Seasonal Patterns of Arthropod Diversity and Abundance on Big Sagebrush, Artemisia Tridentata Author(S): Monte P

Total Page:16

File Type:pdf, Size:1020Kb

Seasonal Patterns of Arthropod Diversity and Abundance on Big Sagebrush, Artemisia Tridentata Author(S): Monte P Seasonal Patterns of Arthropod Diversity and Abundance on Big Sagebrush, Artemisia tridentata Author(s): Monte P. Sanford and Nancy J. Huntly Source: Western North American Naturalist, 70(1):67-76. 2010. Published By: Monte L. Bean Life Science Museum, Brigham Young University DOI: http://dx.doi.org/10.3398/064.070.0108 URL: http://www.bioone.org/doi/full/10.3398/064.070.0108 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Western North American Naturalist 70(1), © 2010, pp. 67–76 SEASONAL PATTERNS OF ARTHROPOD DIVERSITY AND ABUNDANCE ON BIG SAGEBRUSH, ARTEMISIA TRIDENTATA Monte P. Sanford1,2 and Nancy J. Huntly1,3 ABSTRACT.—The sagebrush biotype is the largest in the western United States. This vast sagebrush community is thought to harbor equally vast and diverse arthropod communities, but these remain little explored. Our objective was to examine the diversity, abundance, and seasonal phenology of arthropod taxa found on the dominant shrub of the sage- brush ecosystem, big sagebrush (Artemisia tridentata). We wanted to improve understanding of this little-studied arthro- pod assemblage that may play significant roles in the dynamics of sagebrush populations and the sagebrush ecosystem. We sampled free-living and gall-forming arthropods from a stratified random sample of sagebrush plants at the Barton Road Ecological Research Area, Idaho, resulting in a sample of over 8000 individuals and 232 morphospecies. Species richness and abundance declined from May to August, and abundance of most taxa similarly declined over the summer. A few taxa, including Acari (mites), were notably more abundant in August. Fluid feeders were the most diverse and abundant free-living feeding guild during all months and comprised up to 79% of morphospecies. The gall formers included 4713 individuals of 12 species of gall flies (Rhopalomyia spp.), primarily (97%) R. ampullaria. Abundance of galls increased from small to large (presumably young to old) plants. Overall, A. tridentata was host to a high diversity of arthropods, some of which have potential to cause or mitigate significant damage to their host plant. Arthropods seem likely to have the greatest impact on sagebrush early in the growing season, when they are most diverse and abundant. Documentation of the full diversity of arthropods associated with sagebrush required samples taken throughout the growing season, but a single sample early in the growing season captured a high proportion of taxa. Key words: Artemisia tridentata, big sagebrush, Rhopalomyia, arthropod, insect, biodiversity, phenology. Sagebrush steppe is the largest temperate abundance, and seasonal phenology of the semidesert ecosystem in North America, com- arthropods associated with sagebrush are large ly prising an area of about 44.8 × 106 km2 (West unexplored, despite the large spatial extent 1983). The Columbia and Snake River plateaus and economic importance of sagebrush. Welch contain 4.48 × 105 km2 of sagebrush commu- (2005) reviewed the literature to assemble a list nities (West 1983), and the Great Basin desert of arthropods associated with sagebrush and includes over 2.06 × 105 km2 (Brussard et reported that 72 spider and 237 insect species al. 1998). This vast sagebrush community is are documented associates of sagebrush, includ- thought to harbor a similarly vast and diverse ing 42 gall-forming insects, 52 aphids, and 23 arthropod fauna (Horning and Barr 1970, Tingey beetles. However, the typical arthropod fauna et al. 1972, Gittins et al. 1976, Jones et al. 1983, of an individual Artemisia shrub and the fau- Stafford et al. 1986, Stafford 1987, Hampton nal variation over the growing season have not 2005, Welch 2005). However, little is known been documented. about the sagebrush-associated arthropods of Sagebrush steppe is one of North America’s the cold-desert regions of North America. endangered ecosystems and is strongly affected Most research on sagebrush arthropods has by land uses, such as livestock grazing, and by focused either on a single taxon known to defo- exotic species invasions (Knick and Rotenberry liate sagebrush (e.g., Aroga moths; Gates 1964, 1997, Dobkin and Sauder 2004, Welch 2005, Hanson et al. 1982) or on the broad biology of Bangert and Huntly 2009, Prevey et al. 2010, a single genus (e.g., gall-forming Rhopalomyia in press). The arthropods of sagebrush ecosys- flies; Jones et al. 1983). These studies have tems are likely to affect the population dynamics made significant contributions to our under- of sagebrush because they are major parts of standing of the life cycles and distributions of the food webs of sagebrush steppe, they influ- the focal taxa, but overall patterns of diversity, ence ecosystem functioning, and they provide 1Center for Ecological Research and Education, Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007. 2Present address: Biology Department, MS 315, University of Nevada, Reno, NV 89557. 3Corresponding author. Present address: National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230. E-mail: [email protected] 67 68 WESTERN NORTH AMERICAN NATURALIST [Volume 70 ecosystem services, such as pollination and seed The progression of summer involves increas- dispersal (e.g., Pringle 1960, Banham 1961, ing temperature and decreasing pre cipitation. Christiansen et al. 1989a, Dobkin and Sauder Annual average precipitation at the Pocatello 2004, Welch 2005, Shiojiri and Karban 2008). Airport (17 km from the site and at 1359 m Thus, efforts to conserve and restore sagebrush elevation) averages 30.8 cm, with July–Octo- steppe require an understanding of the associ- ber being driest. We calculated average tem- ated arthropods. perature and precipitation for +–5 days from Our research objective was to examine the sample dates using weather data from the diversity, abundance, and seasonal phenology Pocatello Airport Weather Station. Average high of arthropod taxa associated with big sagebrush temperatures increased from 78 °F (25.6 °C) in (Artemisia tridentata). We posed 4 questions: late May to 97 °F (36.1 °C) in late June and (1) What are the patterns of diversity and abun- dropped to 88 °F (31.1 °C) in late August. Mean dance of arthropods on A. tridentata during precipitation dropped from 3.03 mm in May to the spring/summer growing season? (2) What 0.04 mm in July and 0.21 mm in August. Evap- feeding guilds are associated with A. tridentata, oration typically exceeds precipitation from and how do their diversity and abundance vary late May through early October (Anderson and over the summer months? (3) What is the tax- Inouye 2001). onomic composition of the fauna of A. triden- tata? (4) What species comprise the gall-form- Free-living Arthropods ing guild of A. tridentata, and how are galls We sampled arthropods from sagebrush distributed within the canopy of A. tridentata? located on 100 permanent plots that were Our research provides a basis for identifying 10 m × 10 m and separated by 2-m aisles. time frames and target taxa for future research The A. tridentata plant located nearest to the on sagebrush-arthropod interactions and can point 4 m north and 6 m east of the south- be used to more fully understand sagebrush west corner of each plot was selected to be ecosystem dynamics. sampled. Arthropods were sampled in late May (28 May–1 June), late June (28 June), METHODS and mid- to late August (23 and 24 August) of 2000. Plants were divided into cardinal quad- Study Site rants (NE, NW, SE, SW) and one quadrant, This study was conducted in a sagebrush- selected at random for each shrub, was sam- steppe community at the Barton Road Ecolog- pled each month; no quadrant on the same ical Research Area. The study site was located plant was sampled twice. Arthropods were at 1450 m elevation in the foothills at the east- collected by beating sagebrush foliage of a ern edge of Pocatello, Idaho, at roughly the selected quadrant 10 times with a stick and border of the hydrographic Great Basin and collecting the dislodged arthropods in a 60- the Snake River Plateau. Soils at the site are cm-diameter sweep net held below the deep, well-drained calcareous silt loams that branches. The arthropods were separated are moderately alkaline near the surface and from vegetation and kept frozen until processed moderately to strongly alkaline at depths of and identified. 20–150 cm (McGrath 1987). Shrub cover on We identified and enumerated arthropods the 27-ha research area ranges from 25% to from a randomly selected subset of 50 of the 35%, perennial grass cover from 20% to 27%, 100 samples from each sample period. Speci- and forb cover from 1% to 3.7% (Inouye 2002). mens were identified to family using Borror et Artemisia tridentata is the clear vegetative al. (1989), noted as adult or immature, and fur- dominant, comprising more than 95% of total ther sorted to recognizable taxonomic units shrub cover and 30% of total cover. Other (RTUs; Oliver and Beattie 1996, Kerr et al. abundant grasses and shrubs include Elymus 2000). Voucher specimens were deposited at lanceolatus, Stipa comata, several species of Idaho State University.
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Zootaxa,Phylogeny and Higher Classification of the Scale Insects
    Zootaxa 1668: 413–425 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Phylogeny and higher classification of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea)* P.J. GULLAN1 AND L.G. COOK2 1Department of Entomology, University of California, One Shields Avenue, Davis, CA 95616, U.S.A. E-mail: [email protected] 2School of Integrative Biology, The University of Queensland, Brisbane, Queensland 4072, Australia. Email: [email protected] *In: Zhang, Z.-Q. & Shear, W.A. (Eds) (2007) Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa, 1668, 1–766. Table of contents Abstract . .413 Introduction . .413 A review of archaeococcoid classification and relationships . 416 A review of neococcoid classification and relationships . .420 Future directions . .421 Acknowledgements . .422 References . .422 Abstract The superfamily Coccoidea contains nearly 8000 species of plant-feeding hemipterans comprising up to 32 families divided traditionally into two informal groups, the archaeococcoids and the neococcoids. The neococcoids form a mono- phyletic group supported by both morphological and genetic data. In contrast, the monophyly of the archaeococcoids is uncertain and the higher level ranks within it have been controversial, particularly since the late Professor Jan Koteja introduced his multi-family classification for scale insects in 1974. Recent phylogenetic studies using molecular and morphological data support the recognition of up to 15 extant families of archaeococcoids, including 11 families for the former Margarodidae sensu lato, vindicating Koteja’s views. Archaeococcoids are represented better in the fossil record than neococcoids, and have an adequate record through the Tertiary and Cretaceous but almost no putative coccoid fos- sils are known from earlier.
    [Show full text]
  • The Genus Orthezia Bosc (Hemiptera: Ortheziidae) in Turkey, with 2 New Records
    Turkish Journal of Zoology Turk J Zool (2015) 39: 160-167 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1403-9 The genus Orthezia Bosc (Hemiptera: Ortheziidae) in Turkey, with 2 new records 1,2, 2 2 Mehmet Bora KAYDAN *, Zsuzsanna Konczné BENEDICTY , Éva SZITA 1 İmamoğlu Vocational School, Çukurova University, Adana, Turkey 2 Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary Received: 06.03.2014 Accepted: 26.05.2014 Published Online: 02.01.2015 Printed: 30.01.2015 Abstract: This study aimed to identify the ground ensign scale insects in 5 provinces (Ağrı, Bitlis, Hakkari, Iğdır, and Van) in eastern Anatolia, Turkey. In order to achieve this goal, Ortheziidae species were collected from natural and cultivated plants in the 5 provinces listed above between 2005 and 2008. A total of 3 species were found, among them 2 species (Orthezia maroccana Kozár & Konczné Benedicty and Orthezia yashushii Kuwana) that are new records for the Turkish scale insect fauna. Key words: Coccoidea, Ortheziidae, scale insects, fauna, Turkey 1. Introduction that became adapted to living in the soil developed fossorial- The scale insects, Coccoidea (Hemiptera: Sternorrhyncha), type legs adapted for digging (1 claw, 1 segmented tarsus, are small, sap-sucking true bugs, sister species to functional tibiotarsal articulation); the females lost their Aphidoidea, Aleyrodoidea, and Psylloidea (Gullan and wings and became paedomorphic, while the males became Martin, 2009). According to Koteja (1974) and Gullan dipterous and polymorphic without functional mouthparts and Cook (2007), the superfamily Coccoidea is divided and with a different life cycle (with prepupal and pupal into 2 major informal groups, namely archaeococcoids stages) (Koteja, 1985).
    [Show full text]
  • Big Creek Lepidoptera Checklist
    Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae
    [Show full text]
  • A New Pupillarial Scale Insect (Hemiptera: Coccoidea: Eriococcidae) from Angophora in Coastal New South Wales, Australia
    Zootaxa 4117 (1): 085–100 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4117.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:5C240849-6842-44B0-AD9F-DFB25038B675 A new pupillarial scale insect (Hemiptera: Coccoidea: Eriococcidae) from Angophora in coastal New South Wales, Australia PENNY J. GULLAN1,3 & DOUGLAS J. WILLIAMS2 1Division of Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, Acton, Canberra, A.C.T. 2601, Australia 2The Natural History Museum, Department of Life Sciences (Entomology), London SW7 5BD, UK 3Corresponding author. E-mail: [email protected] Abstract A new scale insect, Aolacoccus angophorae gen. nov. and sp. nov. (Eriococcidae), is described from the bark of Ango- phora (Myrtaceae) growing in the Sydney area of New South Wales, Australia. These insects do not produce honeydew, are not ant-tended and probably feed on cortical parenchyma. The adult female is pupillarial as it is retained within the cuticle of the penultimate (second) instar. The crawlers (mobile first-instar nymphs) emerge via a flap or operculum at the posterior end of the abdomen of the second-instar exuviae. The adult and second-instar females, second-instar male and first-instar nymph, as well as salient features of the apterous adult male, are described and illustrated. The adult female of this new taxon has some morphological similarities to females of the non-pupillarial palm scale Phoenicococcus marlatti Cockerell (Phoenicococcidae), the pupillarial palm scales (Halimococcidae) and some pupillarial genera of armoured scales (Diaspididae), but is related to other Australian Myrtaceae-feeding eriococcids.
    [Show full text]
  • Host-Plant Genotypic Diversity Mediates the Distribution of an Ecosystem Engineer
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Supervised Undergraduate Student Research Chancellor’s Honors Program Projects and Creative Work Spring 4-2006 Genotypic diversity mediates the distribution of an ecosystem engineer Kerri Margaret Crawford University of Tennessee-Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Recommended Citation Crawford, Kerri Margaret, "Genotypic diversity mediates the distribution of an ecosystem engineer" (2006). Chancellor’s Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/949 This is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. • f" .1' I,'r· ... 4 ....., ' 1 Genotypic diversity mediates the distribution of an ecosystem engineer 2 3 4 5 6 7 Kerri M. Crawfordl, Gregory M. Crutsinger, and Nathan J. Sanders2 8 9 10 11 Department 0/Ecology and Evolutionary Biology, University o/Tennessee, Knoxville, Tennessee 12 37996 13 14 lAuthor for correspondence: email: [email protected]. phone: (865) 974-2976,/ax: (865) 974­ 15 3067 16 2Senior thesis advisor 17 18 19 20 21 22 23 24 25 26 27 28 29 30 12 April 2006 1 1 Abstract 2 Ecosystem engineers physically modify environments, but much remains to be learned about 3 both their effects on community structure and the factors that predict their occurrence. In this 4 study, we used experiments and observations to examine the effects of the bunch galling midge, 5 Rhopalomyia solidaginis, on arthropod species associated with Solidago altissima.
    [Show full text]
  • American Museum Novitates
    AMERICAN MUSEUM NOVITATES Number 3823, 80 pp. January 16, 2015 Diverse new scale insects (Hemiptera: Coccoidea) in amber from the Cretaceous and Eocene with a phylogenetic framework for fossil Coccoidea ISABELLE M. VEA1, 2 AND DAVID A. GRIMALDI2 ABSTRACT Coccoids are abundant and diverse in most amber deposits around the world, but largely as macropterous males. Based on a study of male coccoids in Lebanese amber (Early Cretaceous), Burmese amber (Albian-Cenomanian), Cambay amber from western India (Early Eocene), and Baltic amber (mid-Eocene), 16 new species, 11 new genera, and three new families are added to the coccoid fossil record: Apticoccidae, n. fam., based on Apticoccus Koteja and Azar, and includ- ing two new species A. fortis, n. sp., and A. longitenuis, n. sp.; the monotypic family Hodgsonicoc- cidae, n. fam., including Hodgsonicoccus patefactus, n. gen., n. sp.; Kozariidae, n. fam., including Kozarius achronus, n. gen., n. sp., and K. perpetuus, n. sp.; the irst occurrence of a Coccidae in Burmese amber, Rosahendersonia prisca, n. gen., n. sp.; the irst fossil record of a Margarodidae sensu stricto, Heteromargarodes hukamsinghi, n. sp.; a peculiar Diaspididae in Indian amber, Nor- markicoccus cambayae, n. gen., n. sp.; a Pityococcidae from Baltic amber, Pityococcus monilifor- malis, n. sp., two Pseudococcidae in Lebanese and Burmese ambers, Williamsicoccus megalops, n. gen., n. sp., and Gilderius eukrinops, n. gen., n. sp.; an Early Cretaceous Weitschatidae, Pseudo- weitschatus audebertis, n. gen., n. sp.; four genera considered incertae sedis, Alacrena peculiaris, n. gen., n. sp., Magnilens glaesaria, n. gen., n. sp., and Pedicellicoccus marginatus, n. gen., n. sp., and Xiphos vani, n.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • Gut Content Metabarcoding Unveils the Diet of a Flower‐Associated Coastal
    ECOSPHERE NATURALIST No guts, no glory: Gut content metabarcoding unveils the diet of a flower-associated coastal sage scrub predator PAUL MASONICK , MADISON HERNANDEZ, AND CHRISTIANE WEIRAUCH Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, California 92521 USA Citation: Masonick, P., M. Hernandez, and C. Weirauch. 2019. No guts, no glory: Gut content metabarcoding unveils the diet of a flower-associated coastal sage scrub predator. Ecosphere 10(5):e02712. 10.1002/ecs2.2712 Abstract. Invertebrate generalist predators are ubiquitous and play a major role in food-web dynamics. Molecular gut content analysis (MGCA) has become a popular means to assess prey ranges and specificity of cryptic arthropods in the absence of direct observation. While this approach has been widely used to study predation on economically important taxa (i.e., pests) in agroecosystems, it is less frequently used to study the broader trophic interactions involving generalist predators in natural communities such as the diverse and threatened coastal sage scrub communities of Southern California. Here, we employ DNA metabarcoding-based MGCA and survey the taxonomically and ecologically diverse prey range of Phymata pacifica Evans, a generalist flower-associated ambush bug (Hemiptera: Reduviidae). We detected predation on a wide array of taxa including beneficial pollinators, potential pests, and other predatory arthropods. The success of this study demonstrates the utility of MGCA in natural ecosystems and can serve as a model for future diet investigations into other cryptic and underrepresented communities. Key words: biodiversity; blocking primers; DNA detectability half-life; Eriogonum fasciculatum; food webs; intraguild predation; natural enemies. Received 24 January 2019; accepted 11 February 2019.
    [Show full text]
  • Redalyc.Two New Species of the Genus Aroga Busck, 1914 From
    SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Bidzilya, O. Two new species of the genus Aroga Busck, 1914 from Tadzhikistan (Lepidoptera: Gelechiidae) SHILAP Revista de Lepidopterología, vol. 37, núm. 147, septiembre, 2009, pp. 301-305 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Disponible en: http://www.redalyc.org/articulo.oa?id=45515238004 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto 301-305 Two new species of the 7/9/09 15:05 Página 301 SHILAP Revta. lepid., 37 (147), septiembre 2009: 301-305 CODEN: SRLPEF ISSN:0300-5267 Two new species of the genus Aroga Busck, 1914 from Tadzhikistan (Lepidoptera: Gelechiidae) O. Bidzilya Abstract Two new species: Aroga atraphaxi Bidzilya, sp. n. and A. panchuli Bidzilya, sp. n., reared from Atraphaxis pyrifolia (Bunge) (Polygonaceae), are described from Tadzhikistan. A list of Gelechiidae, associated with the plant genus Atraphaxis is given. KEY WORDS: Lepidoptera, Gelechiidae, Aroga, new species, Atraphaxis, Tadzhikistan. Dos nuevas especies del género Aroga Busck, 1914 deTadzhikistán (Lepidoptera: Gelechiidae) Resumen Se describen de Tadzhikistán dos nuevas especies: Aroga atraphaxi Bidzilya, sp. n. y A. panchuli Bidzilya, sp. n., criados de Atraphaxis pyrifolia (Bunge) (Polygonaceae). Se da una lista de los Gelechiidae, associados con las plantas del género Atraphaxis. PALABRAS CLAVE: Lepidoptera, Gelechiidae, Aroga, nuevas especies, Atraphaxis, Tadzhikistán. Introduction Holarctic genus Aroga Busck, 1914 comprises 21 species in the Nearctic (HODGES, 1983) and twelve species in the Palaearctic region (HUEMER & KARSHOLT, 1999; LI, 2002; PONOMARENKO, 2008).
    [Show full text]
  • Evolutionary Diversification of the Gall Midge Genus Asteromyia
    Molecular Phylogenetics and Evolution 54 (2010) 194–210 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Evolutionary diversification of the gall midge genus Asteromyia (Cecidomyiidae) in a multitrophic ecological context John O. Stireman III a,*, Hilary Devlin a, Timothy G. Carr b, Patrick Abbot c a Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA b Department of Ecology and Evolutionary Biology, Cornell University, E145 Corson Hall, Ithaca, NY 14853, USA c Department of Biological Sciences, Vanderbilt University, Box 351634 Station B, Nashville, TN 37235, USA article info abstract Article history: Gall-forming insects provide ideal systems to analyze the evolution of host–parasite interactions and Received 3 April 2009 understand the ecological interactions that contribute to evolutionary diversification. Flies in the family Revised 17 August 2009 Cecidomyiidae represent the largest radiation of gall-forming insects and are characterized by complex Accepted 9 September 2009 trophic interactions with plants, fungal symbionts, and predators. We analyzed the phylogenetic history Available online 16 September 2009 and evolutionary associations of the North American cecidomyiid genus Asteromyia, which is engaged in a complex and perhaps co-evolving community of interactions with host-plants, fungi, and parasitoids. Keywords: Mitochondrial gene trees generally support current classifications, but reveal extensive cryptic diversity Adaptive diversification within the eight named species. Asteromyia likely radiated after their associated host-plants in the Aste- Fungal mutualism Insect-plant coevolution reae, but species groups exhibit strong associations with specific lineages of Astereae. Evolutionary asso- Cryptic species ciations with fungal mutualists are dynamic, however, and suggest rapid and perhaps coordinated Parasitoid changes across trophic levels.
    [Show full text]
  • Oregon Sage-Grouse Action Plan
    the OREGON SAGE-GROUSE ACTION PLAN An Effort of the SageCon Partnership Oregon Department of Fish and Wildlife Cover design by Robert Swingle, Oregon Department of Fish and Wildlife. Cover images by Jeremy Roberts, Conservation Media. Recommended citation: Sage-Grouse Conservation Partnership. 2015. The Oregon Sage-Grouse Action Plan. Governor’s Natural Resources Office. Salem, Oregon. http://oregonexplorer.info/content/oregon-sage-grouse- action-plan?topic=203&ptopic=179. Print version PDF available at http://oe.oregonexplorer.info/ExternalContent/SageCon/OregonSageGrouseActionPlan-Print.pdf Authors Lead Content Developers Brett Brownscombe, Oregon Department of Fish and Wildlife - Editor Theresa Burcsu, Institute for Natural Resources - Editor Jackie Cupples, Oregon Department of Fish and Wildlife - Editor Richard Whitman, Governor’s Natural Resources Office - Final Proof Review Jamie Damon, Institute for Natural Resources - Final Proof Review Mary Finnerty, The Nature Conservancy - Cartographer Sara O'Brien, Willamette Partnership - Consistency Editor Linda Rahm-Crites, The Nature Conservancy - Copy Editor Robert Swingle, Oregon Department of Fish and Wildlife - Graphics and Cover Lindsey Wise, Institute for Natural Resources - Formatting Editor Contributing Authors Julia Babcock, Oregon Solutions Jay Kerby, The Nature Conservancy Chad Boyd, Agricultural Research Service Cathy Macdonald, The Nature Conservancy Brett Brownscombe, Oregon Department of Ken Mayer, Western Association of Fish and Fish and Wildlife Wildlife Agencies David
    [Show full text]