An Analysis of the Factors Influencing Paper Selection for Books of Reproduced Fine Art Printed on Digital Presses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The EMA Guide to Envelopes and Mailing
The EMA Guide to Envelopes & Mailing 1 Table of Contents I. History of the Envelope An Overview of Envelope Beginnings II. Introduction to the Envelope Envelope Construction and Types III. Standard Sizes and How They Originated The Beginning of Size Standardization IV. Envelope Construction, Seams and Flaps 1. Seam Construction 2. Glues and Flaps V. Selecting the Right Materials 1. Paper & Other Substrates 2. Window Film 3. Gums/Adhesives 4. Inks 5. Envelope Storage 6. Envelope Materials and the Environment 7. The Paper Industry and the Environment VI. Talking with an Envelope Manufacturer How to Get the Best Finished Product VII. Working with the Postal Service Finding the Information You Need VIII. Final Thoughts IX. Glossary of Terms 2 Forward – The EMA Guide to Envelopes & Mailing The envelope is only a folded piece of paper yet it is an important part of our national communications system. The power of the envelope is the power to touch someone else in a very personal way. The envelope has been used to convey important messages of national interest or just to say “hello.” It may contain a greeting card sent to a friend or relative, a bill or other important notice. The envelope never bothers you during the dinner hour nor does it shout at you in the middle of a television program. The envelope is a silent messenger – a very personal way to tell someone you care or get them interested in your product or service. Many people purchase envelopes over the counter and have never stopped to think about everything that goes into the production of an envelope. -
Triangle Accordion Books Part 2
“Part Two: Assembling the book” Time from start to finish = 1 hour You will need the following materials: • Heavy paper, which will be cut into three 4 5/8” X 20” strips, the best option is to cut these strips from one large 22” X 30” sheet of watercolor paper (this will be used for the inner “accordion” of the book) • 2 pieces of chipboard or thick cardboard, 6x6 inches each • Painted paper or scrapbooking paper at least 6x6 inches in size • Pencil • Ruler • Glue (regular white glue or glue sticks) • Clean scrap paper, computer paper or newsprint is good • X-acto Knife or scissors • Cutting matt (or a piece of scrap cardboard to protect your work surface) Brief description: The next part of our process is to measure, cut and assemble your book. This part is made up of several smaller steps within each major step and requires precise measurement and patience. For Part Two, I suggest making a cup of your favorite tea and putting on some relaxing music in the background. While, this may be the most challenging step for some, if you follow the instructions closely and don’t rush, you should come out of it with a fully assembled book ready for creative alteration and decoration! For those new to bookmaking here are a few helpful hints: • Measure! Measure! Measure!: Nothing is more disappointing than assembling several pieces only to find at the final step that they don’t quite fit, especially when you’re out of materials to try again! During this process, we will be measuring out strips of paper, then folding, cutting and gluing them together at specific points. -
DOI: 10.1002/ ((Please Add Manuscript Number)) Article Type: Full Paper
DOI: 10.1002/ ((please add manuscript number)) Article type: Full Paper, Novel applications of nonwood cellulose for blood typing assays. Prof. Jasmina. Casals-Terré*1, Josep Farré-Lladós1, Allinson. Zuñiga1,2, Prof. Maria Blanca Roncero2, Prof Teresa Vidal2 1 Technical University of Catalonia, Mechanical Engineering Department, MicroTech Lab,Terrassa, Spain 2 Technical University of Catalonia, CELBIOTECH Paper Engineering Research Group, Terrassa, Spain * Corresponding Author: Address: MicroTech Laboratory, Department of Mechanical Engineering, Technical University of Catalonia, Terrassa 08222, Spain. E-mail. [email protected] Keywords: Sisal-based paper, Lab-on-a-Chip, sisal, paper-based microfluidics, blood typing test, Point-of-Care Testing (POCT). Abstract Paper-based microfluidics devices can create a new healthcare model. Cellulose is carbohydrate polymer biocompatible and hydrophilic. These characteristics enhance the development of user- friendly diagnostic devices, but the link between paper manufacturing process and performance of the devices is still unclear. Previous studies focused on either commercial papers or lab papers from wood-cellulose fibers, with different basis-weight. This work introduces the effect of refining process and lab paper from non-wood-cellulose fibers, focusing on sisal fibers to overcome the aforementioned challenge. Structural characteristics of paper, such as basis-weight and degree of refining, are optimized and correlated with blood typing test resolution. Unrefined sisal paper of 50 g/m2 and 100 g/m2 basis-weight exhibit a higher gray intensity level than refined paper, and also maximal capillary rise and a pore size suitable for blood grouping tests. Two different blood types were evaluated with results consistent with the traditional methods, testifying the usefulness of this methodology. -
Nanofibrillated Cellulose Applied As Reinforcement for Short-Fiber Paper
NANOFIBRILLATED CELLULOSE APPLIED AS REINFORCEMENT FOR SHORT-FIBER PAPER Daniele Cristina Potulski1*, Lívia Cássia Viana2, Ana Namikata da Fonte3 Mayara Elita Carneiro4, Graciela Ines Bolzon de Muniz5, Umberto Klock6 Universidade Federal do Paraná. Curitiba, Paraná, Brasil – [email protected]* ; [email protected] ; [email protected] ; [email protected] ; [email protected] 2 Universidade Federal do Tocantins. Gurupi, Tocantins, Brasil – e-mail: [email protected] Received for publication: 02/05/2018 - Accepted for publication: 31/10/2019 __________________________________________________________________________________________________ Resumo Nanocelulose aplicada como reforço para papel de fibra curta. Este trabalho teve como objetivo avaliar a influência da adição de diferentes porcentagens de celulose nanofibrilada sobre as propriedades mecânicas e físicas do papel feito a partir da polpa de fibras curtas. A celulose nanofibrilada foi obtida a partir de polpa Kraft de Eucalyptus sp. branqueada, submetida a três diferentes passes no moinho: 2, 10 e 20 passes. Os papéis foram produzidos com a adição de celulose nanofibrilada nas porcentagens de 3, 6 e 9%. Os resultados mostraram que a adição de celulose nanofibrilada aumentou as propriedades mecânicas: índice de tração, índice de arrebentamento e índice de rasgo. A porosidade e a densidade aparente diminuíram. A adição de 9% de celulose nanofibrilada, obtida a partir de 2 passes, proporcionou os melhores resultados com aumento da resistência à tração, arrebentamento e rasgo de 111, 114 e 70%, respectivamente, em comparação aos papéis normais. A melhoria das propriedades mecânicas do papel está relacionada à rede muito densa de ligações de hidrogênio, resultando em maior área de superfície obtida após a desfibrilação. -
Final Paper Products Recovered Materials Advisory Notice Response to Public Comments
FINAL PAPER PRODUCTS RECOVERED MATERIALS ADVISORY NOTICE Response to Public Comments Office of Solid Waste U.S. Environmental Protection Agency April 1996 CONTENTS I. Introduction . 1 A. The Draft Paper Products Recovered Materials Advisory Notice . 1 B. Overview of the RCRA Requirements . 1 C. Overview of the Executive Order Provisions for Paper . 3 II. Applicability . 5 A. Background. 5 B. Comments and Agency Response. 5 III. EPA's Objectives . 7 A. Background. 7 B. Comments and Agency Response. 7 IV. EPA's Approach to Recommendations. 11 A. Background . 11 B. Comments and Agency Response . 11 V. EPA's Methodology . 14 A. Background . 14 B. Comments and Agency Response . 14 VI. Recommendations for Printing and Writing Papers. 15 A. Background . 15 B. Comments and Agency Response . 19 VII. Recommendations for Newsprint . 27 A. Background . 27 B. Comments and Agency Response . 27 VIII. Recommendations for Tissue Products. 31 A. Background . 31 B. Comments and Agency Response . 32 IX. Recommendations for Paperboard and Packaging Products . 36 A. Background . 36 B. Comments and Agency Response . 38 X. Recommendations for Miscellaneous Paper Products. 45 A. Background . 45 B. Comments and Agency Response . 45 XI. Recommendations for Measurement. 46 A. Background . 46 B. Comments and Agency Response . 46 XII. Recommendations for Specifications. 48 A. Background . 48 B. Comments and Agency Response . 48 XIII. Recommendations for Recyclability. 49 A. Background . 49 B. Comments and Agency Response . 49 XIV. Definitions . 51 A. Background . 51 B. Comments and Agency Response . 51 XV. Certification and Verification . 54 A. Background . 55 B. Comments and Agency Response . 55 XVI. Sawdust as Recovered Fiber. -
Electrical and Dielectric Properties of Uncoated and Coated Wood-Free Paper for Electrophotography
Petri Sirviö | Electrical and Dielectric Properties of Uncoated and Coated Wood-Free Paper for Electrophotography | 2016 Electrophotography for Paper SirviöWood-Free Petri | Electrical and Dielectric and Coated of Uncoated Properties Petri Sirviö Electrical and Dielectric Properties of Uncoated and Coated Wood-Free Paper for Electrophotography 9 789521 234163 ISBN 978-952-12-3416-3 Electrical and Dielectric Properties of Uncoated and Coated Wood-Free Paper for Electrophotography Petri Sirviö Laboratory of Physical Chemistry Faculty of Science and Engineering Åbo Akademi University Åbo, Finland 2016 Supervised by Professor Jouko Peltonen, Professor Emeritus Jarl B. Rosenholm and Adjunct Professor Kaj Backfolk Laboratory of Physical Chemistry, Åbo Akademi University, Turku, Finland Reviewed by Professor Øyvind W. Gregersen Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway and Professor Arved C. Hübler Institute of Print and Media Technology, Chemnitz University of Technology, Chemnitz, Germany Dissertation opponent Professor Øyvind W. Gregersen Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway ISBN 978-952-12-3416-3 Painosalama Oy – Turku, Finland 2016 PREFACE The research summarized in this thesis has been conducted as a part of the research programs of Stora Enso Oyj to develop paper and board substrates for the electrophotographic printing processes in partnerships with several universities. The main part of the summarized research work has been done in Stora Enso’s R&D facilities and in cooperation with Åbo Akademi University and Vilnius University. I would like to thank the personnel involved in these institutions for their advice, expertise, and knowledge. In particular, I would like to thank professors Jarl B. -
The Reference Measurements of the Paper Laboratory
Saimaa University of Applied Sciences Technology Imatra Degree Programme in Paper Technology Petri Penttinen THE REFERENCE MEASUREMENTS OF THE PAPER LABORATORY Thesis 2012 ABSTRACT Petri Penttinen The Reference Measurements of the Paper Laboratory, 55 pages, 9 appen- dices Saimaa University of Applied Sciences, Imatra Unit of technology, Degree Programme in Paper Technology Bachelor’s Thesis 2012 Supervisor: Lecturer Esko Lahdenperä The purpose of this bachelor’s thesis was to create a basis for reference meas- urements of papers and boards used in the paper laboratory of Saimaa Univer- sity of Applied Sciences in Imatra. Testing was focused to the most common physical properties of paper and board. The aim for the reference measure- ments was to setup a database of product properties. This database is later used as reference material when new properties of other products are meas- ured. In the theory part of the work is introduced the laboratory environment, quality systems, and the physical properties of the papers and boards that are meas- ured. Also the test methods of these properties are explained. As the reliability of the testing is very important, in this work is also thought about the things that may cause uncertainty and errors to the results. In the experimental part of the work is performed the basic- and strength prop- erties of the specific papers and boards that were selected. The samples used consist of the paper and board grades manufactured in Stora Enso Imatra and M-real Simpele mills, and of the own samples made of birch, eucalyptus, pine and spruce pulps. These industrial manufactured paper and board types are commonly used with the student works and they can be found from the paper laboratory. -
THE REVISION of EU ECOLABEL CRITERIA for Converted Paper Products
THE REVISION OF EU ECOLABEL CRITERIA for Converted Paper Products Draft Preliminary Report Malgorzata Kowalska, Antonios Konstantas, Oliver Wolf Marzia Traverso, Rose Nangah Mankaa, Sabrina Neugebauer November 2018 EUR xxxxx xx 1 This publication is a Science for Policy report by the Joint Research Centre, the European Commission’s in-house science service. It aims to provide evidence-based scientific support to the European policy-making process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Contact information Name: Address: E-mail: Tel.: JRC Science Hub https://ec.europa.eu/jrc JRCxxxxx EUR xxxxx xx PDF ISBN xxx-xx-xx-xxxxx-x ISSN xxxx-xxxx doi:xx.xxxx/xxxxxx XX-NA-xxxxx-EN-N Print ISBN xxx-xx-xx-xxxxx-x ISSN xxxx-xxxx doi:xx.xxxxx/xxxxxx XX-NA-xxxxx-EN-C © European Union, 20xx Reproduction is authorised provided the source is acknowledged. How to cite: Authors; title; EUR; doi All images © European Union 20xx, except: 2 Table of contents ABSTRACT ............................................................................................................ 3 Executive summary ............................................................................................... 3 1. Introduction ...................................................................................................... 4 2. Task 1: Scope and definition analysis .................................................................. -
Paper Grades
720 PAPERMAKING / Paper Grades Further Reading Biermann CJ (1996) Handbook of Pulping and Papermak- ing. San Diego: Academic Press. Borch J, Lyne MB, Mark RE, and Habeger Jr, CC (eds) (2002) Handbook of Physical Testing of Paper, vol. 2, 2nd edn. New York: Marcel Dekker. Britt KW (1975) Handbook of Pulp and Paper Technology. New York: Van Nostrand Reinhold. Clark Jd’A (1985) Pulp Technology and Treatment for Paper, 2nd edn. San Francisco: Miller Freeman. Dieson M (1998) Papermaking Science and Technology. Atlanta, GA: Tappi Press. Gavelin G (1998) Paper Machine Design and Operation. Vancouver, BC: Angus Wilde. Hunter D (1978) Papermaking: The History and Techni- que of an Ancient Craft. New York: Dover Publications. Karlsson M (2000) Papermaking, Part 2, Drying. Atlanta, GA: Tappi Press. Kline JE (1991) Paper and Paperboard: Manufacturing and Converting Fundamentals. San Francisco: Miller Freeman. Kojio M (1999) Papermaking: Finishing. Atlanta, GA: Tappi Press. Levlin J-E and So¨ derhelm L (1999) Pulp and Paper Testing. Atlanta, GA: Tappi Press. Mark RE, Habeger Jr, CC, Borch J, and Lyne MB (eds) (2002) Handbook of Physical Testing of Paper, vol. 1, 2nd edn. New York: Marcel Dekker. Patrick KL (1999) Primer of Pulping and Paper Making: Technologies and Production Practices. San Francisco, CA: Miller Freeman Books. Figure 20 Calender of the pilot papermachine at SUNY Paulapuro H (2000) Papermaking Part 1: Stock Prepara- College of Environmental Science and Forestry. The sheet tion and Wet End. Atlanta, GA: Tappi Press. passes through multiple nips to smooth the surface of the sheet. Savolainen A (1998) Paper and Paperboard Converting: Papermaking Science and Technology. -
A3 Paper Size: ISO Paper Size 297 X 420Mm Used for Small Poster Or Small News Paper
A3 Paper size: ISO paper size 297 x 420mm used for small poster or small news paper. A4 Paper size: ISO paper size 210 x 297mm used for Letterhead. Accordion fold: Bindery term, two or more parallel folds which open like an accordion. Acetate: a transparent sheet placed over artwork allowing the artist to write instructions or indicate where second colour is to be placed. Acid Resist: An acid-proof protective coating applied to metal plates prior to etching. Against the grain: At right angles to direction of paper grain. Alteration: Change in copy of specifications after production has begun. Aqueous Coating: Coating in a water base and applied like ink by a printing press to protect and enhance the printing underneath. Artboard: Alternate term for mechanical art. Ascender: any part of a lower case letter extending above the x-height. For example, the upper half of the vertical in the letters b or h. Authors corrections: changes made to the copy by the author after typesetting but not including those made as a result of errors in keying in the copy. Back up: Printing the second side of a sheet already printed on one side. Backslant: Letters that slant the opposite way from italic characters. Banding: Method of packaging printed pieces of paper using rubber or paper bands. Basis weight: Weight in pounds of a ream of paper cut to the basic size for its grade. Bind: To fasten sheets or signatures with wire, thread, glue. or by other means. Bindery: The finishing department of a print shop or firm specializing in finishing printed products. -
Relationship of Solid Ink Density and Dot Gain in Digital Printing
International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-2, Issue-7, July 2014 Relationship of Solid Ink Density and Dot Gain in Digital Printing Vikas Jangra, Abhishek Saini, Anil Kundu gain while meeting density requirements. As discussed Abstract— Ours is the generation which is living in the age of above Dot gain is the measurement of the increase in tone science and technology. The latest scientific inventions have value from original file to the printed sheet. given rise to various technologies in every aspect of our life. Newer technologies have entered the field of printing also. II. MATERIALS AND METHODS Digital printing is one of these latest technologies which have further revolutionized entire modern printing industry in many Densitometer is used for measuring density of ink ways. It also facilitates working on large variety of surfaces, on the paper. Densitometer can be classified according to besides these factors digital printing have grown widely and type of materials they are designed to measure i.e. opaque made a special impact in print market. The presented analysis and transparent. Density of opaque materials is measured by system is used for study of print quality in Digital Printing. reflected light with a device called reflection type densitometer. Density of transparent materials is measured Index Terms— Digital Printing, Dot Gain, Solid ink density, by transmitted light with a device called transmission type Coated Paper and Uncoated Paper. densitometer. In order to measure the print quality i.e. solid ink density (SID) and dot gain (DG) on coated and uncoated I. -
Study of the Windows of Window Envelopes for the Purpose of Developing Standard Specifications
DEPARTMENT OF COMMERCE AUG BUREAU OF STANDARDS George K. Burgess, Director TECHNOLOGIC PAPERS OF THE BUREAU OF STANDARDS, No. 343 [Part of Vol. 21] STUDY OF THE WINDOWS OF WINDOW ENVELOPES FOR THE PURPOSE OF DEVELOPING STANDARD SPECIFICATIONS BY R. E. LOFTON, Associate Physicist Bureau of Standards -' y> \>^' June 6, 1927 >*& w - PRICE 5 CENTS $1.25 Per Volume on Subscription Sold only by the Superintendent of Documents, Government Printing Office Washington, D.C. UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON 1927 T343 STUDY OF THE WINDOWS OF WINDOW ENVELOPES FOR THE PURPOSE OF DEVELOPING STANDARD SPECIFICATIONS By R. E. Lofton ABSTRACT This paper gives an idea of the extent of the use of window envelopes, and also the importance of this matter to postal employees, especially mail clerks, since windows of poor transparency and high gloss would cause serious eyestrain and loss of time in distributing the mails. For the purpose of getting data upon which specifications for transparency and gloss might be based, glassine papers, one-piece and two-piece windows, and a few semitransparent materials were tested. One-piece envelopes are those made from a single sheet of paper in which the window is made by impregnating that part of the envelope pattern through which the address is to be read with a suit- able oil or varnish. Two-piece envelopes are those made from two pieces of paper. The envelope pattern is cut from an opaque sheet of paper; the window is then cut out, and subsequently covered with glassine paper. For permanenc}7 of transparency, the glassine paper windows were better than the one-piece windows.