Projectplan “Onderzoeksprogramma Berging Van Radioactief Afval"
Total Page:16
File Type:pdf, Size:1020Kb
Hydrological transport in the rock formations surrounding the host rock OPERA-PU-DLT621 Radioactive substances and ionizing radiation are used in medicine, industry, agriculture, research, education and electricity production. This generates radioactive waste. In the Netherlands, this waste is collected, treated and stored by COVRA (Centrale Organisatie Voor Radioactief Afval). After interim storage for a period of at least 100 years radioactive waste is intended for disposal. There is a world-wide scientific and technical consensus that geological disposal represents the safest long-term option for radioactive waste. Geological disposal is emplacement of radioactive waste in deep underground formations. The goal of geological disposal is long-term isolation of radioactive waste from our living environment in order to avoid exposure of future generations to ionising radiation from the waste. OPERA (OnderzoeksProgramma Eindberging Radioactief Afval) is the Dutch research programme on geological disposal of radioactive waste. Within OPERA, researchers of different organisations in different areas of expertise will cooperate on the initial, conditional Safety Cases for the host rocks Boom Clay and Zechstein rock salt. As the radioactive waste disposal process in the Netherlands is at an early, conceptual phase and the previous research programme has ended more than a decade ago, in OPERA a first preliminary or initial safety case will be developed to structure the research necessary for the eventual development of a repository in the Netherlands. The safety case is conditional since only the long-term safety of a generic repository will be assessed. OPERA is financed by the Dutch Ministry of Economic Affairs and the public limited liability company Electriciteits-Produktiemaatschappij Zuid- Nederland (EPZ) and coordinated by COVRA. Further details on OPERA and its outcomes can be accessed at www.covra.nl. This report concerns a study conducted in the framework of OPERA. The conclusions and viewpoints presented in the report are those of the author(s). COVRA may draw modified conclusions, based on additional literature sources and expert opinions. A .pdf version of this document can be downloaded from www.covra.nl OPERA-PU-DLT621 Title: Hydrological transport in the rock formations surrounding the host rock Authors: J.R. Valstar & N. Goorden; Appendix 3 contributed by J.Hart & T.J. Schröder (NRG) Date of publication: August 2017 (Revision 1) Keywords: Groundwater model, travel time, repository, Boom Clay, geological scenarios .............................................................................................................1 Summary ..................................................................................................1 Samenvatting .............................................................................................1 1. Introduction .........................................................................................2 1.1. Background ....................................................................................2 1.2. Objectives ......................................................................................2 1.3. Realization .....................................................................................2 1.4. Explanation contents .........................................................................2 2. Geohydrological model ............................................................................3 2.1. NHI model ......................................................................................3 2.2. Extensions of the groundwater model .....................................................4 2.2.1. Description of the geological formations in the range of the model extension 4 2.2.2. Conceptual model for transport routes ..............................................7 2.2.3. Model schematisation ...................................................................8 2.2.4. Hydraulic conductivity ................................................................ 23 2.2.5. Faults .................................................................................... 27 2.2.6. Boundary conditions ................................................................... 29 2.3. Results ........................................................................................ 29 2.3.1. Hydraulic heads ........................................................................ 29 3. Pathline Analysis ................................................................................. 32 3.1. Starting locations ........................................................................... 32 3.2. Results ........................................................................................ 32 3.3. Selection of pathlines for transport calculations ....................................... 36 3.4. Effect of transversal dispersion and transversal diffusion ............................ 37 4. Scenario calculations ............................................................................ 40 4.1. Scenario descriptions ....................................................................... 40 4.1.1. Normal evolution scenarios .......................................................... 40 4.1.2. Altered evolution scenarios .......................................................... 42 4.2. Model set up and results ................................................................... 43 4.2.1. Scenario 1: Moderate climate (present situation) ................................ 43 4.2.2. Scenario 2: Cold climate without ice cover (permafrost) ....................... 43 4.2.3. Scenario 3: Cold climate with ice cover (glaciation) ............................. 45 4.2.4. Scenario 4: Warm climate ........................................................... 46 4.2.5. Altered evaluation scenarios ......................................................... 49 4.3. Discussion .................................................................................... 54 5. Parameter sensitivity scenarios ................................................................ 56 6. Conclusions and recommendations ............................................................ 60 6.1. Conclusions .................................................................................. 60 6.2. Recommendations .......................................................................... 61 7. References ........................................................................................ 62 8. Addendum ......................................................................................... 63 8.1. Introduction.................................................................................. 63 8.2. Additional explanation and detailed output ............................................ 63 8.2.1. Pathlines ................................................................................ 63 8.2.2. Hydraulic conductivity Boom Clay .................................................. 64 8.2.3. Interfaces Boom Clay – Overburden – Biosphere - Local well ................... 67 8.2.4. Climate scenarios ...................................................................... 71 8.3. Recommendations .......................................................................... 73 8.4. Literature .................................................................................... 73 Appendix 1: description of the geological formations near and below the base of the NHI model .................................................................................................... 74 Appendix 2: Method to calculate the horizontal and vertical hydraulic conductivity ....... 79 Appendix 3: Conceptualization of the PA-model for the Overburden .......................... 83 A3.1 Introduction ................................................................................... 83 A3.2 Elaboration of refinements of the current PA-model for the Overburden ............ 83 A3.2.1 Pathlines .................................................................................. 83 A3.2.2 Dispersion in the Overburden .......................................................... 84 A3.2.3 Flow rates ................................................................................. 85 A3.2.4 Interface Boom Clay - Overburden .................................................... 86 A3.2.5 Interface Overburden - Biosphere ..................................................... 86 A3.2.6 Climate scenarios ........................................................................ 87 A3.3 Conclusions .................................................................................... 88 A3.4 Literature ...................................................................................... 88 Summary For research on the geological disposal of radioactive waste in the Boom Clay, the research program OPERA was set up. In this report, we describe the hydrological transport through the geological formations surrounding the Boom Clay up to the biosphere. The existing groundwater model NHI was extended in the vertical direction to include all relevant geological formations down to and even below the Boom Clay. The amount of nation-wide data for setting up the groundwater model was relativity limited and interpolation, extrapolation and simplifications were needed to obtain all model parameters. Therefore, all model results should be considered as a first estimate only. Disposal of Dutch radioactive waste is not foreseen