Paper Title (Use Style: Paper Title)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spatial Heterogeneous of Ecological Vulnerability in Arid and Semi-Arid Area: a Case of the Ningxia Hui Autonomous Region, China
sustainability Article Spatial Heterogeneous of Ecological Vulnerability in Arid and Semi-Arid Area: A Case of the Ningxia Hui Autonomous Region, China Rong Li 1, Rui Han 1, Qianru Yu 1, Shuang Qi 2 and Luo Guo 1,* 1 College of the Life and Environmental Science, Minzu University of China, Beijing 100081, China; [email protected] (R.L.); [email protected] (R.H.); [email protected] (Q.Y.) 2 Department of Geography, National University of Singapore; Singapore 117570, Singapore; [email protected] * Correspondence: [email protected] Received: 25 April 2020; Accepted: 26 May 2020; Published: 28 May 2020 Abstract: Ecological vulnerability, as an important evaluation method reflecting regional ecological status and the degree of stability, is the key content in global change and sustainable development. Most studies mainly focus on changes of ecological vulnerability concerning the temporal trend, but rarely take arid and semi-arid areas into consideration to explore the spatial heterogeneity of the ecological vulnerability index (EVI) there. In this study, we selected the Ningxia Hui Autonomous Region on the Loess Plateau of China, a typical arid and semi-arid area, as a case to investigate the spatial heterogeneity of the EVI every five years, from 1990 to 2015. Based on remote sensing data, meteorological data, and economic statistical data, this study first evaluated the temporal-spatial change of ecological vulnerability in the study area by Geo-information Tupu. Further, we explored the spatial heterogeneity of the ecological vulnerability using Getis-Ord Gi*. Results show that: (1) the regions with high ecological vulnerability are mainly concentrated in the north of the study area, which has high levels of economic growth, while the regions with low ecological vulnerability are mainly distributed in the relatively poor regions in the south of the study area. -
The Opposition of a Leading Akhund to Shi'a and Sufi
The Opposition of a Leading Akhund to Shi’a and Sufi Shaykhs in Mid-Nineteenth- Century China Wang Jianping, Shanghai Normal University Abstract This article traces the activities of Ma Dexin, a preeminent Hui Muslim scholar and grand imam (akhund) who played a leading role in the Muslim uprising in Yunnan (1856–1873). Ma harshly criticized Shi’ism and its followers, the shaykhs, in the Sufi orders in China. The intolerance of orthodox Sunnis toward Shi’ism can be explained in part by the marginalization of Hui Muslims in China and their attempts to unite and defend themselves in a society dominated by Han Chinese. An analysis of the Sunni opposition to Shi’ism that was led by Akhund Ma Dexin and the Shi’a sect’s influence among the Sufis in China help us understand the ways in which global debates in Islam were articulated on Chinese soil. Keywords: Ma Dexin, Shi’a, shaykh, Chinese Islam, Hui Muslims Most of the more than twenty-three million Muslims in China are Sunnis who follow Hanafi jurisprudence when applying Islamic law (shariʿa). Presently, only a very small percentage (less than 1 percent) of Chinese Muslims are Shi’a.1 The historian Raphael Israeli explicitly analyzes the profound impact of Persian Shi’ism on the Sufi orders in China based on the historical development and doctrinal teachings of Chinese Muslims (2002, 147–167). The question of Shi’a influence explored in this article concerns why Ma Dexin, a preeminent Chinese Muslim scholar, a great imam, and one of the key leaders of the Muslim uprising in the nineteenth century, so harshly criticized Shi’ism and its accomplices, the shaykhs, in certain Sufi orders in China, even though Shi’a Islam was nearly invisible at that time. -
Analysis of Traditional Fur Processing Technology of Hui Nationality and Its Inheritance
Advances in Economics, Business and Management Research, volume 110 5th International Conference on Economics, Management, Law and Education (EMLE 2019) Analysis of Traditional Fur Processing Technology of Hui Nationality and Its Inheritance Jianjun Ma Institute of Hui Studies Ningxia University Yinchuan, China 750021 Abstract—The Hui people are good at business, which is an important part of their economic life. As a kind of business II. A COMMERCIAL SYMBOL HIGHLIGHTING THE that Hui people are good at, the fur processing industry is a UNIQUENESS OF HUI ECONOMY AND CULTURE traditional craft that Hui people hold for thousands of years. It According to the origin of fur and the nationality it not only has a long history, a large number of employees and belongs to, the fur processing technology should be the exquisite craftsmanship, but also plays an important role in the livelihood and patent that nomads are good at, which not economic life of the Hui nationality, highlighting the Hui characteristics of business operation. only conforms to the production and life reality of the nomads who mainly produce livestock products, but also Keywords—Hui nationality; creative cultural industry; accords with the cultural practice of the nomads' economic development; Yinchuan and cultural types. The fact is not so. Driven by commercial and economic interests, the Hui nationality has replaced the nomads who should be good at fur processing industry and I. INTRODUCTION continuously developed this industry into a highly developed With a long history, the Hui fur processing industry is fur processing industry. They thus rank the first among the long-standing and well-established and has various forms minorities in northwest China in terms of fur processing, and and distinct national characteristics. -
Table of Codes for Each Court of Each Level
Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115 -
Assessment of Comprehensive Effects and Optimization of a Circular Economy System of Coal Power and Cement in Kongtong District, Pingliang City, Gansu Province, China
sustainability Article Assessment of Comprehensive Effects and Optimization of a Circular Economy System of Coal Power and Cement in Kongtong District, Pingliang City, Gansu Province, China Suocheng Dong 1, Zhe Wang 1,2, Yu Li 1, Fujia Li 1,*, Zehong Li 1, Feng Chen 1,2 and Hao Cheng 1 1 Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (S.D.); [email protected] (Z.W.); [email protected] (Y.L.); [email protected] (Z.L.); [email protected] (F.C.); [email protected] (H.C.) 2 University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-10-6488-9842 Academic Editors: Giuseppe Ioppolo and Marc A. Rosen Received: 6 January 2017; Accepted: 22 April 2017; Published: 11 May 2017 Abstract: The idea of a circular economy (CE), which differs from traditional linear economy with a high consumption of natural resources and pollution, has captured much interest and attention. This paper uses a CE system of coal power and cement in Kongtong District, Pingliang City, Gansu Province, China as a case study to analyze the comprehensive effects of CE paradigm. Our simulation results, based on system dynamics (SD) modeling, infer that the transformation of manufacturing towards a CE system can prominently help coal power and cement enterprises reduce waste emission and increase economic profits. Through solid waste exchanges, a power plant can achieve over RMB 80 million of additional revenue per year at the highest level. -
Allocation of Maize Varieties According to Temperature for Use in Mechanical Kernel Harvesting in Ningxia, China
20 January, 2021 Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 14 No.1 Allocation of maize varieties according to temperature for use in mechanical kernel harvesting in Ningxia, China Hongyan Li1,2, Yonghong Wang3, Jun Xue1,2, Ruizhi Xie1,2, Keru Wang1,2, Rulang Zhao3, Wanmao Liu1,2, Bo Ming1,2, Peng Hou1,2, Zhentao Zhang1,2, Wenjie Zhang3, Shaokun Li1,2* (1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2. Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; 3. Crop Research Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750105, China) Abstract: The reasonable assessment of maize varieties in different ecological regions can allow temperature resources to be fully exploited and reach the goal of high yield and efficiency and is thus an important direction of modern maize development in China. In this study, a logistic power nonlinear growth model was used to simulate the accumulated temperature required for kernel dehydration to moisture contents of 25%, 20%, and 16% for various maize cultivar, which were divided into six types based on the accumulated temperature required for kernel dehydration to a moisture content of 25%. The relationship between the yield of maize cultivars and the accumulated temperature required for kernel dehydration to a moisture content of 25% was found to follow a unary function model. Changing the planted maize variety was found to increase economic returns by more than 7000 RMB/hm2 in Ningxia, Northwest China. Under the conditions of mechanical grain harvesting, economic benefits can be further increased by means of selecting high yields and fast-dehydrating varieties, selling when the grain dehydration is below 16%. -
Gansu Internet-Plus Agriculture Development Project
Gansu Internet-Plus Agriculture Development Project (RRP PRC 50393) Project Administration Manual Project Number: 50393-002 Loan Number: LXXXX September 2019 People’s Republic of China: Gansu Internet-Plus Agriculture Development Project ii ABBREVIATIONS ADB – Asian Development Bank COL – collective-owned land CNY – Chinese Yuan EMP – environmental management plan FSR – feasibility study report FY – Fiscal year GAP – gender action plan GPG – Gansu Provincial Government GRM – grievance redress mechanism GSSMCU – Gansu Supply and Marketing Cooperatives Union ICT – information and communication technology IEE – Initial Environmental Examination IOT – internet-of-things LIBOR – London interbank offered rate LURT – land use rights transfer mu – Chinese unit of measurement (1 mu = 666.67 square meters or 0.067 hectares) OCB – open competitive bidding PFD – Provincial Finance Department PIU – project implementation unit PMO – project management office PPE – participating private enterprise PPMS – project performance management system PRC – People’s Republic of China SDAP – social development action plan SOE – state-owned enterprise SOL – state-owned land TA – Technical assistance iii CONTENTS I. PROJECT DESCRIPTION 1 A. Rationale 1 B. Impact and Outcome 3 C. Outputs 3 II. IMPLEMENTATION PLANS 9 A. Project Readiness Activities 9 B. Overall Project Implementation Plan 10 III. PROJECT MANAGEMENT ARRANGEMENTS 12 A. Project Implementation Organizations: Roles and Responsibilities 12 B. Key Persons Involved in Implementation 14 C. Project Organization Structure 16 IV. COSTS AND FINANCING 17 A. Cost Estimates Preparation and Revisions 17 B. Key Assumptions 17 C. Detailed Cost Estimates by Expenditure Category 18 D. Allocation and Withdrawal of Loan Proceeds 20 E. Detailed Cost Estimates by Financier 21 F. Detailed Cost Estimates by Outputs and/or Components 23 G. -
Spatial–Temporal Matching Characteristics Between Agricultural Water and Land Resources in Ningxia, Northwest China
water Article Spatial–Temporal Matching Characteristics between Agricultural Water and Land Resources in Ningxia, Northwest China Jie Du 1,2, Zhaohui Yang 2,*, Hao Wang 1,2,*, Guiyu Yang 2 and Shuoyang Li 2 1 Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Engineering Research Center of Soil and Water Conservation, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China 2 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China * Correspondence: [email protected] (Z.Y.); [email protected] (H.W.); Tel.: +86-10-6878-5708 (Z.Y. & H.W.) Received: 11 June 2019; Accepted: 13 July 2019; Published: 14 July 2019 Abstract: Agricultural water and land resources are key elements of human production and their unbalanced distribution has threatened the sustainable development of agriculture and regional food security. This study is aiming to investigate the spatial–temporal changes of matching characteristics between agricultural water and land resources in Ningxia during 2007 to 2017. The agricultural irrigation water (AIW), farmland area (FA) and effective irrigated area (EIA) were selected as quantity parameters for agricultural water and land resource. Results show that the gravity centers of AIW and EIA both moved in the southeast direction, while the gravity center of FA moved northwestward, which indicated a better spatial matching degree between AIW and EIA. According to the Gini coefficient and total spatial mismatch index, the spatial mismatch between AIW and FA of Ningxia was remedied and that of AIW and EIA was worse. -
Financial Intermediary
Environmental and Social Management System Arrangement May 2015 People’s Republic of China: Gansu Featured Agriculture and Financial Services System Development Project Prepared by the Financial Institutions and Gansu Provincial Department of Agriculture and Animal Husbandry for the Asian Development Bank. DRAFT ENVIRONMENTAL AND SOCIAL MANAGEMENT SYSTEM FOR THE Bank of Gansu Bank of Lanzhou Yuzhong SPD Rural Bank Prepared by the Financial Institutions and Gansu Provincial Department of Agriculture and Animal Husbandry for the PRC: Gansu Featured Agriculture and Financial Services System Development Project May 2015 CURRENCY EQUIVALENTS (as of 1 May 2015) Currency unit – yuan (CNY) CNY1.00 = $0.1613 US$1.00 = CNY6.1992 ABREVIATIONS ADB – Asian Development Bank FI – Financial Intermediary ASME – Agricultural Small and Medium Sized FIL – Financial Intermediation Loan Enterprise BAAH – Bureau Of Agriculture and Animal Husbandry GRM – Grievance Redress Mechanism CPMO – County Project Management Office HH – Household DAAH – Department of Agriculture and Animal IEE – Initial Environmental Examination Husbandry DDR – Due Diligence Report LIEC – Loan Implementation Environmental Consultant DRC – Development and Reform Commission LISC – Loan Implementation Social Consultant EIA – Environmental Impact Assessment LURTF – Land Use Rights Transfer Framework EIAR – Environmental Impact Assessment Report MCC – Micro-credit Company EIRF -- Environmental Impact Registration Form MEP – Ministry of Environmental Protection EIT -- Environmental Impact Table -
Summary Environmental Impact Assessment Gansu
SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT GANSU ROADS DEVELOPMENT PROJECT IN THE PEOPLE’S REPUBLIC OF CHINA July 2004 CURRENCY EQUIVALENTS (as of 1 July 2004) Currency Unit – yuan (CNY) CNY1.00 = $0.1208 1.00 = CNY8.2766 ABBREVIATIONS ADB – Asian Development Bank AIDS – acquired immune deficiency syndrome COD – chemical oxygen demand CRO – county resettlement office EIA – environmental impact assessment EMP – environmental management plan EPB – environmental protection bureau ErPP – soil erosion prevention plan GCSO – general contract supervision office GPCD – Gansu Provincial Communications Department GPG – Gansu Provincial Government GWRB – Gansu Water Resource Bureau HIV – human immunodeficiency virus IEE – initial environmental examination I/M – inspection and maintenance KMNRMD – Kongtong Mountain Nature Reserve Management Department MOC – Ministry of Communications NH – national highway NR – nature reserve PMO – project management office PRC – People’s Republic of China PRO – project resettlement office RP – resettlement plan SEIA – summary environmental impact assessment SEPA – State Environmental Protection Administration STD – sexually transmitted disease TA – technical assistance TOR – terms of reference TSP – total suspended particles WEIGHTS AND MEASURES dB(A) – decibels (measured in audible noise bands) ha – hectare km – kilometer m – meter m2 – square meter m3 – cubic meter mm – millimeter mte – medium truck equivalent pcu – passenger car unit pH – acidity t – ton NOTE In this report, "$" refers to US dollars. CONTENTS MAPS I. INTRODUCTION 1 II. DESCRIPTION OF THE PROJECT 1 III. DESCRIPTION OF THE ENVIRONMENT 3 A. Physical Environment 3 B. Ecological Environment 7 C. Sociocultural Environment 8 IV. ALTERNATIVES 9 V. ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES 11 A. Soil Erosion and Flooding 15 B. Noise 17 C. Water 18 D. -
Ningxia Case Study
Contents Chapter1 - General Situation of Ecological Environment and Economic Development in Ningxia 1.1 General Features of Ecological System ··············································· 6 1.2 General Features of Poverty ···························································· 13 1.3 Relation between Poverty and Ecological Environment ···························· 13 Chapter2 - Challenges of Poverty Reduction through Ecological Construction (PREC) in Ningxia 2.1 Frequent Droughts and Water Resource Deficiency ································· 18 2.2 Insufficient Integration of Environmental Factors and Low Function of Eco-system Service ······································································ 19 2.3 Increasing Conflicts between Eco-system Bearing Capacity and Economic-social Development ············································································ 20 2.4 Difficulties in Poverty Reduction through Ecological Construction ············· 21 Chapter3 - Important Measures Poverty Reduction through Ecological Construction and the Achievements in Ningxia 3.1 Optimizing Water Resource Arrangements and Upgrading Water Efficiency ···· 21 3.2 Optimizing the Arrangement of Man-power and Natural Resources ············ 22 3.3 Powerfully Pushing forward the Rehabilitation and Construction of the Beneficial Cycling System of Ecological Environment ········································ 26 3.4 Upgrading the Comprehensive Capacity of Agricultural Production ············ 29 3.5 Improving the Management of Resource ············································ -
Minimum Wage Standards in China August 11, 2020
Minimum Wage Standards in China August 11, 2020 Contents Heilongjiang ................................................................................................................................................. 3 Jilin ............................................................................................................................................................... 3 Liaoning ........................................................................................................................................................ 4 Inner Mongolia Autonomous Region ........................................................................................................... 7 Beijing......................................................................................................................................................... 10 Hebei ........................................................................................................................................................... 11 Henan .......................................................................................................................................................... 13 Shandong .................................................................................................................................................... 14 Shanxi ......................................................................................................................................................... 16 Shaanxi ......................................................................................................................................................