Giant Sequoia Sequoiadendron Giganteum

Total Page:16

File Type:pdf, Size:1020Kb

Giant Sequoia Sequoiadendron Giganteum Giant Sequoia Sequoiadendron giganteum Rebecca Knapp ENH 101 Fall Quarter 2010 What’s in a name? Sequoiadendron giganteum Kingdom: Plantae Division: Pinophyta gymnospersms, cone-bearing Class: Pinopsida Order: Pinales extant conifers (AKA Coniferales) Family: Cupressaceaecedar, cypress, juniper, redwood Subfamily: Sequoioideae Genus: Sequoiadendron Subfamily: Sequoioideae 3 genera • Sequoia (Coast Redwood) & Sequoiadendron – California/Oregon • Metasequoia – China (Dawn Redwood) • Largest and tallest trees in world • Endangered subfamily Genus: Sequoiadendron • Giant Sequoia=Sierra Redwood=Wellingtonia • Sole living species in genus • Largest in terms of total volume – Avg. height: 160-279ft. – Diameter: 20-26ft. • Record trees – 311ft tall, 56ft. Diameter – Oldest: 3,500 years Description • Bark: fibrous, furrowed, very thick (1-3ft) – Fire protection • Leaves: evergreen, blue/green, scale-like, awl-shaped, arranged spirally • Young trees retain dead branches • Mature trees free of branches until 20-50m Regeneration • Seed cones: 4-7mm long, mature 18-20mos. – Remain green/closed up to 20yrs. – 30-50 scales, 230 seeds per cone • Large cones associate w/reproductive maturity— 150 or 200yrs. • Browning/drying of cones, w/shrinkage of scalesdisperses seeds – Long-horned wood-boring beetle – Douglas squirrel –Fire • Wind dispersal Flowering & Fruiting • Monoecious: MF cone buds form late summer • Pollination: April/May • Fertilization: August (cones full-size) – Embryos develop during next summer and reach maturity at end of 2nd growing season Seedling Development • Extremely tenuous—few seeds successfully establish • Germinate in favorable conditions – Moist mineral soil, covers seed – Partial shade to avoid desiccation – Full sunlight, free from litter – Best chance: dropped before 1st snow or as snow melts • Height growth relatively slow first few yrs. – Competition for light/moisture Distribution • Western Sierra Nevada • Scattered groves, 68 total • Humid climate: dry summer/snowy winter • Elevation: 4,600-7,000ft. • Mixed montane coniferous forests • Popular ornamental in UK Ecology • Shade intolerant • Require periodic wildlife to clear competing vegetation – W/o fire, shade-loving species crowd out young sequoia – Fire suppression efforts of 20th Century • Dense growth of White Fir • Fire scars: fungi, root disease, heart Danger! rot • Lightning • Old giant sequoias die by toppling • Classified as vulnerable • 90% population protected Largest: General Sherman – DBH 825 cm – Crown spread 33m – Height 83.6m – 52,508 cubic ft..
Recommended publications
  • Messinian Vegetation and Climate of the Intermontane Florina-Ptolemais
    bioRxiv preprint doi: https://doi.org/10.1101/848747; this version posted November 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Messinian vegetation and climate of the intermontane Florina-Ptolemais-Servia Basin, 2 NW Greece inferred from palaeobotanical data: How well do plant fossils reflect past 3 environments? 4 5 Johannes M. Bouchal1*, Tuncay H. Güner2, Dimitrios Velitzelos3, Evangelos Velitzelos3, 6 Thomas Denk1 7 8 1Swedish Museum of Natural History, Department of Palaeobiology, Box 50007, 10405 9 Stockholm, Sweden 10 2Faculty of Forestry, Department of Forest Botany, Istanbul University Cerrahpaşa, Istanbul, 11 Turkey 12 3National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, 13 Section of Historical Geology and Palaeontology, Greece 14 15 16 bioRxiv preprint doi: https://doi.org/10.1101/848747; this version posted November 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 17 The late Miocene is marked by pronounced environmental changes and the appearance of 18 strong temperature and precipitation seasonality. Although environmental heterogeneity is to 19 be expected during this time, it is challenging to reconstruct palaeoenvironments using plant 20 fossils. We investigated leaves and dispersed spores/pollen from 6.4–6 Ma strata in the 21 intermontane Florina-Ptolemais-Servia Basin (FPS) of NW Greece.
    [Show full text]
  • Distribution of Living Cupressaceae Reflects the Breakup of Pangea
    Distribution of living Cupressaceae reflects the breakup of Pangea Kangshan Maoa,b,c,1, Richard I. Milnea,b,c,1, Libing Zhangd,e, Yanling Penga, Jianquan Liua,2, Philip Thomasc, Robert R. Millc, and Susanne S. Rennerf aState Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China; bInstitute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom; cRoyal Botanic Garden Edinburgh, Edinburgh EH3 5LR, Scotland, United Kingdom; dChengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People’s Republic of China; eMissouri Botanical Garden, St. Louis, MO 63166; fSystematic Botany and Mycology, Department of Biology, University of Munich, 80638 Munich, Germany Edited by Charles C. Davis, Harvard University, Cambridge, MA, and accepted by the Editorial Board March 21, 2012 (received for review September 2, 2011) Most extant genus-level radiations in gymnosperms are of Oligocene occur on all continents except Antarctica and comprise 162 species age or younger, reflecting widespread extinction during climate in 32 genera (see Table S2 for subfamilies, genera, and species cooling at the Oligocene/Miocene boundary [∼23 million years ago numbers). The family has a well-studied fossil record going back (Ma)]. Recent biogeographic studies have revealed many instances of to the Jurassic (32–36). Using ancient fossils to calibrate genetic long-distance dispersal in gymnospermsaswellasinangiosperms. distances in molecular phylogenies can be problematic, because the Acting together, extinction and long-distance dispersal are likely to older a fossil is, the more likely it is to represent an extinct lineage erase historical biogeographic signals.
    [Show full text]
  • Growth and Colonization of Western Redcedar by Vesicular-Arbuscular Mycorrhizae in Fumigated and Nonfumigated Nursery Beds
    Tree Planter's Notes, Volume 42, No. 4 (1991) Growth and Colonization of Western Redcedar by Vesicular-Arbuscular Mycorrhizae in Fumigated and Nonfumigated Nursery Beds S. M. Berch, E. Deom, and T. Willingdon Assistant professor and research assistant, Department of Soil Science, University of British Columbia, Vancouver, BC, and manager, Surrey Nursery, British Columbia Ministry of Forests, Surrey, BC Western redcedar (Thuja plicata Donn ex D. Don) VAM. Positive growth responses of up to 20 times the seedlings were grown in a bareroot nursery bed that had nonmycorrhizal controls occurred under conditions of limited been fumigated with methyl bromide. Seedlings grown in soil phosphorus. Incense-cedar, redwood, and giant sequoia fumigated beds were stunted and had purple foliage. seedlings in northern California nursery beds are routinely Microscopic examination showed that roots from these inoculated with Glomus sp. (Adams et al. 1990), as seedlings were poorly colonized by mycorrhizae, and only by experience has shown that the absence of VAM after soil fine vesicular-arbuscular mycorrhizae. In contrast, roots from fumigation leads to phosphorus deficiency and poor growth. seedlings grown in non-fumigated beds had larger shoots and When western redcedars in fumigated transplant beds at green foliage and were highly colonized by both fine and the British Columbia Ministry of Forest's Surrey Nursery coarse vesicular-arbuscular mycorrhizae. Tree Planters' began to show signs of phosphorus deficiency, a deficiency Notes 42(4):14-16; 1991. of mycorrhizal colonization was suspected. Many studies have demonstrated improved P status of VAM-inoculated Species of cypress (Cupressaceae) and yew plants (see Harley and Smith 1983).
    [Show full text]
  • Nuclear and Cytoplasmic DNA Sequence Data Further Illuminate the Genetic Composition of Leyland Cypresses
    J. AMER.SOC.HORT.SCI. 139(5):558–566. 2014. Nuclear and Cytoplasmic DNA Sequence Data Further Illuminate the Genetic Composition of Leyland Cypresses Yi-Xuan Kou1 MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China Hui-Ying Shang1 State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, China Kang-Shan Mao2 MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China Zhong-Hu Li College of Life Sciences, Northwest University, Xi’an 710069, China Keith Rushforth The Shippen, Ashill, Cullompton, Devon, EX15 3NL, U.K. Robert P. Adams Biology Department, Baylor University, P.O. Box 97388, Waco, TX 76798 ADDITIONAL INDEX WORDS. alaska cypress, Callitropsis nootkatensis, Hesperocyparis macrocarpa, ·Hesperotropsis leylandii, hybridization, internal transcribed spacer, ITS, leafy, monterey cypress, molecular identification, needly ABSTRACT. Leyland cypress [·Hesperotropsis leylandii (A.B. Jacks. & Dallim.) Garland & G. Moore, Cupressaceae] is a well-known horticultural evergreen conifer in the United Kingdom, United States, Australia, New Zealand, and other countries. As demonstrated by previous studies, this taxon is a hybrid between alaska (nootka) cypress [Callitropsis nootkatensis (D. Don) Oerst. ex D.P. Little] and monterey cypress [Hesperocyparis macrocarpa (Hartw. ex Gordon) Bartel]. However, the genetic background of leyland cypress cultivars is unclear. Are they F1 or F2 hybrids or backcrosses? In this study, six individuals that represent major leyland cypress cultivars and two individuals each of its two putative parental species were collected, and three nuclear DNA regions (internal transcribed spacer, leafy and needly), three mitochondrial (mt) DNA regions (coxI, atpA, and rps3), and two chloroplast (cp) DNA regions (matKand rbcL) were sequenced and analyzed.
    [Show full text]
  • Metasequoia Dawn Redwood a Truly Beautiful Tree
    Metasequoia Dawn Redwood A Truly Beautiful Tree Metasequoia glyptostroboides is considered to be a living fossil as it is the only remaining species of a genus that was widespread in the geological past. In 1941 it was discovered in Hubei, China. In 1948 the Arnold Arboretum of Harvard University sent an expedition to collect seed, which was distributed to universities and botanical gardens worldwide for growth trials. Seedlings were raised in New Zealand and trees can be seen in Christchurch Botanical Gardens, Eastwoodhill and Queens Gardens, Nelson. A number of natural Metasequoia populations exist in the wetlands and valleys of Lichuan County, Hubei, mostly as small groups. The largest contains 5400 trees. It is an excellent tall growing deciduous tree to complement evergreens in wetlands, stream edge plantings to control slips, and to prevent erosion in damp valley bottoms where other forestry trees fail to grow. Spring growth is a fresh bright green and in autumn the foliage turns a A fast growing deciduous conifer, red coppery brown making a great display. with a straight trunk, numerous It is also a most attractive winter branch silhouette. While the foliage is a similiar colour in autumn to that of swamp cypress (Taxodium), it is a branches and a tall conical crown, much taller erect growing tree, though both species thrive in moist soil growing to 45 metres in height and conditions. We import our seed from China and the uniformity of the seedling one metre in diameter. crop is most impressive. The timber has been used in boat building. Abies vejari 20 years old on left 14 years old on right Abies Silver Firs These dramatic conical shaped conifers make a great statement in the landscape, long-lived and withstanding the elements.
    [Show full text]
  • Cupressaceae Calocedrus Decurrens Incense Cedar
    Cupressaceae Calocedrus decurrens incense cedar Sight ID characteristics • scale leaves lustrous, decurrent, much longer than wide • laterals nearly enclosing facials • seed cone with 3 pairs of scale/bract and one central 11 NOTES AND SKETCHES 12 Cupressaceae Chamaecyparis lawsoniana Port Orford cedar Sight ID characteristics • scale leaves with glaucous bloom • tips of laterals on older stems diverging from branch (not always too obvious) • prominent white “x” pattern on underside of branchlets • globose seed cones with 6-8 peltate cone scales – no boss on apophysis 13 NOTES AND SKETCHES 14 Cupressaceae Chamaecyparis thyoides Atlantic white cedar Sight ID characteristics • branchlets slender, irregularly arranged (not in flattened sprays). • scale leaves blue-green with white margins, glandular on back • laterals with pointed, spreading tips, facials closely appressed • bark fibrous, ash-gray • globose seed cones 1/4, 4-5 scales, apophysis armed with central boss, blue/purple and glaucous when young, maturing in fall to red-brown 15 NOTES AND SKETCHES 16 Cupressaceae Callitropsis nootkatensis Alaska yellow cedar Sight ID characteristics • branchlets very droopy • scale leaves more or less glabrous – little glaucescence • globose seed cones with 6-8 peltate cone scales – prominent boss on apophysis • tips of laterals tightly appressed to stem (mostly) – even on older foliage (not always the best character!) 15 NOTES AND SKETCHES 16 Cupressaceae Taxodium distichum bald cypress Sight ID characteristics • buttressed trunks and knees • leaves
    [Show full text]
  • Devonian Plant Fossils a Window Into the Past
    EPPC 2018 Sponsors Academic Partners PROGRAM & ABSTRACTS ACKNOWLEDGMENTS Scientific Committee: Zhe-kun Zhou Angelica Feurdean Jenny McElwain, Chair Tao Su Walter Finsinger Fraser Mitchell Lutz Kunzmann Graciela Gil Romera Paddy Orr Lisa Boucher Lyudmila Shumilovskikh Geoffrey Clayton Elizabeth Wheeler Walter Finsinger Matthew Parkes Evelyn Kustatscher Eniko Magyari Colin Kelleher Niall W. Paterson Konstantinos Panagiotopoulos Benjamin Bomfleur Benjamin Dietre Convenors: Matthew Pound Fabienne Marret-Davies Marco Vecoli Ulrich Salzmann Havandanda Ombashi Charles Wellman Wolfram M. Kürschner Jiri Kvacek Reed Wicander Heather Pardoe Ruth Stockey Hartmut Jäger Christopher Cleal Dieter Uhl Ellen Stolle Jiri Kvacek Maria Barbacka José Bienvenido Diez Ferrer Borja Cascales-Miñana Hans Kerp Friðgeir Grímsson José B. Diez Patricia Ryberg Christa-Charlotte Hofmann Xin Wang Dimitrios Velitzelos Reinhard Zetter Charilaos Yiotis Peta Hayes Jean Nicolas Haas Joseph D. White Fraser Mitchell Benjamin Dietre Jennifer C. McElwain Jenny McElwain Marie-José Gaillard Paul Kenrick Furong Li Christine Strullu-Derrien Graphic and Website Design: Ralph Fyfe Chris Berry Peter Lang Irina Delusina Margaret E. Collinson Tiiu Koff Andrew C. Scott Linnean Society Award Selection Panel: Elena Severova Barry Lomax Wuu Kuang Soh Carla J. Harper Phillip Jardine Eamon haughey Michael Krings Daniela Festi Amanda Porter Gar Rothwell Keith Bennett Kamila Kwasniewska Cindy V. Looy William Fletcher Claire M. Belcher Alistair Seddon Conference Organization: Jonathan P. Wilson
    [Show full text]
  • Rhizopogon Togasawariana Sp. Nov., the First Report of Rhizopogon Associated with an Asian Species of Pseudotsuga
    Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga Mujic, A. B., Hosaka, K., & Spatafora, J. W. (2014). Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga. Mycologia, 106(1), 105-112. doi:10.3852/13-055 10.3852/13-055 Allen Press Inc. Version of Record http://hdl.handle.net/1957/47245 http://cdss.library.oregonstate.edu/sa-termsofuse Mycologia, 106(1), 2014, pp. 105–112. DOI: 10.3852/13-055 # 2014 by The Mycological Society of America, Lawrence, KS 66044-8897 Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga Alija B. Mujic1 the natural and anthropogenic range of the family Department of Botany and Plant Pathology, Oregon and plays an important ecological role in the State University, Corvallis, Oregon 97331-2902 establishment and maintenance of forests (Tweig et Kentaro Hosaka al. 2007, Simard 2009). The foundational species Department of Botany, National Museum of Nature concepts for genus Rhizopogon were established in the and Science, Tsukuba-shi, Ibaraki, 305-0005, Japan North American monograph of Smith and Zeller (1966), and a detailed monograph also has been Joseph W. Spatafora produced for European Rhizopogon species (Martı´n Department of Botany and Plant Pathology, Oregon 1996). However, few data on Asian species of State University, Corvallis, Oregon 97331-2902 Rhizopogon have been incorporated into phylogenetic and taxonomic studies and only a limited account of Asian Rhizopogon species has been published for EM Abstract: Rhizopogon subgenus Villosuli are the only associates of Pinus (Hosford and Trappe 1988).
    [Show full text]
  • Giant Sequoia Insect, Disease, and Ecosystem Interactions1
    Giant Sequoia Insect, Disease, and Ecosystem Interactions1 Douglas D. Piirto2 Abstract: Individual trees of giant sequoia (Sequoia gigantea [Lindl.] afflict and kill other trees." Similarly Hartesveldt (1962) Decne.) have demonstrated a capacity to attain both a long life and very concurred that "Sequoia's longevity and great size have large size. It is not uncommon to find old-growth giant sequoia trees in their native range that are 1,500 years old and over 15 feet in diameter at been attributed by nearly all writers, popular and scientific, breast height. The ability of individual giant sequoia trees to survive over to its few insect and fungus parasites and the remarkable such long periods of time has often been attributed to the species high resistance of the older trees to damage or death by fire. resistance to disease, insect, and fire damage. Such a statement, however, is There is no record of an individual sequoia living in its a gross oversimplification, given broader ecosystem and temporal interac- tions. For example, why isn't there a greater representation of young-growth natural range as having been killed by either fungus or insect giant sequoia trees throughout the mixed-conifer belt of the Sierra Nevadas? attack." Even as recently as 1991 Harlow and others (1991) What other factors, in addition to physical site characteristics, limit giant stated: "Insects and fungi cause but minor damage, and no sequoia to its present range and grove boundaries? How does fire and fire large Bigtree killed by them has ever been found." frequency affect disease and insect interrelationships in the giant sequoia/ mixed-conifer ecosystem? Are current forest management strategies (e.g., It is finally being recognized that giant sequoia is fire suppression, prescribed burning programs) affecting these interactions? subject to the same natural forces as other tree species (Bega Giant sequoia trees are subject to the same natural forces (e.g., insect and 1964, Harvey and others 1980, Parmeter 1987, Piirto 1977, disease organisms) as other tree species.
    [Show full text]
  • Plant Palette - Trees 50’-0”
    50’-0” 40’-0” 30’-0” 20’-0” 10’-0” Zelkova Serrata “Greenvase” Metasequoia glyptostroboides Cladrastis kentukea Chamaecyparis obtusa ‘Gracilis’ Ulmus parvifolia “Emer I” Green Vase Zelkova Dawn Redwood American Yellowwood Slender Hinoki Falsecypress Athena Classic Elm • Vase shape with upright arching branches • Narrow, conical shape • Horizontally layered, spreading form • Narrow conical shape • Broadly rounded, pendulous branches • Green foliage • Medium green, deciduous conifer foliage • Dark green foliage • Evergreen, light green foliage • Medium green, toothed leaves • Orange Fall foliage • Rusty orange Fall foliage • Orange to red Fall foliage • Evergreen, no Fall foliage change • Yellowish fall foliage Plant Palette - Trees 50’-0” 40’-0” 30’-0” 20’-0” 10’-0” Quercus coccinea Acer freemanii Cercidiphyllum japonicum Taxodium distichum Thuja plicata Scarlet Oak Autumn Blaze Maple Katsura Tree Bald Cyprus Western Red Cedar • Pyramidal, horizontal branches • Upright, broad oval shape • Pyramidal shape • Pyramidal shape, develops large flares at base • Pyramidal, buttressed base with lower branches • Long glossy green leaves • Medium green fall foliage • Bluish-green, heart-shaped foliage • Leaves are needle-like, green • Leaves green and scale-like • Scarlet red Fall foliage • Brilliant orange-red, long lasting Fall foliage • Soft apricot Fall foliage • Rich brown Fall foliage • Sharp-pointed cone scales Plant Palette - Trees 50’-0” 40’-0” 30’-0” 20’-0” 10’-0” Thuja plicata “Fastigiata” Sequoia sempervirens Davidia involucrata Hogan
    [Show full text]
  • Why Are Coast Redwood and Giant Sequoia Not Where They Are Not?1
    Proceedings of the Coast Redwood Science Symposium—2016 Why Are Coast Redwood And Giant Sequoia Not Where They Are Not?1 2 W.J. Libby Abstract Models predicting future climates and other kinds of information are being developed to anticipate where these two species may fail, where they may continue to thrive, and where they may colonize, given changes in climate and other elements of the environment. Important elements of such predictions, among others, are: photoperiod; site qualities; changes in levels and yearly patterns of temperature, wind, fog and precipitation; the effects of these on interactions with other biota at each site; the effects of changes in fire frequency and intensity; the availability of seeds and seed vectors; and the effects of human activity. Examples are presented, with focus on fire and human activity. Natural migration may need assistance. Establishing groves far from the native ranges is advocated. Keywords: assisted colonization, assisted migration, climate change, fire, Sequoia, Sequoiadendron When preparing this talk and then paper, it became increasingly clear that it is more of an Op-Ed than a comprehensive review, and is meant for people interested in and familiar with coast redwood (Sequoia sempervirens (D. Don) Endl.) and giant sequoia (Sequoiadendron giganteum (Lindl.) Buchholz). Thus, four background references are provided, and they in turn provide detail on many of the topics covered. The final two references provide background on future speculative scenarios. Possible responses to such future scenarios are suggested. Coast redwood’s current natural latitudinal range begins with discontinuous canyon-bottom populations near the southern Monterey County border, extends north through increasingly- continuous coastal and generally-separated interior populations, and stops just north of the Oregon/California border.
    [Show full text]
  • Individual Perspectives of the California Landscape
    INDIVIDUAL PERSPECTIVES OF THE CALIFORNIA LANDSCAPE A Thesis Presented to the Faculty of California State Polytechnic University, Pomona In Partial Fulfillment Of the Requirements for the Degree Master of Landscape Architecture By Cristina M. Plemel 2020 SIGNATURE PAGE PROJECT: INDIVIDUAL PERSPECTIVES OF THE CALIFORNIA LANDSCAPE AUTHOR: Cristina M. Plemel DATE SUBMITTED: Spring 2020 Department of Landscape Architecture Andrew Wilcox Project Committee Chair Professor and Department Chair Philip Pregill Project Committee Member Professor of Landscape Architecture Jared Pierce Project Committee Member Forest Landscape Architect Tahoe National Forest ii ABSTRACT This study took research participants on scenic hikes throughout California to understand landscape preferences utilizing participant photography. There were 8 hikes total and 16 participants. The hikes took place at the following locations: Abbott’s Lagoon in Point Reyes National Seashore, Vivian Creek Trail in the San Gorgonio Wilderness, Strawberry Peak and Mount Baden-Powell in the Angeles National Forest, Mosaic Canyon in Death Valley National Park, Abalone Cove Shoreline Park in Palos Verdes, the South Coast Botanic Garden in Palos Verdes, Loch Lomond in Santa Cruz County, and Mount San Jacinto State Park. Participants were given a disposable camera on each hike and asked to photograph the landscape. After the hikes, film was developed, and participants were emailed digital copies of their photographs and asked to explain why each photo was taken. The literature review has two sections. Part one has a focus on plant communities found in California, while part 2 has a focus on landscape preferences, perception, and scenic beauty of landscape. iii TABLE OF CONTENTS SIGNATURE PAGE .............................................................................................................. ii ABSTRACT ........................................................................................................................
    [Show full text]