Proceedings of the Entomological Society of Washington

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the Entomological Society of Washington PROC. ENTOMOL. SOC. WASH. 92(4). 1990, pp. 649-671 THE ASPHONDYLIA (CECIDOMYIIDAE: DIPTERA) OF CREOSOTE BUSH (LARREA TRIDENTATA) IN NORTH AMERICA Raymond J. Gagne and Gwendolyn L. Waring (RJG) Systematic Entomology Laboratory, PSI, Agricultural Research Service, USDA, Vo U.S. National Museum NHB 168, Washmgton, D.C. 20560, USA; (GLW) Museum of Northern Arizona, Rt. 4, Box 720, Flagstaff, Arizona 86001, USA. Abstract.— ¥\^Xttn species of gall midges of the genus Asphondylia that form complex galls on leaves, stems, or buds of creosote bush are described. Fourteen of the species are new to science, the other is redescribed. One other species that was caught in flight and is similar to the leaf gall makers of Larrea is also redescribed. The Asphondylia spp. on creosote bush appear to be a monophyletic group and are treated as the Asphondylia auripila species group. Key Words: Complex galls, Southwestern desert, gall midges Fifteen distinct kinds of complex galls tion between the southwestern North growing on leaves, stems, and buds of Lar- American and South American deserts. rea tridentata (Sesse & Mocino ex DC.) Cov. Larrea tridentata is the only species oi Lar- (Zygophyllaceae) were found by G. L. War- rea in North America, while four others oc- ing during the course of an ecological study cur in southern South America (Waring of this plant. Each type of gall is formed by 1986). a different species of the genus Asphondylia. Asphondylia is a large, cosmopolitan ge- all of them except one new to science. In nus of 247 described species (Foote 1965, this paper we describe or redescribe these Gagne 1968, Gagne 1973, Gagne in press, gall midges and place them in context with Gagne in prep., Harris 1980, Skuhrava one another and with the rest of the genus. 1986). To date, 67 species have been de- The natural history, ecology, and natural scribed from the Nearctic Region (Gagne in enemies of these flies have been or will be prep.). Almost as many more Nearctic treated separately in Waring (1987), Waring species are known but not yet described and Price ( 1 989a, b), and Waring (in prep- (Gagne 1989). Gagne (1989) listed the de- aration). scribed and undescribed Nearctic species Larrea tridentata, or creosote bush, is a and their hosts and discussed Asphondylia dominant member of southwestern desert in general. A thorough generic analysis of plant communities from Texas to California the tribe (as a supertribe) to which the genus (Mabry et al. 1977, Waring 1986). It is a belongs was done by Mohn (1961). The perennial, evergreen shrub, and one of the Nearctic species of Asphondylia have not most drought-tolerant plants in southwest- been revised since Felt (1916), but recent em United States. Larrea is restricted to the studies were made of a monophyletic group New World and is one ofmany taxa of plants of eight species that occurs on Chenopodi- and animals that show a disjunct distribu- aceae in California (Hawkins et al. 1986) 650 PROCEEDINGS OF THE ENTOMOLOGICAL SOCIETY OF WASHINGTON v: <y' >¥< ^ ^-^^ -r^ 9 Fig. 1 . Stem and bud galls of Larrea Indeniaia formed by Asphondylia spp. Sprig of plant in 1 x , details of X galls in 3 . la: Stem gall of.-l. aunpila. the detail with outer leaves removed to show the mdividual cells beneath; b. stem galls of A. foliosa: c, stem gall of.-l. rosella: d, apical bud gall of.-l. apicata; e, node galls of.-l. butlata; f flower gall of A. Jlorea; g, stem galls of .4. resinosa. the resin of one of the enlarged pair removed to show detail. and oi Asphondylia websteri Felt, an appar- species, such as Asphondylia monacha Os- ent generalist known from some Fabaceae ten Sacken and relatives, have black- and and other plants (Gagne and Wuensche white-banded legs and are otherwise cov- 1986, Gagne and Woods 1988). In addition, ered with black scales. Females have a rigid, one of us (RJG) made a survey for this study protrusible, needlelike ovipositor (Figs. 7, of certain characters on all known described 8) with which they insert their eggs into liv- Nearctic species. ing plant tissue. Larvae are generally white Asphondylia adults are between 1-5 mm to yellow, have three instars, and always in length and are relatively robust with cy- occur singly, either taking up the entire gall lindrical antennae, large eyes, and an almost or an individual cell in aggregate galls. The complete covering of scales. They are gen- last instar is robust and has a spatula (Figs. erally brown to dark brown, but some 35^7), a hard, brown to black dermal struc- VOLUME 92, NUMBER 4 651 x Fig. 2. Leaf galls oi Larrea Iridentata formed by Asphondylia spp. Sprig of plant in 1 , details of galls in 3x. 2a: Galls of. 4. harbala; b. galls of.-l. villosa; c, galls of.-l. discalis: d, gall of.-l. siliciila; e, galls of.-l. pilosa; f, gall of.-l. fahalis: g. galls of .-). clavala: h, galls of .4. digilata. ture on the first segment of the thorax. All be relegated to any one of the six species. It species in the genus pupate in the galls. The is redescribed here as a sixteenth species but pupa is also robust, and its integument is not treated further in our discussion of the hard and brown or black. Its head has horns auripila group. of various kinds and dorsally the abdomen Materials and Methods is covered with spines, all of which serve to effect escape from the galls. Galls were collected when fully developed Of the 1 5 species of Asphondylia associ- and were separated by type. Some galls were ated here with as many different kinds of cut open to obtain samples of larvae, which galls on Larrea. Asphondylia auripila Felt were preserved in 70% alcohol. The re- is the only one previously described. One mainder of the galls were isolated in plastic other species, Asphondylia brevicauda Felt, bags with absorbent tissue paper in order to is known from a single female without host rear adult gall midges and parasitoids. The association. That female is similar to those bags were kept at room temperature and out from six kinds of galls on creosote bush but of direct light. After adults had emerged, without associated immature stages cannot they and their pupal exuviae were kept in SOCIETY OF WASHINGTON 652 PROCEEDINGS OF THE ENTOMOLOGICAL dlh. frontal view. 4, Detail of mouthparts 3-9 Adult structures of Asphondvlia spp. 3, Head of .4. clavata, Figs segments '3 genitalia of .4. resmosa. lateral. 7. Abdominal of Fig 5 Detail of mouthparts of .4. harhata. 6. Male A. resmosa. A. resinosa. 9. Fore, mid, and hind tarsal claws, 7 to end of female A. clavata. lateral. 8, Same, VOLUME 92, NUMBER 4 653 Figs. 10-15. Pupal heads of Asphondyhu spp., lateral view on left, ventral on right. 10, 11. .1. aunpila. 12, \3, A. foliosa. 14, 15,^4. resinosa. 70% alcohol. Examples of the galls were kept adult body parts follows that of McAlpine that either in alcohol or dry. et al. ( 1 98 1 ); larval terminology follows For microscopic examination, examples in Gagne (1989). of larvae and adults were mounted on slides The species from Larrea are described in Canada balsam according to the tech- here in a fashion comparable to that of the nique outlined in Gagne (1989). Samples of species on Atriplex in Hawkins et al. ( 1 986) pupae were critical-point dried and placed and of .4. websteri in Gagne and Wuensche on stubs for SEM photos. Terminology of (1986). We believe the Asphondylia spp. on 654 PROCEEDINGS OF THE ENTOMOLOGICAL SOCIETY OF WASHINGTON VOLUME 92, ^^JMBER 4 655 Larrea to be monophyletic, so will refer to terminable in most species because most them collectively here as the Asphondylia available adults were preserved in alcohol auripila group. Because so many characters instead of dry on pins). are common to all the creosote bush species, Head (Figs. 3-5): Antenna: scape broad- a combined description of the group is made est distally, 1.6-1.8 times length pedicel, at the outset to avoid repetition in the in- pedicel about as wide as long; first flagello- dividual descriptions that follow. mere 2.1-2.3 times length of scape, evenly The descriptions and redescriptions of cylindrical. Eye facets close together, hex- these species are in alphabetical order so agonoid. Frons with 5-20 setae per side, they can be easily found, but the plates of variable in number within a species. La- figures treat the species in natural groupings. bellum reduced in size, laterally with 0-4 All types and other material examined are (usually 2-3) setae and setulose, and medi- deposited in the National Museum of Nat- ally with 4-6 short, basiconic setae. Palpus ural History in Washington, D.C. 1 or 2-3 segmented: when 1 segmented, usu- The 14 new species are given adjectival ally elongate spherical, tapering at the apex, names that describe some aspect of their and with 2-5 scattered setae; when 3 seg- galls, either their shape or their position on mented, first segment always short and nar- the plant: apicata = apical; barbata = beard- rower than the second and with 0-3 setae, ed or hairy; buUata = knobby; clavata = and the second and third segments some- clubshaped; digitata = digitate; discalis = times fused or only partly separated, the platelike; fabalis = beanshaped; florea = of second widest and usually shorter than the the flower; foliosa = leafy; rosetta = rosette; third, which tapers to a pointed end; second pilosa = hairy; resinosa = resinous; silicula and third segments each with 2-10, mostly = podlike; villosa = hairy.
Recommended publications
  • Index to Cecidology up to Vol. 31 (2016)
    Index to Cecidology Up to Vol. 31 (2016) This index has been based on the contents of the papers rather than on their actual titles in order to facilitate the finding of papers on particular subjects. The figures following each entry are the year of publication, the volume and, in brackets, the number of the relevant issue. Aberbargoed Grasslands: report of 2011 field meeting 2012 27 (1) Aberrant Plantains 99 14(2) Acacia species galled by Fungi in India 2014 29(2) Acer gall mites (with illustrations) 2013 28(1) Acer galls: felt galls re-visited 2005 20(2) Acer saccharinum – possibly galled by Dasineura aceris new to Britain 2017 32(1) Acer seed midge 2009 24(1) Aceria anceps new to Ireland 2005 20 (1) Aceria geranii from North Wales 1999 14(2) Aceria heteronyx galling twigs of Norway Maple 2014 29(1) Aceria ilicis (gall mite) galling holm oak flowers in Brittany 1997 12(1) In Ireland 2010 25(1) Aceria mites on sycamore 2005 20(2) Aceria populi galling aspen in Scotland 2000 15(2) Aceria pterocaryae new to the British mite fauna 2008 23(2) Aceria rhodiolae galling roseroot 2013 28(1): 2016 31(1) Aceria rhodiolae in West Sutherland 2014 29(1) Aceria tristriata on Walnut 2007 22(2) Acericecis campestre sp. nov. on Field Maple 2004 19(2) Achillea ptarmica (sneezewort) galled by Macrosiphoniella millefolii 1993 8(2) Acorn galls on red oak 2014 29(1) Acorn stalks: peculiar elongation 2002 17(2) Aculops fuchsiae – a fuchsia-galling mite new to Britain 2008 23 (1) Aculus magnirostris new to Ireland 2005 20 (1) Acumyia acericola – the Acer seed
    [Show full text]
  • ISSUE 58, April, 2017
    FLY TIMES ISSUE 58, April, 2017 Stephen D. Gaimari, editor Plant Pest Diagnostics Branch California Department of Food & Agriculture 3294 Meadowview Road Sacramento, California 95832, USA Tel: (916) 262-1131 FAX: (916) 262-1190 Email: [email protected] Welcome to the latest issue of Fly Times! As usual, I thank everyone for sending in such interesting articles. I hope you all enjoy reading it as much as I enjoyed putting it together. Please let me encourage all of you to consider contributing articles that may be of interest to the Diptera community for the next issue. Fly Times offers a great forum to report on your research activities and to make requests for taxa being studied, as well as to report interesting observations about flies, to discuss new and improved methods, to advertise opportunities for dipterists, to report on or announce meetings relevant to the community, etc., with all the associated digital images you wish to provide. This is also a great place to report on your interesting (and hopefully fruitful) collecting activities! Really anything fly-related is considered. And of course, thanks very much to Chris Borkent for again assembling the list of Diptera citations since the last Fly Times! The electronic version of the Fly Times continues to be hosted on the North American Dipterists Society website at http://www.nadsdiptera.org/News/FlyTimes/Flyhome.htm. For this issue, I want to again thank all the contributors for sending me such great articles! Feel free to share your opinions or provide ideas on how to improve the newsletter.
    [Show full text]
  • Scope: Munis Entomology & Zoology Publishes a Wide Variety of Papers
    _____________Mun. Ent. Zool. Vol. 10, No. 1, January 2015__________ 75 PARASITOIDS COMPLEX IN SUMMER POPULATIONS OF ASPHONDYLIA PUNICA MARCHAL, 1897 (DIPTERA: CECIDOMYIIDAE) ON THE MEDITERRANEAN SALTBUSH, ATRIPLEX HALIMUS L. (CHENOPODIACEAE) IN EGYPT, WITH DESCRIPTIONS OF NEW SPECIES FROM EUPELMIDAE AND EULOPHIDAE (HYMENOPTERA: CHALCIDOIDEA) Mikdat Doğanlar* and Ayman Khamis Elsayed** * Mikdat DOĞANLAR, Honorary Professor, Research Station of Biological Control, Yüreğir, Adana, TURKEY. E-mail: [email protected] ** Department of Applied Entomology, Faculty of Agriculture, Alexandria University, EGYPT. E-mail: [email protected] [Doğanlar, M. & Elsayed, A. K. 2015. Parasitoids complex in summer populations of Asphondylia punica Marchal, 1897 (Diptera: Cecidomyiidae) on the Mediterranean Saltbush, Atriplex halimus L. (Chenopodiaceae) in Egypt, with descriptions of new species from Eupelmidae and Eulophidae (Hymenoptera: Chalcidoidea). Munis Entomology & Zoology, 10 (1): 75-85] ABSTRACT: Parasitoids complex in summer populations of Asphondylia punica Marchal, (Diptera: Cecidomyiidae) on the Mediterranean Saltbush, Atriplex halimus L. (Chenopodiaceae) in Egypt was studied. The hymenopterous parasitoids are: Eupelmidae: Neanastatus misirensis n. sp.; Eulophidae: Kolopterna aymani Doğanlar, 2013, Aprostocetus alexandrianensis n. sp., Neochrysocharis formosa (Westwood, 1833); Eurytomidae: Eurytoma dentata Mayr, 1878; Ormyridae: Ormyrus monegricus Askew, 1994; Torymidae: Microtontomerus annulatus (Spinola, 1808) and Platygasteridae (Proctotripoidea): Platygaster sp. The descriptions and biological data of each species were given. KEY WORDS: Parasitoids, Asphondylia punica, Atriplex halimus, Egypt. The larvae of Asphondylia punica Marchal, 1897 (Diptera: Cecidomyiidae) cause large galls up 40 mm long on the stems and flower buds Mediterranean Saltbush, Atriplex halimus L. (Chenopodiaceae) in the Mediterranean region (Tavares, 1931; Skuhrava et al., 1993; Skuhravy & Skuhrava, 1999; Skuhrava et al., 2006; Elsayed et al., 2014, in preparation).
    [Show full text]
  • Diptera: Cecidomyiidae) Associated with Magnolia Kobus DC
    Biodiversity Data Journal 9: e68016 doi: 10.3897/BDJ.9.e68016 Taxonomic Paper A new species of Pseudasphondylia (Diptera: Cecidomyiidae) associated with Magnolia kobus DC. var. borealis Sarg. (Magnoliaceae) in Japan Hiroki Matsuda‡,§, Ayman Khamis Elsayed|, Wanggyu Kim ¶, Satoshi Yamauchi#, Martin Libra ¤,«, Naoto Kamata»,˄ ‡,Junichi˅ Yukawa , Makoto Tokuda ‡ Laboratory of Systems Ecology, Faculty of Agriculture, Saga University, Saga, Japan § IDEA consultants, inc., Yokohama, Japan | The Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan ¶ Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea # Shinjo, Aomori, Japan ¤ Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic « Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic » The University of Tokyo Hokkaido Forest, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Furano, Japan ˄ Entomological Laboratory, Faculty of Agriculture, Kyushu University, Fukuoka, Japan ˅ The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan Corresponding author: Makoto Tokuda ([email protected]) Academic editor: AJ Fleming Received: 28 Apr 2021 | Accepted: 28 May 2021 | Published: 17 Jun 2021 Citation: Matsuda H, Elsayed AK, Kim W, Yamauchi S, Libra M, Kamata N, Yukawa J, Tokuda M (2021) A new species of Pseudasphondylia (Diptera: Cecidomyiidae) associated with Magnolia kobus DC. var. borealis Sarg. (Magnoliaceae) in Japan. Biodiversity Data Journal 9: e68016. https://doi.org/10.3897/BDJ.9.e68016 ZooBank: urn:lsid:zoobank.org:pub:64D5D12E-DBCE-429F-B4E1-D398EB1C60AA Abstract Background A gall midge species (Diptera: Cecidomyiidae) inducing leaf bud galls on Magnolia kobus DC. var.
    [Show full text]
  • Asphondylia Fructicola, a New Species of Cecidomyiidae (Diptera) Associatedmaia Et Al
    166Asphondylia fructicola, a new species of Cecidomyiidae (Diptera) associatedMaia et al. with Solanum sp. (Solanaceae) from Brazil Valéria Cid Maia1,2, Jean Carlos Santos3 & G. Wilson Fernandes3 1Museu Nacional, Depto. Entomologia, Quinta da Boa Vista, São Cristóvão 20940-040 Rio de Janeiro-RJ, Brazil. [email protected] 2Bolsista de Produtividade do CNPq 3Ecologia Evolutiva & Biodiversidade/DBG, ICB/Universidade Federal de Minas Gerais. Caixa Postal 486, 30161-970 Belo Horizonte-MG, Brazil. ABSTRACT. Asphondylia fructicola, a new species of Cecidomyiidae (Diptera) associated with Solanum sp. (Solanaceae) from Brazil. Asphondylia fructicola sp. nov. is described and illustrated on the basis of the larva, pupa, male, female, and gall. This species induces galls on fruits of Solanum sp. (Solanaceae) in Amazonia, Brazil. KEYWORDS. Asphondylia; insect galls; taxonomy. RESUMO. Asphondylia fructicola, uma nova espécie de Cecidomyiidae (Diptera) associada com Solanum sp. (Solanaceae) do Brasil. Asphondylia fructicola sp. nov. é descrita e ilustrada com base na larva, pupa, macho, fêmea e galha. Essa espécie induz galhas nos frutos de Solanum sp. (Solanaceae) na Amazônia, Brasil. PALAVRAS-CHAVE. Asphondylia; galhas de insetos; taxonomia. Recent studies have shown that the Amazonian tropical plant: Solanum sturtianum); and A. trabuti Marchal, 1896 rain forest is rich in gall inducing insects (Julião et al. 2005), (distr.: Algeria and Italy; host plant: Solanum tuberosum). hence contradicting previous accounts on the galls in the In the Neotropical region, only Asphondylia cestri Möhn, region (Price et al. 1998). Otherwise, the knowledge on these 1959 is associated with Solanaceae, but it induces galls on species taxonomy, phylogeny, and host affiliations is poorly Cestrum nocturnum (Raat Ki Rani).
    [Show full text]
  • Fly Times Issue 64
    FLY TIMES ISSUE 64, Spring, 2020 Stephen D. Gaimari, editor Plant Pest Diagnostics Branch California Department of Food & Agriculture 3294 Meadowview Road Sacramento, California 95832, USA Tel: (916) 738-6671 FAX: (916) 262-1190 Email: [email protected] Welcome to the latest issue of Fly Times! This issue is brought to you during the Covid-19 pandemic, with many of you likely cooped up at home, with insect collections worldwide closed for business! Perhaps for this reason this issue is pretty heavy, not just with articles but with images. There were many submissions to the Flies are Amazing! section and the Dipterists Lairs! I hope you enjoy them! Just to touch on an error I made in the Fall issue’s introduction… In outlining the change to “Spring” and “Fall” issues, instead of April and October issues, I said “But rest assured, I WILL NOT produce Fall issues after 20 December! Nor Spring issues after 20 March!” But of course I meant no Spring issues after 20 June! Instead of hitting the end of spring, I used the beginning. Oh well… Thank you to everyone for sending in such interesting articles! I encourage all of you to consider contributing articles that may be of interest to the Diptera community, or for larger manuscripts, the Fly Times Supplement series. Fly Times offers a great forum to report on research activities, to make specimen requests, to report interesting observations about flies or new and improved methods, to advertise opportunities for dipterists, to report on or announce meetings relevant to the community, etc., with all the digital images you wish to provide.
    [Show full text]
  • Taxonomy and Phylogeny of the Asphondylia
    Bucknell University From the SelectedWorks of Warren G. Abrahamson, II 2015 Taxonomy and phylogeny of the Asphondylia species (Diptera: Cecidomyiidae) of North American goldenrods: challenging morphology, complex host associations, and cryptic speciation Netta Dorchin, Tel Aviv University Jeffrey B. Joy, Simon Fraser University Lukas K. Hilke, University of Bonn Michael J. Wise, Roanoke College Warren G. Abrahamson, II, Bucknell University Available at: https://works.bepress.com/warren_abrahamson/154/ bs_bs_banner Zoological Journal of the Linnean Society, 2015, 174, 265–304. With 105 figures Taxonomy and phylogeny of the Asphondylia species (Diptera: Cecidomyiidae) of North American goldenrods: challenging morphology, complex host associations, and cryptic speciation NETTA DORCHIN1*, JEFFREY B. JOY2, LUKAS K. HILKE3, MICHAEL J. WISE4 and WARREN G. ABRAHAMSON5 1Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel 2Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6 3University of Bonn, Regina-Pacis-Weg 3, D-53113 Bonn, Germany 4Department of Biology, Roanoke College, Salem VA 24153, USA 5Department of Biology, Bucknell University, Lewisburg, PA 17837, USA Received 12 October 2014; revised 29 November 2014; accepted for publication 15 December 2014 Reproductive isolation and speciation in herbivorous insects may be accomplished via shifts between host-plant resources: either plant species or plant organs. The intimate association between gall-inducing insects and their host plants makes them particularly useful models in the study of speciation. North American goldenrods (Asteraceae: Solidago and Euthamia) support a rich fauna of gall-inducing insects. Although several of these insects have been the subject of studies focusing on speciation and tritrophic interactions, others remain unstudied and undescribed.
    [Show full text]
  • Are Gall Midge Species (Diptera, Cecidomyiidae) Host-Plant Specialists? 367
    Are gallAre midge gall species midge (Diptera, species Cecidomyiidae) (Diptera, host-plant Cecidomyiidae) specialists? host-plant specialists? 365 Marco Antonio A. Carneiro1, Cristina S. A. Branco2, Carlos E. D. Braga2, Emmanuel D. Almada2, Marina B. M. Costa2, Valéria C. Maia3 & Geraldo Wilson Fernandes2 1Laboratório Entomologia Ecológica, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, 35400-000 Ouro Preto-MG, Brazil. [email protected] 2Ecologia Evolutiva & Biodiversidade, Universidade Federal de Minas Gerais; Caixa Postal 486, 30161-970 Belo Horizonte-MG, Brazil. [email protected], [email protected], [email protected], [email protected], [email protected] 3Museu Nacional, Quinta da Boa Vista, São Cristóvão, 20940-040 Rio de Janeiro-RJ, Brazil. [email protected] ABSTRACT. Are gall midge species (Diptera, Cecidomyiidae) host plant specialists? Despite the speciose fauna of gall- inducing insects in the Neotropical region, little is known about their taxonomy. On the other hand, gall morphotypes associated with host species have been extensively used as a surrogate of the inducer species worldwide. This study reviewed the described gall midges and their galls to test the generalization on the use of gall morphotypes as surrogates of gall midge species in the Brazilian fauna. We compiled taxonomic and biological data for 196 gall midge species recorded on 128 host plant species. Ninety two percent of those species were monophagous, inducing galls on a single host plant species, whereas only 5.6% species were oligophagous, inducing galls on more than one congeneric host plant species. Only four species induced galls on more than one host plant genus.
    [Show full text]
  • Native American Plant Hosts of Asphondylia Websteri (Diptera: Cecidomyiidae)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA Systematic Entomology Laboratory Entomology Collections, Miscellaneous 1988 Native American Plant Hosts of Asphondylia websteri (Diptera: Cecidomyiidae) Raymond J. Gagne Systematic Entomology Laboratory, BBII, USDA-ARS William M. Woods Western Australia Department of Agriculture, 3 Jarrah Road West, South Perth 6151, Western Australia, Australia Follow this and additional works at: https://digitalcommons.unl.edu/systentomologyusda Part of the Entomology Commons Gagne, Raymond J. and Woods, William M., "Native American Plant Hosts of Asphondylia websteri (Diptera: Cecidomyiidae)" (1988). USDA Systematic Entomology Laboratory. 16. https://digitalcommons.unl.edu/systentomologyusda/16 This Article is brought to you for free and open access by the Entomology Collections, Miscellaneous at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA Systematic Entomology Laboratory by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Native American Plant Hosts of Asphondylia websteri (Diptera: Cecidomyiidae) RA YMOND J. GAGNE! A~D WILLIAM M. WOODS2 Ann. Entomol. Soc. Am. 81(3): 447-448 (1988) ABSTRACT Asphondylia websteri Felt is reported for the first time from native American hosts, Parkinsonia and jojoba. Previously, this apparently native American gall midge was known only from alfalfa and guar, two species exotic to North America. Such a wide disparity of hosts is otherwise unknown for North American Asphondylia spp. This discovery excludes A. websteri from consideration as a biocontrol agent of Parkinsonia aculeata in Australia. KEY WORDS Insecta, galls, biocontrol, parasite Asphondylia websteri Felt, until now known only of 50 flower buds collected on 31 August in Tucson from exotic plant hosts in the southwestern United showed 26 infested with A.
    [Show full text]
  • Fly Times, 50 1
    FLY TIMES ISSUE 50, April, 2013 Stephen D. Gaimari, editor Plant Pest Diagnostics Branch California Department of Food & Agriculture 3294 Meadowview Road Sacramento, California 95832, USA Tel: (916) 262-1131 FAX: (916) 262-1190 Email: [email protected] Welcome to the latest issue of Fly Times! I'm not sure whether to celebrate the 50th issue of the newsletter, or hold off until the next issue, which will represent 25 years of Fly Times! I choose to do both! (Celebration ensues...). I thank everyone for sending in such interesting articles, as always – I hope you all enjoy reading it as much as I enjoyed putting it together! Please let me encourage all of you to consider contributing articles that may be of interest to the Diptera community for the next issue. Fly Times offers a great forum to report on your research activities and to make requests for taxa being studied, as well as to report interesting observations about flies, to discuss new and improved methods, to advertise opportunities for dipterists, to report on or announce meetings relevant to the community, etc., with all the associated digital images you wish to provide. This is also a great place to report on your interesting (and hopefully fruitful) collecting activities! Really anything fly-related is considered. I also want to thank Chris Borkent for again assembling the list of Diptera citations since the last Fly Times, and to announce that Chris will be taking on this responsibility from here on, at least until he wants to stop! The electronic version of the Fly Times continues to be hosted on the North American Dipterists Society website at http://www.nadsdiptera.org/News/FlyTimes/Flyhome.htm.
    [Show full text]
  • Invertebrates
    Pennsylvania’s Comprehensive Wildlife Conservation Strategy Invertebrates Version 1.1 Prepared by John E. Rawlins Carnegie Museum of Natural History Section of Invertebrate Zoology January 12, 2007 Cover photographs (top to bottom): Speyeria cybele, great spangled fritillary (Lepidoptera: Nymphalidae) (Rank: S5G5) Alaus oculatus., eyed elater (Coleoptera: Elateridae)(Rank: S5G5) Calosoma scrutator, fiery caterpillar hunter (Coleoptera: Carabidae) (Rank: S5G5) Brachionycha borealis, boreal sprawler moth (Lepidoptera: Noctuidae), last instar larva (Rank: SHG4) Metarranthis sp. near duaria, early metarranthis moth (Lepidoptera: Geometridae) (Rank: S3G4) Psaphida thaxteriana (Lepidoptera: Noctuidae) (Rank: S4G4) Pennsylvania’s Comprehensive Wildlife Conservation Strategy Invertebrates Version 1.1 Prepared by John E. Rawlins Carnegie Museum of Natural History Section of Invertebrate Zoology January 12, 2007 This report was filed with the Pennsylvania Game Commission on October 31, 2006 as a product of a State Wildlife Grant (SWG) entitled: Rawlins, J.E. 2004-2006. Pennsylvania Invertebrates of Special Concern: Viability, Status, and Recommendations for a Statewide Comprehensive Wildlife Conservation Plan in Pennsylvania. In collaboration with the Western Pennsylvania Conservancy (C.W. Bier) and The Nature Conservancy (A. Davis). A Proposal to the State Wildlife Grants Program, Pennsylvania Game Commission, Harrisburg, Pennsylvania. Text portions of this report are an adaptation of an appendix to a statewide conservation strategy prepared as part of federal requirements for the Pennsylvania State Wildlife Grants Program, specifically: Rawlins, J.E. 2005. Pennsylvania Comprehensive Wildlife Conservation Strategy (CWCS)-Priority Invertebrates. Appendix 5 (iii + 227 pp) in Williams, L., et al. (eds.). Pennsylvania Comprehensive Wildlife Conservation Strategy. Pennsylvania Game Commission and Pennsylvania Fish and Boat Commission. Version 1.0 (October 1, 2005).
    [Show full text]
  • A New Species of Asphondylia (Diptera: Cecidomyiidae) and a Key to Separate Species of the Genus Associated with Asteraceae from Neotropical Region
    A new species of Asphondylia (Diptera: Cecidomyiidae) and a key to separate species of the genus associated with Asteraceae from Neotropical region Maria Virginia Urso-Guimarães¹²³ ¹ Universidade Federal de São Carlos (UFSCAR), Centro de Ciências Humanas e Biológicas (CCHB), Departamento de Biologia (DBio), Laboratório de Sistemática de Diptera. Sorocaba, SP, Brasil. ² Universidade de São Paulo (USP), Museu de Zoologia (MZUSP). São Paulo, SP, Brasil. ³ ORCID: 0000-0003-3657-9379. E-mail: [email protected] Abstract. A new species, Asphondylia cipo sp. nov. (Diptera: Cecidomyiidae) causing stem and petiole galls on Lessingianthus warmingianus (Baker) H. Rob. (Asteraceae) is described and illustrated from Serra do Cipó, Minas Gerais State, Brazil. A key is provided to separate species of this genus associated with host plants in the Asteraceae family from the Neotropical region. Key-Words. Asphondyliini; Insect-plant association; Morphology; Taxonomy. INTRODUCTION undescribed species of cecidomyiids in six spe‑ cies of Lessingianthus (Lessingianthus coriaceus Asphondylia Loew, 1850 belongs to the tribe (Less.) H. Rob., Lessingianthus elegans (Gardner) Asphondyliini of the subfamily Cecidomyiinae H. Rob., Lessingianthus hoveaefolius (Gardner) H. (Diptera: Cecidomyiidae). The genus is cosmopol‑ Rob., Lessingianthus linearifolius (Less.) H. Rob., itan with 299 species described to date, of which Lessingianthus pychnostachius (DC.) H. Rob., and about 100 species occur in the Neotropical region Lessingianthus tomentellus (Mart.) H. Rob); and one and 21 in Brazil (Gagné & Jaschhof, 2017; Flor & on stem of Lessingianthus warmingianus induced by Maia, 2017). Asphondylia species have been re‑ an undescribed species of coleopterous (Carneiro corded on 66 plant families in the world, being et al., 2009; Maia, 2012; Coelho et al., 2013).
    [Show full text]