Spatial Distribution of Endemic Fluorosis Caused by Drinking Water in a High-Fluorine Area in Ningxia, China

Total Page:16

File Type:pdf, Size:1020Kb

Spatial Distribution of Endemic Fluorosis Caused by Drinking Water in a High-Fluorine Area in Ningxia, China Environmental Science and Pollution Research https://doi.org/10.1007/s11356-020-08451-7 RESEARCH ARTICLE Spatial distribution of endemic fluorosis caused by drinking water in a high-fluorine area in Ningxia, China Mingji Li1 & Xiangning Qu2 & Hong Miao1 & Shengjin Wen1 & Zhaoyang Hua1 & Zhenghu Ma2 & Zhirun He2 Received: 29 November 2019 /Accepted: 16 March 2020 # Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Endemic fluorosis is widespread in China, especially in the arid and semi-arid areas of northwest China, where endemic fluorosis caused by consumption of drinking water high in fluorine content is very common. We analyzed data on endemic fluorosis collected in Ningxia, a typical high-fluorine area in the north of China. Fluorosis cases were identified in 539 villages in 1981, in 4449 villages in 2010, and in 3269 villages in 2017. These were located in 19 administrative counties. In 2017, a total of 1.07 million individuals suffered from fluorosis in Ningxia, with more children suffering from dental fluorosis and skeletal fluorosis. Among Qingshuihe River basin disease areas, the high incidence of endemic fluorosis is in Yuanzhou District and Xiji County of Guyuan City. The paper holds that the genesis of the high incidence of endemic fluorosis in Qingshui River basin is mainly caused by chemical weathering, evaporation and concentration, and dissolution of fluorine-containing rocks around the basin, which is also closely related to the semi-arid geographical region background, basin structure, groundwater chemical character- istics, and climatic conditions of the basin. The process of mutual recharge and transformation between Qingshui River and shallow groundwater in the basin is intense. There is a close coupling relationship between the power of central and southern Ningxia disease areas and Qingshui River watershed of excess fluorine water. Because the traditional drinking water source of the residents in the basin is shallow groundwater, the underground water is the main cause of the high incidence of endemic fluorosis. The results show that Xiji County and Yuanzhou District were the areas of high incidence of endemic fluorosis which gradually decreased to the middle and lower reaches of Qingshui River. In space, distribution characteristics are Qingshui River source area > Qingshui River valley basin area, tributary area > trunk stream area, upstream area > middle reaches area> downstream area of Qingshui River. This is relatively consistent with the spatial distribution of fluoride ion content in Qingshui River groundwater. Keywords Endemic fluorosis . Arid area . High-fluorine water . Spatial distribution Introduction is estimated that there are currently over 21 million patients with dental fluorosis and over 10 million patients with skeletal Fluorosis is a widespread endemic disease in China. As early fluorosis in China (DDCMH, China). The cause of these con- as 1980, a general survey identified cases of fluorosis in more ditions is in most cases excessive uptake of fluorine via drink- than 7100 villages, distributed over 1000 counties in China. It ing water. Low but regular uptake of fluorine is beneficial for dental health, but when present concentrations are above Responsible editor: Philippe Garrigues 1 mg/L in drinking water, it can lead to dental fluorosis, and at concentrations beyond 3 mg/L, the incidence of dental fluo- * Mingji Li rosis will reach 100% for exposed individuals. The World [email protected] Health Organization (WHO) advises a maximum allowable * Hong Miao fluorine concentration of 1.5 mg/L in drinking water (Fawell [email protected] 2006). The occurrence of dental fluorosis is further related to local 1 Resource and Environment Department, Ningxia University, temperatures (related to increased water consumption in Yinchun 750021, China warmer climates), intake of calcium and phosphorus, and in- 2 Western Ecology Research Center, Ningxia University, dividual differences. An imbalance of vitamins A and D, and Yinchun 750021, China Ca and P uptake can increase the dental damage associated Environ Sci Pollut Res with fluorine (Li 2004). Drinking water guidelines set by the while the collective influence of river water, groundwater, and Chinese government require the fluorine concentration in mu- rainfall in China remains to be assessed. This is particularly nicipal drinking water to remain within the range of 0.5– important in the high-fluorine region in northwestern China, 1.0 mg/L. In recent years, efforts have been made to mitigate where a loess plateau is rich in carbonate with an alkaline pH adverse effects of endemic fluorosis in high-fluorine areas, (Liu et al. 1966), and fluorine-bearing minerals such as mica, through improving water quality and, when needed, by amphiboles, tourmaline, and apatite are abundant. Through relocating communities through the project of eco-migration rainfall, groundwater leaching, circulation, and exchange be- conducted by the government; from the 1980s to the end of tween groundwater and surface water, fluorine can be released 2016, the ecological migration project in Ningxia, led by the from these minerals to be introduced into surface water includ- local government, has relocated more than 1 million people ing river water. from the contiguous poverty-stricken areas of the Liupanshan Our research studies the coupling relationship between the Mountains to the areas along the Yellow River. The Ningxia fluorine content and the incidence of endemic fluorosis in the ecological migration project is a process of population spatial Qingshui river basin. And we aim to investigate groundwater reconstruction under the response of ecological pressure in the and surface water are the main reasons that affecting the health ecologically fragile area and the extremely poor area of of residents in the basin, and encourge the local government of Liupanshan Mountains. Ningxia to carry out water reform projects and migration Owing to the relatively high prevalence of endemic fluoro- projects. sis in China, the fluorine distribution, origin, and other factors responsible for the disease have frequently been investigated. Liu and colleagues demonstrated in 1980 that endemic fluo- rosis was mainly concentrated in 3 regions within China: an Material and methods east-to-west belt in the northern deserts, a region along the northern coast, and a region in the south, with a number of Study area localized smaller areas elsewhere. Groundwater with a high fluorine content was correlating with geological conditions, Ningxia is a land-locked province in the north of China soil lithology, and hydrochemical characteristics in Northern (Fig. 1, right). The Qingshui River flows through Ningxia China (Liu et al. 1980), while in Inner Mongolia it was mainly and its basin (shaded gray in the figure) covers 4 counties detected in the alluvial-pluvial plain at the mountain front (Xiji, Tongxin, Haiyuan, and part of Zhongning County) and (Feng et al. 2015), suggesting an origin from fluorine- 3 districts (Yuanzhou, Hongsibu, and Shapotou Districts)that containing minerals and rocks in the surrounding mountains. together account for 49.98% of the land surface of Ningxia. A correlation with soils and groundwater rich in sodium car- Among them, Xiji, Tongxin, and Haiyuan Counties and bonate was identified (He et al. 2010). Low Ca2+ concentra- Yuanzhou District are part of a poverty-stricken area of the tions further favor the formation of high-fluorine groundwater, Liupanshan Mountains designated by the Chinese govern- as is a slight alkalinity (Mao et al. 2016). This was demon- ment to receive special attention to mitigate poverty-related strated in the plain and mountain front of Inner Mongolia, problems including improvement of drinking water quality. − 18 where pH and concentrations of HCO3 , δ O, δD, and total The eastern and south-central parts of Ningxia see a high dissolved solids (TDS) were all higher in high-fluorine incidence of endemic fluorosis and goiter. The local climate groundwater collected in the plain than those in the mountain is arid with little rainfall and water supply is limited. In the front (Li et al. 2018). Similar findings were reported from south-central area, the annual rainfall is about 300 mm, mostly inland river basins in Yanchi, Ningxia (Wu et al. 2018). occurring during the wet season from July to October, whereas Piper trilinear diagrams were used to indicate the groundwater annual evaporation exceeds 2300 mm. Local populations of- facies are basically identical in different seasons, and ten use untreated spring and well water as sources for drinking hydrochemical facies are of the Na-Cl type and Na-SO4-Cl water despite its poor quality. The Qingshui River system is type, while Gibbs diagrams illustrated that groundwaters re- the only first tributary of the Yellow River in central and side in evaporation-dominant areas, highlighting the crucial southern Ningxia. Qingshui River basin is the main area role of evaporation in the chemistry of groundwater (Wu where the Qingshui River and the shallow groundwater in et al. 2018). the basin resupply and transform each other. Current investigations of high-fluorine water and its con- The local geography surrounding the river basin is charac- sequences to human health mainly focus on (a) the occur- terized by mountains with thick strata deposited during the rence, classification, and pathogenesis of endemic fluorosis; Jurassic, Cretaceous, and Tertiary Periods. These strata are (b) sources,
Recommended publications
  • On the Transformation of Government Functions In
    2nd Annual International Conference on Social Science and Contemporary Humanity Development (SSCHD 2016) On the Transformation of Government Functions in the Construction of Urban Community Culture in the Northwest Minority Areas----A Case Study of Da wu kou District, Shi zui shan City, Ningxia Yang CHEN1,a* , Jing HAN1,b 1Institute of Management, Southwest University for Nationalities, Chengdu, Sichuan, China [email protected], [email protected] *Corresponding author Keywords: Community Culture, Governmental functions,Culture construction. Abstract: The sustainable and healthy development of the construction of community culture in minority areas is based on the accurate positioning of government functions, which cannot be separated from certain government functions and behaviors. This article takes the community culture construction in the northwest minority area as the breakthrough point, and takes the government cultural function as the research object, In combination with the reality of construction of community culture in Dawukou District, Shizuishan City, Ningxia, Analysis of urban community culture construction in national regions of the necessity of the transformation of government functions and the necessity and feasibility of the strategy. The construction of urban community culture is initiated by the Chinese government in 1990s. It is a systematic project to construct the urban community culture with modern meaning and regional characteristics. Its essence lies in the basic elements of the modern community culture, such as the government led initiative to create activities, foster community awareness of urban residents, community cohesion and so on. The role of Chinese government in the construction of urban community culture is directly related to the sustainable and healthy development of urban community culture construction, and the government's function is determined by the government's responsibility and function.
    [Show full text]
  • Spatial Heterogeneous of Ecological Vulnerability in Arid and Semi-Arid Area: a Case of the Ningxia Hui Autonomous Region, China
    sustainability Article Spatial Heterogeneous of Ecological Vulnerability in Arid and Semi-Arid Area: A Case of the Ningxia Hui Autonomous Region, China Rong Li 1, Rui Han 1, Qianru Yu 1, Shuang Qi 2 and Luo Guo 1,* 1 College of the Life and Environmental Science, Minzu University of China, Beijing 100081, China; [email protected] (R.L.); [email protected] (R.H.); [email protected] (Q.Y.) 2 Department of Geography, National University of Singapore; Singapore 117570, Singapore; [email protected] * Correspondence: [email protected] Received: 25 April 2020; Accepted: 26 May 2020; Published: 28 May 2020 Abstract: Ecological vulnerability, as an important evaluation method reflecting regional ecological status and the degree of stability, is the key content in global change and sustainable development. Most studies mainly focus on changes of ecological vulnerability concerning the temporal trend, but rarely take arid and semi-arid areas into consideration to explore the spatial heterogeneity of the ecological vulnerability index (EVI) there. In this study, we selected the Ningxia Hui Autonomous Region on the Loess Plateau of China, a typical arid and semi-arid area, as a case to investigate the spatial heterogeneity of the EVI every five years, from 1990 to 2015. Based on remote sensing data, meteorological data, and economic statistical data, this study first evaluated the temporal-spatial change of ecological vulnerability in the study area by Geo-information Tupu. Further, we explored the spatial heterogeneity of the ecological vulnerability using Getis-Ord Gi*. Results show that: (1) the regions with high ecological vulnerability are mainly concentrated in the north of the study area, which has high levels of economic growth, while the regions with low ecological vulnerability are mainly distributed in the relatively poor regions in the south of the study area.
    [Show full text]
  • Appendix 1: Rank of China's 338 Prefecture-Level Cities
    Appendix 1: Rank of China’s 338 Prefecture-Level Cities © The Author(s) 2018 149 Y. Zheng, K. Deng, State Failure and Distorted Urbanisation in Post-Mao’s China, 1993–2012, Palgrave Studies in Economic History, https://doi.org/10.1007/978-3-319-92168-6 150 First-tier cities (4) Beijing Shanghai Guangzhou Shenzhen First-tier cities-to-be (15) Chengdu Hangzhou Wuhan Nanjing Chongqing Tianjin Suzhou苏州 Appendix Rank 1: of China’s 338 Prefecture-Level Cities Xi’an Changsha Shenyang Qingdao Zhengzhou Dalian Dongguan Ningbo Second-tier cities (30) Xiamen Fuzhou福州 Wuxi Hefei Kunming Harbin Jinan Foshan Changchun Wenzhou Shijiazhuang Nanning Changzhou Quanzhou Nanchang Guiyang Taiyuan Jinhua Zhuhai Huizhou Xuzhou Yantai Jiaxing Nantong Urumqi Shaoxing Zhongshan Taizhou Lanzhou Haikou Third-tier cities (70) Weifang Baoding Zhenjiang Yangzhou Guilin Tangshan Sanya Huhehot Langfang Luoyang Weihai Yangcheng Linyi Jiangmen Taizhou Zhangzhou Handan Jining Wuhu Zibo Yinchuan Liuzhou Mianyang Zhanjiang Anshan Huzhou Shantou Nanping Ganzhou Daqing Yichang Baotou Xianyang Qinhuangdao Lianyungang Zhuzhou Putian Jilin Huai’an Zhaoqing Ningde Hengyang Dandong Lijiang Jieyang Sanming Zhoushan Xiaogan Qiqihar Jiujiang Longyan Cangzhou Fushun Xiangyang Shangrao Yingkou Bengbu Lishui Yueyang Qingyuan Jingzhou Taian Quzhou Panjin Dongying Nanyang Ma’anshan Nanchong Xining Yanbian prefecture Fourth-tier cities (90) Leshan Xiangtan Zunyi Suqian Xinxiang Xinyang Chuzhou Jinzhou Chaozhou Huanggang Kaifeng Deyang Dezhou Meizhou Ordos Xingtai Maoming Jingdezhen Shaoguan
    [Show full text]
  • Huadian Ningxia Wind Project Project Profile
    Huadian Ningxia Wind Project Project Profile Huadian Ningxia Wind Project Gold01/03/2009 Standard -China Huadian Ningxia Wind Project - Project Profile version1.0 Contents 1.0 Project Summary 1.1 Project Snapshot 2.0 Project Benefits 1.1 Key Achievements 3.0 Background 4.0 Technical Details 5.0 How the project meets Climate Friendly’s principles 01/03/2009 Huadian Ningxia Wind Project - Project Profile version1.0 1.0 Project Summary Huadian Ningxia Ningdong Yangjiayao Wind-farm Project is a newly built wind-farm project, located in the Ningxia Hui Autonomous Region, P. R. China. The project consists of 30 wind turbines of 1.5 MW which are forecast to generate 95,110 MWh annually. The expected annual GHG emission reductions are 93,938 tCO2e/yr. The project will contribute to the reduction of GHG emission by displacing electricity from Northwest China Power Grid, which is dominated by fossil fuel fired power plants. In addition, the project will help promote local economic development through generation of jobs and alleviate poverty in Ningxia Hui Autonomous Region, which is one of The Gold Standard the poorest regions in China. Premium quality carbon credits NB: Climate Friendly is the exclusive buyer for the Huadian Ningxia GS credits generated in 2007/08. Project Snapshot Huadian Ningxia Ningdong Yangjiayao Name: 45MW Wind-farm Project Yangjiayao Village, Majiatan Town, Location: Lingwu City, China Coordinates: 37°53’9.00”N / 106°38’1.00”E Type: Wind Standard: Gold Standard (GS) Volume: 22,823 VERs (14/12/07-31/05/08) Vintage: 2007 & 2008 Status: Gold Standard registered Huadian Ningxia Ningdong Wind Power Project Operator: Generation Co., Ltd.
    [Show full text]
  • Diversion of the Paleo‐Yellow River Channel in the Qingtongxia Area of Ningxia, China: Evidence from Terraces and Fluvial Landforms
    Received: 28 June 2019 Revised: 3 September 2019 Accepted: 13 October 2019 DOI: 10.1002/gj.3684 SPECIAL ISSUE ARTICLE Diversion of the paleo‐Yellow River channel in the Qingtongxia area of Ningxia, China: Evidence from terraces and fluvial landforms Hong Chen1,2 | Guo‐dong Bao1 | Wei Shi1,2 | Jian‐min Hu1,2 1 Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, China The Qingtongxia Grand Canyon (QGC) of the Yellow River is a region of intense tec- 2 Key Laboratory of Paleomagnetism and tonic deformation that is located in the southern Yinchuan Basin, at the junction of Tectonic Reconstruction of Ministry of Natural Resources, Beijing, China the western margin of the Ordos Plateau and the northeast arcuate structural belt of the Qinghai–Tibetan Plateau. The Yellow River makes a 90° turn as it traverses Correspondence Hong Chen, Institute of Geomechanics, the Qingtongxia area, incising the hard Ordovician sandstones of Niushou Mountain, Chinese Academy of Geological Sciences, while leaving the relatively soft Quaternary sediments on the northern side of the No.11 Minzudaxue South Road, Haidian District. Beijing 100081, China. channel undisturbed. Despite this apparent inconsistency with the expected pattern Email: [email protected] of river erosion, there has been no significant research to date on the formation of Funding information the QGC. Here, we utilize remote sensing, surficial geomorphology, and shallow cor- Geological Survey Project of the Geological ing to confirm the evolution of the Yellow River channel and formation of the QGC. Survey of China, Grant/Award Numbers: – ‐ DD20160060 and DD20190018; Special Using Landsat Thermic Mapper and ASTER imagery, we identified a N S oriented Funds for Basic Scientific Research Operation zone of high water‐content in the northern part of the QGC that is characterized at Fees of the Chinese Academy of Geosciences, Grant/Award Number: YYWF201616 the surface by marsh and wetlands.
    [Show full text]
  • Effects of Land Use Change on Ecosystem Services in Arid Area Eco- Logical Migration
    Chin. Geogra. Sci. 2018 Vol. 28 No. 5 pp. 894–906 Springer Science Press https://doi.org/10.1007/s11769-018-0971-5 www.springerlink.com/content/1002-0063 Effects of Land Use Change on Ecosystem Services in Arid Area Eco- logical Migration LIU Xiaopeng1, 2, CHEN Xiao1, 2, HUA Kaiping1, 3, WANG Yajuan1, 2, WANG Peng1, 2, HAN Xiaojia1, 2, YE Junyan1, 2, 1, 2 WEN Shengqiang (1. School of Resources and Environment, Ningxia University, Yinchuan 750021, China; 2. Key Laboratory (China-Arab) of Resource Evaluation and Environmental Regulation of Arid Region in Ningxia, Yinchuan 750021, China; 3. School of Tourism and Environment, Shaanxi Normal University, Xi’an 710062, China) Abstract: Ecological migration is the process of increasing the population density in the immigration area and transferring the ecologi- cal pressure from emigration area to immigration area. This process may result in significant changes in land use and land cover in the area of immigration and have an important effect on ecosystem services. Therefore, scientifically revealing the effects and differentia- tion mechanisms of ecological migration on ecosystem services is becoming an important issue related to the implementation of the national ecological migration strategy in China. This study employed the Hongsibu District as a typical example of ecological migration. Hongsibu District is located in the central Ningxia steppe and desert steppe areas. Remote sensing data covering five periods from the period before ecological migration in 1995 and after migration in 2000, 2005, 2010, and 2015 was used to measure the value of ecosys- tem services (ESV). A geographical detector model and the value of ecosystem services model were used to diagnose the dynamic mechanism of the effects of land use change on ecosystem services.
    [Show full text]
  • Table of Codes for Each Court of Each Level
    Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115
    [Show full text]
  • Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility)
    Technical Assistance Consultant’s Report Project Number: 39321 June 2008 PRC: Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility) Prepared by: ANZDEC Limited Australia For Shaanxi Province Development and Reform Commission This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. (For project preparatory technical assistance: All the views expressed herein may not be incorporated into the proposed project’s design. FINAL REPORT SHAANXI QINLING BIODIVERSITY CONSERVATION AND DEMONSTRATION PROJECT PREPARED FOR Shaanxi Provincial Government And the Asian Development Bank ANZDEC LIMITED September 2007 CURRENCY EQUIVALENTS (as at 1 June 2007) Currency Unit – Chinese Yuan {CNY}1.00 = US $0.1308 $1.00 = CNY 7.64 ABBREVIATIONS ADB – Asian Development Bank BAP – Biodiversity Action Plan (of the PRC Government) CAS – Chinese Academy of Sciences CASS – Chinese Academy of Social Sciences CBD – Convention on Biological Diversity CBRC – China Bank Regulatory Commission CDA - Conservation Demonstration Area CNY – Chinese Yuan CO – company CPF – country programming framework CTF – Conservation Trust Fund EA – Executing Agency EFCAs – Ecosystem Function Conservation Areas EIRR – economic internal rate of return EPB – Environmental Protection Bureau EU – European Union FIRR – financial internal rate of return FDI – Foreign Direct Investment FYP – Five-Year Plan FS – Feasibility
    [Show full text]
  • Occurrence of Trichophyton Verrucosum in Cattle in the Ningxia
    Guo et al. BMC Veterinary Research (2020) 16:187 https://doi.org/10.1186/s12917-020-02403-6 RESEARCH ARTICLE Open Access Occurrence of Trichophyton verrucosum in cattle in the Ningxia Hui autonomous region, China Yanan Guo1, Song Ge1, Haifeng Luo1, Atif Rehman1, Yong Li2 and Shenghu He1* Abstract Background: Ningxia Hui Autonomous Region is an important cattle breeding area in China, and cattle breeding bases are located in this area. In Ningxia, dermatophytes have not been paid attention to, so dermatophytosis is becoming more and more serious. For effective control measures, it is important to determine the disease prevalence and isolate and identify the pathogenic microorganism. Results: The study showed the prevalence of dermatophytes was 15.35% (74/482). The prevalence in calf was higher than adult cattle (p < 0.05). The morbidity was the highest in winter compared with autumn (p < 0.0001), summer (p < 0.05) and spring (p < 0.0001). The prevalence in Guyuan was the highest compared with Yinchuan (p < 0.05) and Shizuishan (p < 0.05). The incidence of lesions on the face, head, neck, trunk and whole body was 20.43, 38.71, 20.43, 10.75 and 9.68%, respectively. From all samples, the isolation rate of Trichophyton was highest (61.1%). The phylogenetic tree constructed showed that the 11 pathogenic fungi were on the same branch as Trichophyton verrucosum. Conclusions: This study reports, for the first time, the presence of Trichophyton verrucosum in cattle in Ningxia and showed that the incidence of dermatophytosis is related to different regions, ages and seasons.
    [Show full text]
  • Allocation of Maize Varieties According to Temperature for Use in Mechanical Kernel Harvesting in Ningxia, China
    20 January, 2021 Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 14 No.1 Allocation of maize varieties according to temperature for use in mechanical kernel harvesting in Ningxia, China Hongyan Li1,2, Yonghong Wang3, Jun Xue1,2, Ruizhi Xie1,2, Keru Wang1,2, Rulang Zhao3, Wanmao Liu1,2, Bo Ming1,2, Peng Hou1,2, Zhentao Zhang1,2, Wenjie Zhang3, Shaokun Li1,2* (1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2. Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; 3. Crop Research Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750105, China) Abstract: The reasonable assessment of maize varieties in different ecological regions can allow temperature resources to be fully exploited and reach the goal of high yield and efficiency and is thus an important direction of modern maize development in China. In this study, a logistic power nonlinear growth model was used to simulate the accumulated temperature required for kernel dehydration to moisture contents of 25%, 20%, and 16% for various maize cultivar, which were divided into six types based on the accumulated temperature required for kernel dehydration to a moisture content of 25%. The relationship between the yield of maize cultivars and the accumulated temperature required for kernel dehydration to a moisture content of 25% was found to follow a unary function model. Changing the planted maize variety was found to increase economic returns by more than 7000 RMB/hm2 in Ningxia, Northwest China. Under the conditions of mechanical grain harvesting, economic benefits can be further increased by means of selecting high yields and fast-dehydrating varieties, selling when the grain dehydration is below 16%.
    [Show full text]
  • Draft Resettlement Plan
    Draft Resettlement Plan July 2016 PRC: Ningxia Liupanshan Poverty Reduction Rural Road Development Project Prepared by the Transportation Department of Ningxia Hui Nationality Autonomous Region for the Asian Development Bank. CURRENCY EQUIVALENTS CNY1.00 = US$0.16243 US$1.00 CNY= CNY6.1565 ABBREVIATIONS AAOV – Average Annual Output Value ADB – Asian Development Bank AHs – affected households APs – affected persons AV – administrative village CRO – County Resettlement Office DI – Design Institute DMS – Detailed Measurement Survey FS – feasibility study HD – house demolition LA – l and acquisition LAB – Land and Resources Bureau LAR – Land Acquisition and Resettlement LCG – Longde County Government LCPMO – Longde County Project Management Office LEF – l and-expropriated farmer L&RO – Land and Resources Office MOU – Memorandum of Understanding M&E – monitoring and evaluation NDRC – National Development and Reform Commission NHAR TD – Ningxia Hui Autonomous Region Provincial Transport Department PADO – Poverty Alleviation and Development Office PPTA – project preparatory technical assistance PRA – Participatory Rural Appraisal PRO – project resettlement office RIB – Resettlement information booklet RP – resettlement plan SES – socioeconomic survey SPS – Safeguards Policy Statement of ADB TRO – Township Resettlement Office WEIGHTS AND MEASURES km – kilometer m² – square meter mu – 666.7 m² This resettlement plan is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the “terms of use” section of this website. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area.
    [Show full text]
  • Spatial–Temporal Matching Characteristics Between Agricultural Water and Land Resources in Ningxia, Northwest China
    water Article Spatial–Temporal Matching Characteristics between Agricultural Water and Land Resources in Ningxia, Northwest China Jie Du 1,2, Zhaohui Yang 2,*, Hao Wang 1,2,*, Guiyu Yang 2 and Shuoyang Li 2 1 Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Engineering Research Center of Soil and Water Conservation, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China 2 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China * Correspondence: [email protected] (Z.Y.); [email protected] (H.W.); Tel.: +86-10-6878-5708 (Z.Y. & H.W.) Received: 11 June 2019; Accepted: 13 July 2019; Published: 14 July 2019 Abstract: Agricultural water and land resources are key elements of human production and their unbalanced distribution has threatened the sustainable development of agriculture and regional food security. This study is aiming to investigate the spatial–temporal changes of matching characteristics between agricultural water and land resources in Ningxia during 2007 to 2017. The agricultural irrigation water (AIW), farmland area (FA) and effective irrigated area (EIA) were selected as quantity parameters for agricultural water and land resource. Results show that the gravity centers of AIW and EIA both moved in the southeast direction, while the gravity center of FA moved northwestward, which indicated a better spatial matching degree between AIW and EIA. According to the Gini coefficient and total spatial mismatch index, the spatial mismatch between AIW and FA of Ningxia was remedied and that of AIW and EIA was worse.
    [Show full text]