscriptional activation and aerobic re- three sites ofnegative control (repression elements or URSs) pression of one of these genes, COX5b. Here, we report the that mediate aerobic repression. Two of the repression ele- isolation of trans-acting mutants that are defective in the ments contain the consensus sequence ATTGTTCT, which aerobic repression of COXSb transcription. The mutants fall is found upstream of most hypoxic genes and appears to be into two complementation groups. -
Androgen Receptor Interacting Proteins and Coregulators Table
ANDROGEN RECEPTOR INTERACTING PROTEINS AND COREGULATORS TABLE Compiled by: Lenore K. Beitel, Ph.D. Lady Davis Institute for Medical Research 3755 Cote Ste Catherine Rd, Montreal, Quebec H3T 1E2 Canada Telephone: 514-340-8260 Fax: 514-340-7502 E-Mail: [email protected] Internet: http://androgendb.mcgill.ca Date of this version: 2010-08-03 (includes articles published as of 2009-12-31) Table Legend: Gene: Official symbol with hyperlink to NCBI Entrez Gene entry Protein: Protein name Preferred Name: NCBI Entrez Gene preferred name and alternate names Function: General protein function, categorized as in Heemers HV and Tindall DJ. Endocrine Reviews 28: 778-808, 2007. Coregulator: CoA, coactivator; coR, corepressor; -, not reported/no effect Interactn: Type of interaction. Direct, interacts directly with androgen receptor (AR); indirect, indirect interaction; -, not reported Domain: Interacts with specified AR domain. FL-AR, full-length AR; NTD, N-terminal domain; DBD, DNA-binding domain; h, hinge; LBD, ligand-binding domain; C-term, C-terminal; -, not reported References: Selected references with hyperlink to PubMed abstract. Note: Due to space limitations, all references for each AR-interacting protein/coregulator could not be cited. The reader is advised to consult PubMed for additional references. Also known as: Alternate gene names Gene Protein Preferred Name Function Coregulator Interactn Domain References Also known as AATF AATF/Che-1 apoptosis cell cycle coA direct FL-AR Leister P et al. Signal Transduction 3:17-25, 2003 DED; CHE1; antagonizing regulator Burgdorf S et al. J Biol Chem 279:17524-17534, 2004 CHE-1; AATF transcription factor ACTB actin, beta actin, cytoplasmic 1; cytoskeletal coA - - Ting HJ et al. -
Gene Expression Profiling of Corpus Luteum Reveals the Importance Of
bioRxiv preprint doi: https://doi.org/10.1101/673558; this version posted February 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Gene expression profiling of corpus luteum reveals the 2 importance of immune system during early pregnancy in 3 domestic sheep. 4 Kisun Pokharel1, Jaana Peippo2 Melak Weldenegodguad1, Mervi Honkatukia2, Meng-Hua Li3*, Juha 5 Kantanen1* 6 1 Natural Resources Institute Finland (Luke), Jokioinen, Finland 7 2 Nordgen – The Nordic Genetic Resources Center, Ås, Norway 8 3 College of Animal Science and Technology, China Agriculture University, Beijing, China 9 * Correspondence: MHL, [email protected]; JK, [email protected] 10 Abstract: The majority of pregnancy loss in ruminants occurs during the preimplantation stage, which is thus 11 the most critical period determining reproductive success. While ovulation rate is the major determinant of 12 litter size in sheep, interactions among the conceptus, corpus luteum and endometrium are essential for 13 pregnancy success. Here, we performed a comparative transcriptome study by sequencing total mRNA from 14 corpus luteum (CL) collected during the preimplantation stage of pregnancy in Finnsheep, Texel and F1 15 crosses, and mapping the RNA-Seq reads to the latest Rambouillet reference genome. A total of 21,287 genes 16 were expressed in our dataset. Highly expressed autosomal genes in the CL were associated with biological 17 processes such as progesterone formation (STAR, CYP11A1, and HSD3B1) and embryo implantation (eg. -
Aplicación De La Biología De Sistemas Al Estudio De La Malaria Y Búsqueda De Biomarcadores Y Dianas Terapéuticas
Aplicación de la biología de sistemas al estudio de la malaria y búsqueda de biomarcadores y dianas terapéuticas Autora: Mireia Ferrer Almirall Máster en Bioinformática y Bioestadística Area 1-Bioinformática farmacéutica Tutores: Melchor Sánchez Martínez y Alex Sánchez Pla Profesor responsable de la asignatura: Carles Ventura Royo 02/01/2019 Esta obra está sujeta a una licencia de Reconocimiento-NoComercial- SinObraDerivada 3.0 España de Creative Commons FICHA DEL TRABAJO FINAL Aplicación de la biología de sistemas al Título del trabajo: estudio de la malaria y búsqueda de biomarcadores y dianas terapéuticas Nombre del autor: Mireia Ferrer Almirall Melchor Sánchez Martínez y Nombre del consultor/a: Alex Sánchez Pla Nombre del PRA: Carles Ventura Royo Fecha de entrega (mm/aaaa): 01/2019 Titulación: Máster en Bioinformática y Bioestadística Área del Trabajo Final: 1-Bioinformática farmacéutica Idioma del trabajo: castellano Malaria, Biología-de-sistemas, Palabras clave dianas-terapéuticas Resumen del Trabajo (máximo 250 palabras): Con la finalidad, contexto de aplicación, metodología, resultados i conclusiones del trabajo. La finalidad de este trabajo es aplicar herramientas de biología de sistemas para investigar los mecanismos implicados en la infección por el parásito de la malaria e identificar posibles biomarcadores y dianas terapéuticas. Se ha partido de una serie temporal de datos de microarrays del bazo de ratones infectados con dos cepas del parásito (NL y L) para determinar los genes que se encuentran diferencialmente expresados (DEG) respecto a ratones control. A partir de las listas de DEG obtenidas, se han utilizado herramientas de biología de sistemas en combinación con análisis de significación biológica para obtener una visión integrada de los procesos biológicos que se encuentran alterados en la enfermedad e identificar posibles biomarcadores/dianas terapéuticas. -
551978V2.Full.Pdf
bioRxiv preprint doi: https://doi.org/10.1101/551978; this version posted February 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A high-resolution, chromosome-assigned Komodo dragon genome reveals adaptations in the 2 cardiovascular, muscular, and chemosensory systems of monitor lizards 3 4 Abigail L. Lind1, Yvonne Y.Y. Lai2, Yulia Mostovoy2, Alisha K. Holloway1, Alessio Iannucci3, Angel 5 C.Y. Mak2, Marco Fondi3, Valerio Orlandini3, Walter L. Eckalbar4, Massimo Milan5, Michail 6 Rovatsos6,7, , Ilya G. Kichigin8, Alex I. Makunin8, Martina J. Pokorná6, Marie Altmanová6, Vladimir 7 A. Trifonov8, Elio Schijlen9, Lukáš Kratochvíl6, Renato Fani3, Tim S. Jessop10, Tomaso Patarnello5, 8 James W. Hicks11, Oliver A. Ryder12, Joseph R. Mendelson III13,14, Claudio Ciofi3, Pui-Yan 9 Kwok2,4,15, Katherine S. Pollard1,4,16,17,18, & Benoit G. Bruneau1,2,19 10 11 1. Gladstone Institutes, San Francisco, CA 94158, USA. 12 2. Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA. 13 3. Department of Biology, University of Florence, 50019 Sesto Fiorentino (FI), Italy 14 4. Institute for Human Genetics, University of California, San Francisco, CA 94143, USA. 15 5. Department of Comparative Biomedicine and Food Science, University of Padova, 35020 16 Legnaro (PD), Italy 17 6. Department of Ecology, Charles University, 128 00 Prague, Czech Republic 18 7. Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, 277 21 19 Liběchov, Czech Republic 20 8. -
Low Abundance of the Matrix Arm of Complex I in Mitochondria Predicts Longevity in Mice
ARTICLE Received 24 Jan 2014 | Accepted 9 Apr 2014 | Published 12 May 2014 DOI: 10.1038/ncomms4837 OPEN Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice Satomi Miwa1, Howsun Jow2, Karen Baty3, Amy Johnson1, Rafal Czapiewski1, Gabriele Saretzki1, Achim Treumann3 & Thomas von Zglinicki1 Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity. 1 Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 2 Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 3 Newcastle University Protein and Proteome Analysis, Devonshire Building, Devonshire Terrace, Newcastle upon Tyne NE1 7RU, UK. Correspondence and requests for materials should be addressed to T.v.Z. -
The Role of Genetics Mutations in Genes PORCN, TWIST2, HCCS In
ISSN: 2378-3672 Asadi and Jamali. Int J Immunol Immunother 2019, 6:038 DOI: 10.23937/2378-3672/1410038 Volume 6 | Issue 1 International Journal of Open Access Immunology and Immunotherapy REVIEW ARTICLE The Role of Genetics Mutations in Genes PORCN, TWIST2, HCCS in Goltz Syndrome Shahin Asadi1* and Mahsa Jamali2 Check for updates Division of Medical Genetics and Molecular Pathology Research, Molecular Genetics-IRAN-TABRIZ, Iran *Corresponding author: Shahin Asadi, Division of Medical Genetics and Molecular Pathology Research, Molecular Genetics-IRAN-TABRIZ, Iran are usually formed around the nose, the lips, the anal Abstract holes and the genitals of women with Goltz syndrome. Goltz syndrome (focal skin hypoplasia) is a genetic disorder In addition, papillomas may be present in the throat, that primarily affects the skin, skeletal system, eyes and face. People with Goltz syndrome have birth defects. These especially in the esophagus or larynx, and can cause disorders include very thin skin veins (skin hypoplasia), pink swallowing, respiration or sleep poisoning. The papillo- yellow nodules, subcutaneous fat, lack of upper skin layers mas can be removed if necessary by surgery from the (aplasia cutis), small clusters of superficial skin vessels growing regions. People with Goltz syndrome may have (telangiectasia), and veins in dark skin Or bright. Goltz syndrome is caused by mutation genes PORCN, TWIST2, small and abnormal nails on the toes. In addition, hair in HCCS. the scalp of these people can be weak or fragile or not [2] (Figure 2). Keywords Goltz syndrome, PORCN, TWIST2, HCCS genes, Skin and Many people with Goltz syndrome also have hand Skeletal disorders and foot disorders, including abnormalities such as oligodactyly in fingers and toes, fingers and legs (cin- Generalizations of Goltz Syndrome dactyly) or ecd rhodactyly. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Single-Cell RNA Sequencing Analysis of Human Neural Grafts Revealed Unexpected Cell Type Underlying the Genetic Risk of Parkinson’S Disease
Single-cell RNA Sequencing Analysis of Human Neural Grafts Revealed Unexpected Cell Type Underlying the Genetic Risk of Parkinson’s Disease Yingshan Wang1, Gang Wu2 1 Episcopal High School, 1200 N Quaker Ln, Alexandria, VA, USA, 22302 2 Fujian Sanbo Funeng Brain Hospital; Sanbo Brain Hospital Capital Medical University Abstract Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting more than 6 million patients globally. Though previous studies have proposed several disease-related molecular pathways, how cell-type specific mechanisms contribute to the pathogenesis of PD is still mostly unknown. In this study, we analyzed single-cell RNA sequencing data of human neural grafts transplanted to the midbrains of rat PD models. Specifically, we performed cell-type identification, risk gene screening, and co-expression analysis. Our results revealed the unexpected genetic risk of oligodendrocytes as well as important pathways and transcription factors in PD pathology. The study may provide an overarching framework for understanding the cell non- autonomous effects in PD, inspiring new research hypotheses and therapeutic strategies. Keywords Parkinson’s Disease; Single-cell RNA Sequencing; Oligodendrocytes; Cell Non-autonomous; Co- expression Analysis; Transcription Factors 1 Table of Contents 1. Introduction ................................................................................................................................. 3 2. Methods...................................................................................................................................... -
A Case of Hallermann-Streiff Syndrome with Aphakia
Korean Journal of Pediatrics Vol. 51, No. 6, 2008 DOI : 10.3345/kjp.2008.51.6.646 Case report 1) A case of Hallermann-Streiff syndrome with aphakia Myung Chul Lee, M.D., Im Jeong Choi, M.D., and Jin Wha Jung, M.D. Department of Pediatrics, Maryknoll Medical Center, Busan, Korea = Abstract = Hallermann-Streiff syndrome is a rare disease. Approximately 150 cases have been reported, including 6 cases in Korea. The authors experienced a case of Hallermann-Streiff syndrome in a 6-year-old female with aphakia. The syndrome is charac- terized by a bird-like face, dental abnormalities, hypotrichosis, atrophy of the skin, bilateral microphthalmia, and proportionate dwarfism. A brief review of the literature was conducted. (Korean J Pediatr 2008;51 :646-649) Key Words : Hallermann-Streiff syndrome, Aphakia, Bird-like face age of 40 weeks and her mother’s obstetric history revealed Introduction no record of systemic disease or drug administration. Her parents and only brother showed no specific finding. On Hallermann-Streiff Syndrome is a rare genetic disorder admission, she was 5 years and 7 months old and her that is characterized by bird-like face, dental abnormalities, height was 83.2 cm (less than 3rd percentile) while her hypotrichosis, atrophy of skin, congenital cataracts, bilateral body weight was 13 kg (less than 3rd percentile), showing microphthalmia, and proportionate nanism. It was first pub- a growth disorder. She showed a developmental disorder lished by Aubry in 18931),butthecasewasincomplete.This showing unassisted self-ambulation at the age of 4 years. syndrome was first described completely in 1948 by She had a pointed nose and frontal bossing as well as Hallermann2) and then in 1950 by Streiff3). -
Chemical Reactions, and Cellular Respiration
Chapter 03 Lecture Outline See separate PowerPoint slides for all figures and tables pre- inserted into PowerPoint without notes. Copyright © McGraw-Hill Education. Permission required for reproduction or display. 1 Energy, Chemical Reactions, and Cellular Respiration • All living organisms require energy to – Power muscle – Pump blood – Absorb nutrients – Exchange respiratory gases – Synthesize new molecules – Establish cellular ion concentrations • Glucose broken down through metabolic pathways – Forms ATP, the “energy currency” of cells 2 3.1a Classes of Energy • Energy – Capacity to do work – Two classes of energy o Potential energy—stored energy (energy of position) o Kinetic energy—energy of motion – Both can be converted from one class to the other 3 3.1a Classes of Energy • Potential energy and the plasma membrane – Concentration gradient exists across plasma membrane o Boundary between inside and outside of cell • Potential energy and electron shells – Electrons move from a higher- to lower-energy shell – Kinetic energy can be harnessed to do work • Potential energy must be converted to kinetic energy before it can do work 4 Conversion of Potential Energy to Kinetic Energy Figure 3.1 5 3.1b Forms of Energy • Chemical energy – One form of potential energy – Energy stored in a molecule’s chemical bonds – Most important form of energy in the human body – Used for o Movement o Molecule synthesis o Establishing concentration gradients – Present in all chemical bonds – Released when bonds are broken during reactions 6 3.1b Forms of