Taxonomy and Phylogeny of the Asphondylia

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomy and Phylogeny of the Asphondylia Bucknell University From the SelectedWorks of Warren G. Abrahamson, II 2015 Taxonomy and phylogeny of the Asphondylia species (Diptera: Cecidomyiidae) of North American goldenrods: challenging morphology, complex host associations, and cryptic speciation Netta Dorchin, Tel Aviv University Jeffrey B. Joy, Simon Fraser University Lukas K. Hilke, University of Bonn Michael J. Wise, Roanoke College Warren G. Abrahamson, II, Bucknell University Available at: https://works.bepress.com/warren_abrahamson/154/ bs_bs_banner Zoological Journal of the Linnean Society, 2015, 174, 265–304. With 105 figures Taxonomy and phylogeny of the Asphondylia species (Diptera: Cecidomyiidae) of North American goldenrods: challenging morphology, complex host associations, and cryptic speciation NETTA DORCHIN1*, JEFFREY B. JOY2, LUKAS K. HILKE3, MICHAEL J. WISE4 and WARREN G. ABRAHAMSON5 1Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel 2Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6 3University of Bonn, Regina-Pacis-Weg 3, D-53113 Bonn, Germany 4Department of Biology, Roanoke College, Salem VA 24153, USA 5Department of Biology, Bucknell University, Lewisburg, PA 17837, USA Received 12 October 2014; revised 29 November 2014; accepted for publication 15 December 2014 Reproductive isolation and speciation in herbivorous insects may be accomplished via shifts between host-plant resources: either plant species or plant organs. The intimate association between gall-inducing insects and their host plants makes them particularly useful models in the study of speciation. North American goldenrods (Asteraceae: Solidago and Euthamia) support a rich fauna of gall-inducing insects. Although several of these insects have been the subject of studies focusing on speciation and tritrophic interactions, others remain unstudied and undescribed. Among the latter are at least seven species of the large, cosmopolitan gall midge genus Asphondylia Loew (Diptera: Cecidomyiidae), the taxonomy and biology of which are elucidated here for the first time using morphological, molecular, and life-history data. We describe Asphondylia pseudorosa sp. nov., Asphondylia rosulata sp. nov., and Asphondylia silva sp. nov., and redescribe Asphondylia monacha Osten Sacken, 1869 and Asphondylia solidaginis Beutenmüller, 1907, using morphological characters of adults, immature stages, and galls, as well as sequence data from both nuclear and mitochondrial genes. A neotype is designated for A. solidaginis, the type series of which is considered lost. We also provide information on the life history of all species, including a description of two inquilinous cecidomyiids commonly found in the galls, Clinodiplosis comitis sp. nov. and Youngomyia podophyllae (Felt, 1907), and on parasitoid wasps associated with the gall midges. Asphondylia johnsoni Felt, 1908, which was described from an unknown gall on an unknown Solidago host, is assigned to nomina dubia. Our phylogenetic analyses show that some of the Asphondylia species associated with goldenrods induce two different types of galls during their life cycle, some exhibit host alterations, and some do both. In the absence of reliable morphological differences, recognising species boundaries and deciphering host associations of species must rely heavily on mo- lecular data. Our analysis suggests that radiation in this group has been recent and occurred through shifts among host plants. © 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 174, 265–304. doi: 10.1111/zoj.12234 ADDITIONAL KEYWORDS: cryptic speciation – gall midges – host association – inquilines – Solidago. *Corresponding author. E-mail: [email protected] © 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 174, 265–304 265 266 N. DORCHIN ET AL. INTRODUCTION 2008; Adair et al., 2009), this has been demonstrated only in the genus Asteromyia Felt, 1910 (Heath & Phytophagous insects are well-known models for study- Stireman, 2010; Janson et al., 2010). In general, gall ing diversification and speciation (Futuyma & Agrawal, midge genera with such known associations with fungi 2009; Nosil, 2012). The evolution of host associations have a broader host range and are more diverse than among phytophagous insects has been shown to be gall midge genera that do not exhibit fungal associa- caused by both spatial and temporal shifts between tions, suggesting that the fungus is important in me- host-plant species and within host-plant species (to dif- diating relationships with the host plant (Joy, 2013). ferent plant organs or different time periods of plant The hypothesis that females actively collect conidia in growth; Joy & Crespi, 2012); however, the relative im- specialized structures on their ovipositors (Borkent & portance and the context of between- versus within- Bisset, 1985; Rohfritsch, 1997, 2008) remains untest- host shifts remains unknown. Gall midges (Diptera: ed, and the mechanistic role of the fungus in Cecidomyiidae) are excellent models for studying the Asphondylia galls is still unknown. importance and context of such shifts because of the The life histories of Asphondylia species vary con- intimate nature of their relationships with their host siderably, depending largely on zoogeographical region plants, and because closely related groups of gall midges and host-plant phenology (Yukawa, 1987; Uechi & are known to diversify through shifts between hosts Yukawa, 2006a, b; Tokuda, 2012). Many species are and through shifts between organs within a host- univoltine and enter extended diapause, whereas others plant species (e.g. Jones, Gagné & Barr, 1983; Hawkins, are bi- or multivoltine and present complex host as- Goeden & Gagné, 1986; Joy & Crespi, 2007; Stireman, sociations (reviewed in Tokuda, 2012). The great ma- Devlin & Abbot, 2012). jority of gall-inducing cecidomyiids are considered Asphondylia Loew, 1850 belongs to the tribe monophagous or narrowly oligophagous, but system- Asphondyliini, currently with 505 species, and within atic and molecular studies have revealed some Asphondyliini to the subtribe Asphondyliina, which is Asphondylia species to be polyphagous, as they develop most diverse in the Neotropics (Gagné & Jaschhof, on several host plants from two or more unrelated plant 2014). The subtribe contains 19 genera that share clear families. Documented examples of polyphagous species morphological apomorphies, but no cladistic or other include Asphondylia gennadii Marchal, 1904 (Gagné phylogenetic analysis has been conducted on it to date. & Orphanides, 1992), Asphondylia yushimai Yukawa All genera included in this group other than Asphondylia & Uechi, 2003 (Yukawa et al., 2003), and Asphondylia are small (with between one and 11 species), and most websteri Felt, 1917 (Gagné & Jaschhof, 2014). Some are restricted to South America. By contrast, of these species are multivoltine and alternate between Asphondylia is one of the largest genera in the family hosts that are available at different times of the year Cecidomyiidae, with 320 described species that feed (Tokuda, 2012), whereas others alternate between dif- on a great diversity of plant families worldwide (Gagné ferent organs on the same host plant (Parnell, 1964; & Jaschhof, 2014), and the number of undescribed Plakidas, 1988). On the other end of the scale are groups species in this genus is probably far greater. Despite of strictly monophagous species that are plant-organ descriptions of numerous new Asphondylia species in specific and have apparently radiated, or are in the recent years from South America and Australia process of radiating, in situ on a single plant genus (Veenstra-Quah, Milne & Kolesik, 2007; Kolesik & (Hawkins et al., 1986; Gagné & Waring, 1990; Joy & Veenstra-Quah, 2008; Maia et al., 2008; Maia, Santos Crespi, 2007; Stokes et al., 2012). & Fernandes, 2009; Kolesik, Adair & Eick, 2010), knowl- Asphondylia taxonomy is challenging because adult edge about the fauna of the southern hemisphere is morphology differs little among species. All species share greatly lacking, in particular that of the Afrotropical the neckless, cylindrical antennal flagellomeres in both region, and there is little doubt that it includes hun- sexes, the needle-like ovipositor and conspicuously en- dreds of undescribed species (ND, unpublished data). larged seventh sternite in the female, and the compact The North American fauna of plant-feeding gall midges male genitalia with the spherical gonostyli posi- is relatively well known (Gagné, 1989), but undescribed tioned dorsally rather than apically (Gagné, 1994). The species are still continuously discovered, and many of third-instar larvae possess a well-developed, usually these belong to Asphondylia. four-toothed spatula on the first thoracic segment. All Asphondylia species are gall inducers, and the Because pupation in all Asphondylia species takes place galls are almost always associated with a fungus that inside the gall rather than in the soil, the larvae do lines the inside walls of the gall. Similar associations not need the spatula for digging; thus the function of are known in other cecidomyiid genera, and al- the spatula in this genus is unknown. The pupae are though several studies suggested that the larvae of such characterized by well-developed horn-like antennal bases, ‘ambrosia’ gall midges feed on the fungus rather than a varying number of facial horns,
Recommended publications
  • James Kidder Main Library Box 2008 Bldg
    James Kidder Main Library Box 2008 Bldg. 4500N MS-6191 865-576-0535 [email protected] Environmental Sciences Publications—Calendar Year 2008 Compiled January 11, 2009 Citation Total: 180 Books Sections: Bernier, P., Hanson, P. J., & Curtis, P. S. (2008). Measuring Litterfall and Branchfall. In Field Measurements for Forest Carbon Monitoring (pp. 91-101). Heidelberg: Springer. Gilichinsky, D., Vishnivetskaya, T., Petrova, M., Spirina, E., Mamikin, V., & Rivkina, E. (2008). Bacteria in Permafrost. In E. Margesin, F. Schinner, J.-C. Marx & C. Gerday (Eds.), Psychrophiles: From Biodiversity to Biotechnology (pp. 83-102). Heidelberg: Springer- Verlag. Jardine, P. M., & Donald, L. S. (2008). Influence of Coupled Processes on Contaminant Fate and Transport in Subsurface Environments. In D. Sparks (Ed.), Advances in Agronomy (Vol. Volume 99, pp. 1-99). New York: Academic Press. Johs, A., Liang, L., Gu, B., Ankner, J. F., & Wang, W. (2009). Application of Neutron Reflectivity for Studies of Biomolecular Structures and Functions at Interfaces. In L. Liang, R. Rinaldi & H. Schnober (Eds.), Neutron Applications in Earth, Energy and Environmental Sciences (pp. 463-489). New York: Springer. Rinaldi, R., Liang, L., & Schober, H. (2009). Neutron Applications in Earth, Energy, and Environmental Sciences. In Neutron Applications in Earth, Energy and Environmental Sciences (pp. 1- 14). New York: Springer. Tonn, B., Carpenter, P., Sven Erik, J., & Brian, F. (2008). Technology for Sustainability. In S. E. Jorgensen & B. Fath (Eds.), Encyclopedia of Ecology (pp. 3489-3493). Oxford: Academic Press. Ward, R., Pouchard, L., Munro, N., & Fischer, S. (2008). Virtual Human Problem-Solving Environments. In C. Yang (Ed.), Digital Human Modeling (pp. 108-132).
    [Show full text]
  • 1 an Example of Parasitoid Foraging: Torymus Capite
    1 AN EXAMPLE OF PARASITOID FORAGING: TORYMUS CAPITE (HUBER; HYMEMOPTERA: TORYMIDAE [CHALCIDOIDEA]) ATTACKING THE GOLDENROD GALL-MIDGE ASTEROMYIA CARBONIFERA (O. S.; DIPTERA: CECIDOMYIIDAE) Richard F. Green Department of Mathematics and Statistics University of Minnesota Duluth Duluth, MN 55812 U. S. A. INTRODUCTION Van Alphen and Vet (1986) refer to the work of Arthur E. Weis (1983) on a torymid wasp that attacks a gall midge on goldenrod. This system seems to be quite well-studied, particularly, but not exclusively, by Weis. Van Alphen and Vet point out that the parasitoids tend to attack about the same proportion of hosts in patches (galls) with varying numbers of hosts. This has implications for the foraging strategy that the parasitoids use. In this note I want to do three things: (1) outline the basic biology of the organisms involved, (2) describe the results of a foraging experiment conducted by Weis (1983), and (3) interpret the results in terms of Oaten’s stochastic model of optimal foraging. Arthur E. Weis is coauthor of a book (Abrahamson and Weis 1997) on the biology of a three trophic-level system involving a goldenrod stem-gall maker Eurosta solidaginis, its host plant and its enemies. The work described here is earlier work, done an a different species. The biology of the system The species of greatest interest are the torymid parasitoid Torymus capite, which is a larval parasitoid of the gall midge Asteromyia carbonifera, which itself makes blister-like galls on the leaves of goldenrod, especially Canadian goldenrod, Solidgo canadiensis L. (Compositae). There are three generations of gall midge (and its parasitoids) each year.
    [Show full text]
  • Host-Plant Genotypic Diversity Mediates the Distribution of an Ecosystem Engineer
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Supervised Undergraduate Student Research Chancellor’s Honors Program Projects and Creative Work Spring 4-2006 Genotypic diversity mediates the distribution of an ecosystem engineer Kerri Margaret Crawford University of Tennessee-Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Recommended Citation Crawford, Kerri Margaret, "Genotypic diversity mediates the distribution of an ecosystem engineer" (2006). Chancellor’s Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/949 This is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. • f" .1' I,'r· ... 4 ....., ' 1 Genotypic diversity mediates the distribution of an ecosystem engineer 2 3 4 5 6 7 Kerri M. Crawfordl, Gregory M. Crutsinger, and Nathan J. Sanders2 8 9 10 11 Department 0/Ecology and Evolutionary Biology, University o/Tennessee, Knoxville, Tennessee 12 37996 13 14 lAuthor for correspondence: email: [email protected]. phone: (865) 974-2976,/ax: (865) 974­ 15 3067 16 2Senior thesis advisor 17 18 19 20 21 22 23 24 25 26 27 28 29 30 12 April 2006 1 1 Abstract 2 Ecosystem engineers physically modify environments, but much remains to be learned about 3 both their effects on community structure and the factors that predict their occurrence. In this 4 study, we used experiments and observations to examine the effects of the bunch galling midge, 5 Rhopalomyia solidaginis, on arthropod species associated with Solidago altissima.
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E.
    [Show full text]
  • Floristic Quality Assessment Report
    FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al.
    [Show full text]
  • The World's First Inquiline Flatid
    TABLE OF CONTENTS KEYNOTE SPEAKERS Deep transcriptome insights into cave beetle eyes 1 Marcus Friedrich Aedes control: the future is now! 2 Hoffmann, A.A. The Hemipteroid Tree of Life 3 Kevin P. Johnson Biosecurity in northern Australia 4 James A. Walker Seeing at the limits: vision and visual navigation in nocturnal insects 5 Eric Warrant ORAL PRESENTATIONS Dung beetle (Coleoptera, Scarabaeidae) abundance and diversity at nature preserve within hyper-arid ecosystem of Arabian Peninsula 6 Abdel-Dayem, M., Kondratieff, B., Fadl , H.(1) and Aldhafer, H. Screening of sugarcane cultivars to assess the incidence against Chilo infuscatellus (Pyralidae, Lepidoptera) 6 Ahmad, S., Qurban, A. and Zahid, A. Microbiology and nutritional composition of some edible insects 7 Amadi, E.N. Studies on the mopane worm, Imbrasia belina an edible caterpillar 7 Allotey, J. DNA barcoding identification of mosquitoes using traditional and next-generation sequencing techniques 8 Batovska, J., Lynch, S., Cogan, N., Brown, K. and Blacket, M.J. Towards a compelling phylogeny of cyclorrhaphan flies (Diptera) using whole body adult transcriptomes 9 Bayless, K.M., Trautwein, M.D., Meusemann, K., Yeates, D.K. and Wiegmann, B.M. Establishing a population genetics toolbox and regional spatial database to facilitate identfying the incursion origin of the dengue mosquito Aedes aeqypti and the Asian tiger Ae. albopictus 10 Beebe, N.W. A summary of interceptions and additions to the New Zealand fauna, with reference to Australian origins 11 Bennett, S.J. The role of nutrition in determining individual and group patterns of behaviour 12 Berville, L., Hoffmann, B. and Suarez, A. Australian millipede diversity: an update 13 Black, D.
    [Show full text]
  • Evolutionary Diversification of the Gall Midge Genus Asteromyia
    Molecular Phylogenetics and Evolution 54 (2010) 194–210 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Evolutionary diversification of the gall midge genus Asteromyia (Cecidomyiidae) in a multitrophic ecological context John O. Stireman III a,*, Hilary Devlin a, Timothy G. Carr b, Patrick Abbot c a Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA b Department of Ecology and Evolutionary Biology, Cornell University, E145 Corson Hall, Ithaca, NY 14853, USA c Department of Biological Sciences, Vanderbilt University, Box 351634 Station B, Nashville, TN 37235, USA article info abstract Article history: Gall-forming insects provide ideal systems to analyze the evolution of host–parasite interactions and Received 3 April 2009 understand the ecological interactions that contribute to evolutionary diversification. Flies in the family Revised 17 August 2009 Cecidomyiidae represent the largest radiation of gall-forming insects and are characterized by complex Accepted 9 September 2009 trophic interactions with plants, fungal symbionts, and predators. We analyzed the phylogenetic history Available online 16 September 2009 and evolutionary associations of the North American cecidomyiid genus Asteromyia, which is engaged in a complex and perhaps co-evolving community of interactions with host-plants, fungi, and parasitoids. Keywords: Mitochondrial gene trees generally support current classifications, but reveal extensive cryptic diversity Adaptive diversification within the eight named species. Asteromyia likely radiated after their associated host-plants in the Aste- Fungal mutualism Insect-plant coevolution reae, but species groups exhibit strong associations with specific lineages of Astereae. Evolutionary asso- Cryptic species ciations with fungal mutualists are dynamic, however, and suggest rapid and perhaps coordinated Parasitoid changes across trophic levels.
    [Show full text]
  • Vascular Plant Inventory and Ecological Community Classification for Cumberland Gap National Historical Park
    VASCULAR PLANT INVENTORY AND ECOLOGICAL COMMUNITY CLASSIFICATION FOR CUMBERLAND GAP NATIONAL HISTORICAL PARK Report for the Vertebrate and Vascular Plant Inventories: Appalachian Highlands and Cumberland/Piedmont Networks Prepared by NatureServe for the National Park Service Southeast Regional Office March 2006 NatureServe is a non-profit organization providing the scientific knowledge that forms the basis for effective conservation action. Citation: Rickie D. White, Jr. 2006. Vascular Plant Inventory and Ecological Community Classification for Cumberland Gap National Historical Park. Durham, North Carolina: NatureServe. © 2006 NatureServe NatureServe 6114 Fayetteville Road, Suite 109 Durham, NC 27713 919-484-7857 International Headquarters 1101 Wilson Boulevard, 15th Floor Arlington, Virginia 22209 www.natureserve.org National Park Service Southeast Regional Office Atlanta Federal Center 1924 Building 100 Alabama Street, S.W. Atlanta, GA 30303 The view and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Government. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Government. This report consists of the main report along with a series of appendices with information about the plants and plant (ecological) communities found at the site. Electronic files have been provided to the National Park Service in addition to hard copies. Current information on all communities described here can be found on NatureServe Explorer at www.natureserveexplorer.org. Cover photo: Red cedar snag above White Rocks at Cumberland Gap National Historical Park. Photo by Rickie White. ii Acknowledgments I wish to thank all park employees, co-workers, volunteers, and academics who helped with aspects of the preparation, field work, specimen identification, and report writing for this project.
    [Show full text]
  • An Assessment of the Population Densities of the Goldenrod Gall
    Purdue University Department of Entomology Mentor: Dr. Ian Kaplan Undergraduate Capstone Project Summary Student: Emily Mroczkiewicz Fall 2013 An Assessment of the Population Densities of the Goldenrod Gall Midge, Rhopalomyia solidaginis, and the Effects of Various Treatments on Gall Formation at Purdue Wildlife Area Introduction Plant-insect interactions in a natural ecosystem are under a lot of pressure from recent global changes that are occurring. These global changes can include alterations in climate, fluctuations in precipitation, and changes in atmospheric and soil compositions, among several others. Two of the most prevalent global change factors in this area, however, are changes in precipitation patterns and the addition of nitrogen to our ecosystems. These precipitation patterns are skewed recently because of the increasing intensity of climate change, and the addition of nitrogen is an important factor due to our agricultural systems and fertilizers. Certain insects and their environment can be good indicators of these changes. Gallmakers in particular are useful in determining some of the effects of these changes on an ecosystem, because their success in an area is visible and very clear due to the galls they induce on plants. The system at Purdue Wildlife Area utilizes a certain gallmaking species, Rhopalomyia solidaginis, and the rosette gall. The Goldenrod Gall Midge adult females deposit their eggs into the leaf bud of a developing Goldenrod plant, and this causes a gall to form, which serves as a shelter and nutrient sink for the developing larvae. In this experiment, I wanted to examine the ways in which global change factors such as nitrogen addition and extreme precipitation regimes can have an effect on plant communities and the insects that rely on the fitness of these plants.
    [Show full text]
  • The Vascular Flora of the Red Hills Forever Wild Tract, Monroe County, Alabama
    The Vascular Flora of the Red Hills Forever Wild Tract, Monroe County, Alabama T. Wayne Barger1* and Brian D. Holt1 1Alabama State Lands Division, Natural Heritage Section, Department of Conservation and Natural Resources, Montgomery, AL 36130 *Correspondence: wayne [email protected] Abstract provides public lands for recreational use along with con- servation of vital habitat. Since its inception, the Forever The Red Hills Forever Wild Tract (RHFWT) is a 1785 ha Wild Program, managed by the Alabama Department of property that was acquired in two purchases by the State of Conservation and Natural Resources (AL-DCNR), has pur- Alabama Forever Wild Program in February and Septem- chased approximately 97 500 ha (241 000 acres) of land for ber 2010. The RHFWT is characterized by undulating general recreation, nature preserves, additions to wildlife terrain with steep slopes, loblolly pine plantations, and management areas and state parks. For each Forever Wild mixed hardwood floodplain forests. The property lies tract purchased, a management plan providing guidelines 125 km southwest of Montgomery, AL and is managed by and recommendations for the tract must be in place within the Alabama Department of Conservation and Natural a year of acquisition. The 1785 ha (4412 acre) Red Hills Resources with an emphasis on recreational use and habi- Forever Wild Tract (RHFWT) was acquired in two sepa- tat management. An intensive floristic study of this area rate purchases in February and September 2010, in part was conducted from January 2011 through June 2015. A to provide protected habitat for the federally listed Red total of 533 taxa (527 species) from 323 genera and 120 Hills Salamander (Phaeognathus hubrichti Highton).
    [Show full text]
  • Index to Cecidology up to Vol. 31 (2016)
    Index to Cecidology Up to Vol. 31 (2016) This index has been based on the contents of the papers rather than on their actual titles in order to facilitate the finding of papers on particular subjects. The figures following each entry are the year of publication, the volume and, in brackets, the number of the relevant issue. Aberbargoed Grasslands: report of 2011 field meeting 2012 27 (1) Aberrant Plantains 99 14(2) Acacia species galled by Fungi in India 2014 29(2) Acer gall mites (with illustrations) 2013 28(1) Acer galls: felt galls re-visited 2005 20(2) Acer saccharinum – possibly galled by Dasineura aceris new to Britain 2017 32(1) Acer seed midge 2009 24(1) Aceria anceps new to Ireland 2005 20 (1) Aceria geranii from North Wales 1999 14(2) Aceria heteronyx galling twigs of Norway Maple 2014 29(1) Aceria ilicis (gall mite) galling holm oak flowers in Brittany 1997 12(1) In Ireland 2010 25(1) Aceria mites on sycamore 2005 20(2) Aceria populi galling aspen in Scotland 2000 15(2) Aceria pterocaryae new to the British mite fauna 2008 23(2) Aceria rhodiolae galling roseroot 2013 28(1): 2016 31(1) Aceria rhodiolae in West Sutherland 2014 29(1) Aceria tristriata on Walnut 2007 22(2) Acericecis campestre sp. nov. on Field Maple 2004 19(2) Achillea ptarmica (sneezewort) galled by Macrosiphoniella millefolii 1993 8(2) Acorn galls on red oak 2014 29(1) Acorn stalks: peculiar elongation 2002 17(2) Aculops fuchsiae – a fuchsia-galling mite new to Britain 2008 23 (1) Aculus magnirostris new to Ireland 2005 20 (1) Acumyia acericola – the Acer seed
    [Show full text]
  • The Tachinid Times
    The Tachinid Times ISSUE 24 February 2011 Jim O’Hara, editor Invertebrate Biodiversity Agriculture & Agri-Food Canada ISSN 1925-3435 (Print) C.E.F., Ottawa, Ontario, Canada, K1A 0C6 ISSN 1925-3443 (Online) Correspondence: [email protected] or [email protected] My thanks to all who have contributed to this year’s announcement before the end of January 2012. This news- issue of The Tachinid Times. This is the largest issue of the letter accepts submissions on all aspects of tachinid biology newsletter since it began in 1988, so there still seems to be and systematics, but please keep in mind that this is not a a place between peer-reviewed journals and Internet blogs peer-reviewed journal and is mainly intended for shorter for a medium of this sort. This year’s issue has a diverse news items that are of special interest to persons involved assortment of articles, a few announcements, a listing of in tachinid research. Student submissions are particularly recent literature, and a mailing list of subscribers. The welcome, especially abstracts of theses and accounts of Announcements section is more sizable this year than usual studies in progress or about to begin. I encourage authors and I would like to encourage readers to contribute to this to illustrate their articles with colour images, since these section in the future. This year it reproduces the abstracts add to the visual appeal of the newsletter and are easily of two recent theses (one a Ph.D. and the other a M.Sc.), incorporated into the final PDF document.
    [Show full text]