Final Abstract Book for Posting.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Final Abstract Book for Posting.Pdf Student-Faculty Programs 2020 Student Abstract Book STUDENT-FACULTY PROGRAMS 2020 Abstract Book This document contains the abstracts of the research projects conducted by students in all programs coordinated by Caltech’s Student-Faculty Programs Office for the summer of 2020. Table of Contents Summer Undergraduate Research Fellowships (SURF) PDF Page 3 WAVE Fellows Program PDF Page 84 Laser Interferometer Gravitational-Wave Observatory (LIGO) PDF Page 92 Jet Propulsion Laboratory (JPL) PDF Page 95 SURF Abstracts Simulating and Analyzing the Hyperfine Structure of Erbium-167 Doped Yttrium Orthosilicate With Spectral Hole Burning Spectroscopy Sébastien Abadi Mentors: Andrei Faraon and Mi Lei 167 3+ 167 3+ Er -doped yttrium orthosilicate ( Er :Y2SiO5) is a promising system for the implementation of long-lived multimode quantum memory at telecommunication wavelengths, which is important for the realization of long-distance quantum communication. Optical quantum memory has already been implemented in this system. The next goal is to implement spin-wave quantum memory using hyperfine spin states, which will improve storage times and enable on-demand recall. It is thus of interest to determine the hyperfine energy splittings of 167 3+ Er :Y2SiO5 at the magnetic field used by the Faraon group, which can be accomplished via spectral hole burning 167 3+ (SHB) spectroscopy. To that effect, I created simulations to reproduce SHB spectra of Er :Y2SiO5 under a stronger magnetic field where the hyperfine structure is known. With those simulations, I improved my understanding of how the burned hole position and linewidth affects which energy splittings can be inferred. I then made predictions about what sets of SHB experiments are sufficient to determine the hyperfine structure of interest. Fitting procedures were also developed so that once that structure is known, relative oscillator strengths of the optical transitions can be determined. Future work will consist of acquiring SHB spectra and determining the hyperfine structure from those spectra. Developing Digital Infrastructure for Synthesizing and Probing Quantum Materials Adam Abbas Mentor: Joseph Falson As a new group at Caltech, the Falson Lab has been in the process of being constructed for the past year. To complement the soon to be completed physical lab, a digital infrastructure was developed to provide a seamless integration of lab equipment, computing devices, and all other aspects of the lab’s network. The Raspberry Pi computing device was chosen as an optimal way to communicate with individual pieces of equipment, due to both its space and processor efficiency. A network of these was designed, connecting each piece of critical equipment to a Pi, allowing for easy communication and programming for equipment. A network-based digital backup solution was also identified to connect to this network and guarantee the safety of our data from device failures or ransomware. Along with planning the network’s infrastructure, it was important to ensure that it would be possible to control the physical lab equipment. This involved developing combined systems of software and hardware based on the requirements of each instrument. Software was developed to monitor and display the outputs of lab devices, such as the cryostat temperature monitors, over time. Circuits were designed to be able to successfully communicate with a vacuum Pirani gauge, as well as to control stepper motors for a measurement apparatus while balancing power constraints for both input and output. Finally, communication protocols were designed to be able to control the equipment for the superconducting magnet that will be used in the cryostat. All of the work done will be able to be implemented shortly after the opening of the lab and will allow for a strong beginning to its operations. Imaging Simulated Exoplanets With the James Webb Space Telescope Jea Adams Mentors: Dimitri Mawet and Jason Wang The launch of the James Webb Space Telescope (JWST) in 2021 will revolutionize direct imaging by providing the first characterizations of exoplanets within 3-13 microns. Our recent ability to empirically model and remove starlight from imaged extrasolar systems with post-processing algorithms like pyKLIP has proven vital to the discovery of exoplanets with high contrast imaging using current telescopes. However, such software systems are not presently prepared to handle the incoming JWST data. We aim to develop and refine new and existing data analysis tools that use pyKLIP in order to have a functional data reduction pipeline prior to the telescope’s launch. Using simulated data of an extrasolar system through the telescope’s Near-Infrared Camera (NIRCAM), we confirmed pyKLIP’s ability to fit and subtract the stellar PSF from an image and reveal exoplanets hidden underneath. We computed NIRCAM’s sensitivity to exoplanets, and upgraded pyKLIP to correct for coronagraphic usage when determining the astrometry and photometry of exoplanets. As part of JWST’s Early Release Programs, we share their goal of demonstrating JWST’s capabilities and swiftly disseminating them to the community. We therefore documented our analysis steps as public notebooks to help astronomers undertake the most suitable observing programs during JWST’s limited lifetime. Developing a Simulator for Complex Quadrotor Maneuvers Kasey Adams Mentors: Soon-Jo Chung and Michael O’Connell In the field of autonomous flight, simulations allow for testing to be done before expensive hardware needs to be risked in testing complex maneuvers. Thus, the development of a realistic simulator is imperative for testing the algorithmically generated, complex maneuvers that model systems being researched in the Center for Autonomous SURF Abstracts Systems and Technology (CAST) lab. We developed a 6 degree of freedom quadrotor simulator in python to test these maneuvers and algorithms. The simulator incorporates a Rapidly-Exploring Random Tree (RRT) path planning algorithm, which will plan agile maneuvers between two states following environmental and dynamic constraints. The simulator emulates real hardware by having motor delay and by running the controller and simulator at different frequencies. The simulator will allow the simulation and testing of more complex algorithms and maneuvers than were able to be simulated and tested before, and in the future, it will allow for a framework of developing the simulator to support multiple bodies and swarms. (1) Evaluating Hindsight During the COVID-19 Pandemic; (2) EEG Correlates of Pre-Clinical Alzheimer’s Disease Sara Adams Mentors: Shinsuke Shimojo and Daw-An Wu (1) Hindsight bias is the tendency to recall events as having been more predictable than they actually were. This topic is particularly relevant for COVID-19: the actions we take, both individually and as a society, are shaped by our predictions of what is to come. In later evaluating our response, it is important to understand the extent to which our recollection is biased. Thus, we are conducting a global survey of 500+ individuals in order to gauge their opinions at particular points in the pandemic and how they recall those opinions later on. Preliminary results have confirmed that individuals do exhibit hindsight bias regarding the pandemic, and ongoing surveys are evaluating contributing factors to this bias. (2) In addition to the COVID-19 project, we have been evaluating how EEG may be able to be used in order to aid the development of non-invasive early diagnoses of Alzheimer’s disease. Pilot experiments involving EEG alongside a Simon task in individuals who have biomarkers suggesting pre-clinical Alzheimer’s (CSF A42/tau ratio > 2.7132) have demonstrated that participants with these markers may have a difference in readiness potential compared to a control group. Simulating Scalar Vortex Fiber Nulling for Telescopes With Segmented Primary Mirrors Maximilian Adang Mentors: Dimitri Mawet and Daniel Echeverri Direct imaging and characterizing exoplanets at close angular separations from their host stars is a challenge in modern astronomy that high contrast imaging is trying to solve. Vortex Fiber Nulling (VFN) is an interferometric technique combining the phase pattern of a vortex coronagraph mask with the light coupling properties of a single mode fiber, nulling the starlight in the image to improve contrast between the exoplanet and the star at small separations. A pupil-plane vector vortex-based version of VFN has been demonstrated in a laboratory at Caltech. This implementation works well but is sensitive to polarization effects in the light that reduce the achievable null. I am exploring the viability of scalar VFN as an alternative for telescopes with segmented primary mirrors by imprinting the phase pattern across the segments of the primary instead of using a vector vortex mask. This is being done by simulating the phase pattern for the Keck telescope and optimizing the ratio of planet light to starlight coupling into the single mode fiber and the system’s integration time. This technique produces a null unlimited by polarization effects and enables immediate on-sky testing of VFN with telescopes such as Keck, and eventually TMT and GMT. Follow-Up of Supernovae Using the Liverpool Telescope Yasmin Afshar Mentor: Daniel Perley The Bright Transient Survey, a project within the Zwicky Transient Facility, aims to classify every bright transient object in the night sky. Reliable classification of supernovae and investigation of properties of their host galaxies
Recommended publications
  • Wannier90 As a Community Code: New
    IOP Journal of Physics: Condensed Matter Journal of Physics: Condensed Matter J. Phys.: Condens. Matter J. Phys.: Condens. Matter 32 (2020) 165902 (25pp) https://doi.org/10.1088/1361-648X/ab51ff 32 Wannier90 as a community code: new 2020 features and applications © 2020 IOP Publishing Ltd Giovanni Pizzi1,29,30 , Valerio Vitale2,3,29 , Ryotaro Arita4,5 , Stefan Bl gel6 , Frank Freimuth6 , Guillaume G ranton6 , JCOMEL ü é Marco Gibertini1,7 , Dominik Gresch8 , Charles Johnson9 , Takashi Koretsune10,11 , Julen Ibañez-Azpiroz12 , Hyungjun Lee13,14 , 165902 Jae-Mo Lihm15 , Daniel Marchand16 , Antimo Marrazzo1 , Yuriy Mokrousov6,17 , Jamal I Mustafa18 , Yoshiro Nohara19 , 4 20 21 G Pizzi et al Yusuke Nomura , Lorenzo Paulatto , Samuel Poncé , Thomas Ponweiser22 , Junfeng Qiao23 , Florian Thöle24 , Stepan S Tsirkin12,25 , Małgorzata Wierzbowska26 , Nicola Marzari1,29 , Wannier90 as a community code: new features and applications David Vanderbilt27,29 , Ivo Souza12,28,29 , Arash A Mostofi3,29 and Jonathan R Yates21,29 Printed in the UK 1 Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 CM Lausanne, Switzerland 2 Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom 10.1088/1361-648X/ab51ff 3 Departments of Materials and Physics, and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom 4 RIKEN
    [Show full text]
  • Smithsonian Institution Archives (SIA)
    SMITHSONIAN OPPORTUNITIES FOR RESEARCH AND STUDY 2020 Office of Fellowships and Internships Smithsonian Institution Washington, DC The Smithsonian Opportunities for Research and Study Guide Can be Found Online at http://www.smithsonianofi.com/sors-introduction/ Version 2.0 (Updated January 2020) Copyright © 2020 by Smithsonian Institution Table of Contents Table of Contents .................................................................................................................................................................................................. 1 How to Use This Book .......................................................................................................................................................................................... 1 Anacostia Community Museum (ACM) ........................................................................................................................................................ 2 Archives of American Art (AAA) ....................................................................................................................................................................... 4 Asian Pacific American Center (APAC) .......................................................................................................................................................... 6 Center for Folklife and Cultural Heritage (CFCH) ...................................................................................................................................... 7 Cooper-Hewitt,
    [Show full text]
  • Red Hat Enterprise Linux 6 Developer Guide
    Red Hat Enterprise Linux 6 Developer Guide An introduction to application development tools in Red Hat Enterprise Linux 6 Dave Brolley William Cohen Roland Grunberg Aldy Hernandez Karsten Hopp Jakub Jelinek Developer Guide Jeff Johnston Benjamin Kosnik Aleksander Kurtakov Chris Moller Phil Muldoon Andrew Overholt Charley Wang Kent Sebastian Red Hat Enterprise Linux 6 Developer Guide An introduction to application development tools in Red Hat Enterprise Linux 6 Edition 0 Author Dave Brolley [email protected] Author William Cohen [email protected] Author Roland Grunberg [email protected] Author Aldy Hernandez [email protected] Author Karsten Hopp [email protected] Author Jakub Jelinek [email protected] Author Jeff Johnston [email protected] Author Benjamin Kosnik [email protected] Author Aleksander Kurtakov [email protected] Author Chris Moller [email protected] Author Phil Muldoon [email protected] Author Andrew Overholt [email protected] Author Charley Wang [email protected] Author Kent Sebastian [email protected] Editor Don Domingo [email protected] Editor Jacquelynn East [email protected] Copyright © 2010 Red Hat, Inc. and others. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
    [Show full text]
  • Accelerating Molecular Docking by Parallelized Heterogeneous Computing – a Case Study of Performance, Quality of Results
    solis vasquez, leonardo ACCELERATINGMOLECULARDOCKINGBY PARALLELIZEDHETEROGENEOUSCOMPUTING–A CASESTUDYOFPERFORMANCE,QUALITYOF RESULTS,ANDENERGY-EFFICIENCYUSINGCPUS, GPUS,ANDFPGAS Printed and/or published with the support of the German Academic Exchange Service (DAAD). ACCELERATINGMOLECULARDOCKINGBYPARALLELIZED HETEROGENEOUSCOMPUTING–ACASESTUDYOF PERFORMANCE,QUALITYOFRESULTS,AND ENERGY-EFFICIENCYUSINGCPUS,GPUS,ANDFPGAS at the Computer Science Department of the Technische Universität Darmstadt submitted in fulfilment of the requirements for the degree of Doctor of Engineering (Dr.-Ing.) Doctoral thesis by Solis Vasquez, Leonardo from Lima, Peru Reviewers Prof. Dr.-Ing. Andreas Koch Prof. Dr. Christian Plessl Date of the oral exam October 14, 2019 Darmstadt, 2019 D 17 Solis Vasquez, Leonardo: Accelerating Molecular Docking by Parallelized Heterogeneous Computing – A Case Study of Performance, Quality of Re- sults, and Energy-Efficiency using CPUs, GPUs, and FPGAs Darmstadt, Technische Universität Darmstadt Date of the oral exam: October 14, 2019 Please cite this work as: URN: urn:nbn:de:tuda-tuprints-92886 URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/9288 This document is provided by TUprints, The Publication Service of the Technische Universität Darmstadt https://tuprints.ulb.tu-darmstadt.de This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 In- ternational” license. ERKLÄRUNGENLAUTPROMOTIONSORDNUNG §8 Abs. 1 lit. c PromO Ich versichere hiermit, dass die elektronische Version meiner Disserta- tion mit der schriftlichen Version übereinstimmt. §8 Abs. 1 lit. d PromO Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthema und Ergebnis dieses Versuchs mitzuteilen. §9 Abs. 1 PromO Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter Verwendung der angegebenen Quellen verfasst wurde.
    [Show full text]
  • Annual Report COOPERATIVE INSTITUTE for RESEARCH in ENVIRONMENTAL SCIENCES
    2015 Annual Report COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES 2015 annual report University of Colorado Boulder UCB 216 Boulder, CO 80309-0216 COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES University of Colorado Boulder 216 UCB Boulder, CO 80309-0216 303-492-1143 [email protected] http://cires.colorado.edu CIRES Director Waleed Abdalati Annual Report Staff Katy Human, Director of Communications, Editor Susan Lynds and Karin Vergoth, Editing Robin L. Strelow, Designer Agreement No. NA12OAR4320137 Cover photo: Mt. Cook in the Southern Alps, West Coast of New Zealand’s South Island Birgit Hassler, CIRES/NOAA table of contents Executive summary & research highlights 2 project reports 82 From the Director 2 Air Quality in a Changing Climate 83 CIRES: Science in Service to Society 3 Climate Forcing, Feedbacks, and Analysis 86 This is CIRES 6 Earth System Dynamics, Variability, and Change 94 Organization 7 Management and Exploitation of Geophysical Data 105 Council of Fellows 8 Regional Sciences and Applications 115 Governance 9 Scientific Outreach and Education 117 Finance 10 Space Weather Understanding and Prediction 120 Active NOAA Awards 11 Stratospheric Processes and Trends 124 Systems and Prediction Models Development 129 People & Programs 14 CIRES Starts with People 14 Appendices 136 Fellows 15 Table of Contents 136 CIRES Centers 50 Publications by the Numbers 136 Center for Limnology 50 Publications 137 Center for Science and Technology
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • 2021 Transpacific Yacht Race Event Program
    TRANSPACTHE FIFTY-FIRST RACE FROM LOS ANGELES 2021 TO HONOLULU 2 0 21 JULY 13-30, 2021 Comanche: © Sharon Green / Ultimate Sailing COMANCHE Taxi Dancer: © Ronnie Simpson / Ultimate Sailing • Hamachi: © Team Hamachi HAMACHI 2019 FIRST TO FINISH Official race guide - $5.00 2019 OVERALL CORRECTED TIME WINNER P: 808.845.6465 [email protected] F: 808.841.6610 OFFICIAL HANDBOOK OF THE 51ST TRANSPACIFIC YACHT RACE The Transpac 2021 Official Race Handbook is published for the Honolulu Committee of the Transpacific Yacht Club by Roth Communications, 2040 Alewa Drive, Honolulu, HI 96817 USA (808) 595-4124 [email protected] Publisher .............................................Michael J. Roth Roth Communications Editor .............................................. Ray Pendleton, Kim Ickler Contributing Writers .................... Dobbs Davis, Stan Honey, Ray Pendleton Contributing Photographers ...... Sharon Green/ultimatesailingcom, Ronnie Simpson/ultimatesailing.com, Todd Rasmussen, Betsy Crowfoot Senescu/ultimatesailing.com, Walter Cooper/ ultimatesailing.com, Lauren Easley - Leialoha Creative, Joyce Riley, Geri Conser, Emma Deardorff, Rachel Rosales, Phil Uhl, David Livingston, Pam Davis, Brian Farr Designer ........................................ Leslie Johnson Design On the Cover: CONTENTS Taxi Dancer R/P 70 Yabsley/Compton 2019 1st Div. 2 Sleds ET: 8:06:43:22 CT: 08:23:09:26 Schedule of Events . 3 Photo: Ronnie Simpson / ultimatesailing.com Welcome from the Governor of Hawaii . 8 Inset left: Welcome from the Mayor of Honolulu . 9 Comanche Verdier/VPLP 100 Jim Cooney & Samantha Grant Welcome from the Mayor of Long Beach . 9 2019 Barndoor Winner - First to Finish Overall: ET: 5:11:14:05 Welcome from the Transpacific Yacht Club Commodore . 10 Photo: Sharon Green / ultimatesailingcom Welcome from the Honolulu Committee Chair . 10 Inset right: Welcome from the Sponsoring Yacht Clubs .
    [Show full text]
  • Arxiv:1709.05353V1 [Astro-Ph.IM] 15 Sep 2017
    Draft version September 19, 2017 Typeset using LATEX twocolumn style in AASTeX61 THE DEDICATED MONITOR OF EXOTRANSITS AND TRANSIENTS (DEMONEXT): SYSTEM OVERVIEW AND YEAR ONE RESULTS FROM A LOW-COST ROBOTIC TELESCOPE FOR FOLLOW-UP OF EXOPLANETARY TRANSITS AND TRANSIENTS Steven Villanueva Jr.,1 B. Scott Gaudi,1 Richard W. Pogge,1, 2 Jason D. Eastman,3 Keivan G. Stassun,4 Mark Trueblood,5 and Patricia Trueblood5 1Department of Astronomy, The Ohio State University, 140 West 18th Av., Columbus, OH 43210, USA 2Department of Astronomy and Center for Cosmology & Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA 3Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA 4Department of Physics & Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235, USA 5Winer Observatory, P.O. Box 797, Sonoita, Arizona 85637-0797, USA Submitted to the Publications of the Astronomical Society of the Pacific ABSTRACT We report on the design and first year of operations of the DEdicated MONitor of EXotransits and Transients (DEMONEXT). DEMONEXT is a 20 inch (0.5-m) robotic telescope using a PlaneWave CDK20 telescope on a Mathis instruments MI-750/1000 fork mount. DEMONEXT is equipped with a 2048 × 2048 pixel Finger Lakes Instruments (FLI) detector, a 10-position filter wheel with an electronic focuser and B, V , R, I, g0, r0, i0, z0, and clear filters. DEMONEXT operates in a continuous observing mode and achieves 2{4 mmag raw, unbinned, precision on bright V < 13 targets with 20{120 second exposures, and 1 mmag precision achieved by binning on 5{6 minute timescales.
    [Show full text]
  • Northern Paiute and Western Shoshone Land Use in Northern Nevada: a Class I Ethnographic/Ethnohistoric Overview
    U.S. DEPARTMENT OF THE INTERIOR Bureau of Land Management NEVADA NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Ginny Bengston CULTURAL RESOURCE SERIES NO. 12 2003 SWCA ENVIROHMENTAL CON..·S:.. .U LTt;NTS . iitew.a,e.El t:ti.r B'i!lt e.a:b ~f l-amd :Nf'arat:1.iern'.~nt N~:¥G~GI Sl$i~-'®'ffl'c~. P,rceP,GJ r.ei l l§y. SWGA.,,En:v,ir.e.m"me'Y-tfol I €on's.wlf.arats NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Submitted to BUREAU OF LAND MANAGEMENT Nevada State Office 1340 Financial Boulevard Reno, Nevada 89520-0008 Submitted by SWCA, INC. Environmental Consultants 5370 Kietzke Lane, Suite 205 Reno, Nevada 89511 (775) 826-1700 Prepared by Ginny Bengston SWCA Cultural Resources Report No. 02-551 December 16, 2002 TABLE OF CONTENTS List of Figures ................................................................v List of Tables .................................................................v List of Appendixes ............................................................ vi CHAPTER 1. INTRODUCTION .................................................1 CHAPTER 2. ETHNOGRAPHIC OVERVIEW .....................................4 Northern Paiute ............................................................4 Habitation Patterns .......................................................8 Subsistence .............................................................9 Burial Practices ........................................................11
    [Show full text]
  • May 2016 | Volume 15, Issue 01 | Boeing.Com/Frontiers
    MAY 2016 | VOLUME 15, ISSUE 01 | BOEING.COM/FRONTIERS Solar revolution Spectrolab employees are powering the future— with sunshine MAY 2016 | 01 TABLE OF CONTENTS 12 06 Leadership Message 08 Snapshot 09 Quotables 10 Historical Perspective PHOTO: BOB FERGUSON | BOEING 12 Sweating the metal Go behind the scenes of the ongoing 737 MAX flight-test program, where the aircraft are pushed to the limit, and then some. 18 18 Desert bloom In the high desert of New Mexico, at Boeing’s site in Albuquerque, scientists and engineers are continually looking for ways to enhance modern civilization and military technologies. And at the nearby Starfire Optical Range, Boeing and the U.S. Air Force are jointly experimenting with lasers to better monitor man-made objects in orbit, much of it space debris. 28 Solar explorer A wholly owned Boeing subsidiary, Spectrolab has provided electric power to more than 600 satellites and delivered more than 4 million PHOTO: BOB FERGUSON | BOEING solar cells for communications, science and defense needs. It also provides 80 percent of the helicopter-mounted searchlights used 38 by U.S. law enforcement. 34 Great and small The Boeing AH-6 Little Bird, a light attack and reconnaissance helicopter, packs a lot of capability for its size. It is made at the Boeing site in Mesa, Ariz., alongside the bigger Apache. 38 Irish eyes are smiling Ryanair recently took delivery of its 400th 737-800, and a writer and photographer from Frontiers were on board for the flight to Ireland. 44 Strike dynasty Boeing’s new Harpoon Block II Plus is a network-enabled variant that can receive and transmit communications while in flight, allowing it to change course to strike a different target, even a moving target.
    [Show full text]
  • Warfare in a Fragile World: Military Impact on the Human Environment
    Recent Slprt•• books World Armaments and Disarmament: SIPRI Yearbook 1979 World Armaments and Disarmament: SIPRI Yearbooks 1968-1979, Cumulative Index Nuclear Energy and Nuclear Weapon Proliferation Other related •• 8lprt books Ecological Consequences of the Second Ihdochina War Weapons of Mass Destruction and the Environment Publish~d on behalf of SIPRI by Taylor & Francis Ltd 10-14 Macklin Street London WC2B 5NF Distributed in the USA by Crane, Russak & Company Inc 3 East 44th Street New York NY 10017 USA and in Scandinavia by Almqvist & WikseH International PO Box 62 S-101 20 Stockholm Sweden For a complete list of SIPRI publications write to SIPRI Sveavagen 166 , S-113 46 Stockholm Sweden Stoekholol International Peace Research Institute Warfare in a Fragile World Military Impact onthe Human Environment Stockholm International Peace Research Institute SIPRI is an independent institute for research into problems of peace and conflict, especially those of disarmament and arms regulation. It was established in 1966 to commemorate Sweden's 150 years of unbroken peace. The Institute is financed by the Swedish Parliament. The staff, the Governing Board and the Scientific Council are international. As a consultative body, the Scientific Council is not responsible for the views expressed in the publications of the Institute. Governing Board Dr Rolf Bjornerstedt, Chairman (Sweden) Professor Robert Neild, Vice-Chairman (United Kingdom) Mr Tim Greve (Norway) Academician Ivan M£ilek (Czechoslovakia) Professor Leo Mates (Yugoslavia) Professor
    [Show full text]