Digital Fabrication: Joints
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CNC ROUTERS Selecting the Right Tool, Maximizing Machine Time
CNC ROUTERS Selecting the right tool, maximizing machine time, finish, tool life & profits. Edge of Arlington Saw & Tool Inc 124 S. Collins St. Arlington, TX 76010 817-461-7171 Metro 888-461-7171 Toll Free 817-795-6651 Fax [email protected] I am a torque wrench – use me I am a collet – I am inexpensive but critical and need to be replaced every 400 to 600 hours or when damaged. For more information or to place an order call Edge Of Arlington at 817-461-7171 Page 1 Table of Contents Topic Pages Introduction 3 Factors to consider before selecting a tool 3-4 The many factors affecting tool life and finish quality. 4 -6 Collets & Tool Holders 6-7 Tightening Stands & Torque specifications 8-9 Torque Wrenches & Accessories 9-10 Taper Wipers 10 Spoil Boards, Hold-Downs & Dust Collection 11-13 Techniks Aggregate Heads 13-14 Climb VS. Conventional cut 15 Tool Materials 15-16 Tool Geometry 16-19 Chipload 20-21 Feed & Speed 21-22 Things to Avoid 22-23 Index 24-25 For more information or to place an order call Edge Of Arlington at 817-461-7171 Page 2 The following are general guidelines for profitably operating CNC routers when machining wood, plastic, composites and other man-made materials. There are many factors to consider and the choices can sometimes seem overwhelming. The purpose of this manual is to familiarize you with some basic principles that will enable you to adapt to any cutting situation. Friction during the cutting process results in enormous heat generation. -
Product Data
PRODUCT DATA Date: 20 March 2005 Information Sheet No.: ZE0197 EVO-STIK WOOD ADHESIVE WEATHERPROOF CROSSLINKING PVA ADHESIVE Evo-Stik Wood Adhesive Weatherproof is a one part water-resistant synthetic resin emulsion adhesive for general bonding of wood assemblies for non-structural applications. It has suitable properties for internal use and for protected external use. Evo-Stik Wood Adhesive Weatherproof is non-flammable, freeze/thaw stable, dries translucent, and meets EN 204 D3 & BS 4071: 1966 that the wet adhesive is carried into the socket MATERIALS BONDED/APPLICATIONS when assembly takes place. Wood which has Evo-Stik Wood Adhesive Weatherproof may be been stored in a cold or humid environment used for the assembly of frames for doors, should be allowed to condition in the workshop windows, drawers, etc. It is suitable for making atmosphere before bonding. mortice and tenon, dowelled, and other standard woodworking joints. It is also suitable for bonding 3. Assemble the parts while the adhesive wood veneers and laminated plastics to wood or film is still wet. The maximum open assembly chipboard cores. time depends on the substrate porosity and ambient temperature, but generally falls within Evo-Stik Wood Adhesive Weatherproof may also the range of 10 to 25 minutes. be used for bonding other materials such as rigid PVC or aluminium edge trim sections to 4. When the parts have been assembled, recessed wood for internal use. maintain light pressure on the bond line during the initial setting period, using equipment such as NOTE: It is unsuitable for assemblies vices, jigs, clamps. Dead loads may be used but continuously immersed in water, and applications are less efficient that clamping devices. -
Wood Engraving Using 3 Axis CNC Machine Ms.Disha D.Devardekar1, Ms.Aishwarya J.Gudale2
Wood Engraving Using 3 Axis CNC Machine Ms.Disha D.Devardekar1, Ms.Aishwarya J.Gudale2, Ms.Rutuja R.Karande3, 1,2,3Department of Electronics & Telecommunication Engineering, Bharati Vidyapeeth’s College of Engineering Kolhapur (India) ABSTRACT This machine can be used for Cutting, Engraving and Marking on wood, acrylic and PCB objects. Design picture that have been made on the PC sent to the microcontroller using serial communication then CNC perform execution on object according to point coordinates. Drill spindles will create patterns on objects automatically according to the design drawings. After testing, the CNC machine can be used for cutting, engraving and marking on wood, acrylic and PCB to 2D or 3D objects with 98.5% of carving accuracy and 100% of depth accuracy.Though there are several models for plotter, this plotter is designed in economical way. Main advantage of this plotter is we can replace the tool based on any application such as engraving machine, laser cutting machine, painting any surface and drawing purposes.Increase in the rapid growth of Technology significantly increased the usage and utilization of CNC systems in industries but at considerable expensive.The idea on fabrication of low cost CNC Router came forward to reduce the cost and complexity in CNC systems.Inspiring from this CNC technology and revolutionary change in the world of digital electronics &Microcontroller, we are presenting here an idea of “ 3 Axis CNC Machine For Wood Engraving Based On CNC Controller.” Keywords: CNC, Cutting, Engraving, Marking, Microcontroller. I.INTRODUCTION Working with automatic electrical and mechanical equipment demands precise, accuracy, speed, consistency and flexibility. -
Learner Support Material: Civil Technology Woodworking: Grade 11
EC - LEARNER SUPPORT MATERIAL: CIVIL TECHNOLOGY WOODWORKING: GRADE 11 CONTENT TO BE COVERED: TOPICS: 1. JOINING (Generic) + (SPECIFIC) Identify and explain the use of: • Bolts and nuts • Rawl bolts • Plastic plugs • Rawl plugs Methods of joining the following items: Alternate methods of fixing window panes onto casement members and fixed frames. Application, uses and drawings of the following woodworking joints (exploded and assembled views): • Haunched mortise and tenon joint • Twin mortice and tenon joint • Double bare face tenon 2. CASEMENT (Specific) Sketch of vertical section through the transom, bottom rail of fanlight and top rail of casement with glass and putty in position Identification of parts and the drawing of the external elevation of a double casement with fanlights and two horizontal glazing bars in the casement within a frame 3. DOORS(Specific) External doors: Application, drawing of front elevations, horizontal and vertical sections and constructional details of the following doors: • Three panel door with raised and fielded panels with high lock rail • Four panel door with low lock rail, raised panels and diminishing stile • Framed ledge, brace batten doors with lock and bottom rails 22 mm thick Application, drawing of front elevations, horizontal and vertical sections and constructional details of an entrance door with a shaped top rail and fixed sidelights within a frame. Sketches showing differentiation between a door frame and jamb lining 4. WALL PANELLING AND CUPBOARDS (Specific) a) Front elevation and vertical section showing methods of installing strip boards (tongue and groove boards) as wall panelling from floor to ceiling. b) A horizontal section showing how the joint between two strip boards are joined. -
Carpentry, Culinary Arts Instructor Guide and Curriculums. Bilingual Vocational Education Program
DOCUMENT RESUME ED 288 104 CE 049 167 AUTHOR Densmore, Roxanne T. TITLE Carpentry, Culinary Arts Instructor Guide and Curriculums. Bilingual Vocational Education Program. INSTITUTION Crownpoint Inst. of Technology, NM. SPONS AGENCY Office of Vocational and Adult Education (ED), Washington, DC. PUB DATE 87 GRANT G008620033 NOTE 369p. PUB TYPE Guides Classroom Use Guides (For Teachers) (052) EDRS PRICE MF01/PC15 Plus Postage. DESCRIPTORS *American Indian Education; Behavioral Objectives; *Bilingual Education; *Carpentry; Competency Based Education; *Cooking Instruction; Language Skills; Learning Activities; Lesson Plans; Mathematics Skills; Occupational Home Economics; Student Evaluation; Student Placement; Trade and Industrial Education; *Vocational English (Second Language) IDENTIFIERS *Navajo (Nation) ABSTRACT This guide is intended to assist vocational English as a second language (VESL) instructors in teaching courses in carpentry and the culinary arts to residents of Navajo reservations. The first section outlines the rationale and content of the two training programs as well as the basic VESL objectives that they seek to address. The next section, a VESL learning guide, discusses the main principles of the ESL method, learning characteristics of ESL students, the ESL learning environment, curriculum development, teaching techniques (including survival and competency-based methods, the notional-functional approach, use of the world outside the classroom, and total physical response), student assessment, and placement levels. Educational goals and curriculum design are covered next. The carpentry curriculum includes 25 units that are intended to provide students with hands-on and classroom instruction in the identification, proper handling, care, and maintenance of trade tools and equipment; the fundamental processes and techniques of the carpentry trade; applicable codes and safety practices; and blueprint reading and job estimation techniques. -
L1 Diploma in Carpentry & Joinery
NOTES FOR GUIDANCE Level 1 Diploma in Carpentry and Joinery (DIP056) Notes for guidance content provides the range of subject material for the programme of learning and specifies the skills, knowledge and understanding required for achievement of the unit. 2 Contents 1 Introduction 4 2 Units: CSA-L1Core01 Health, safety and welfare in construction and associated industries. 5 CSA-L1Core02 Knowledge of technical information, quantities and communication with others. 17 CSA-L1Core03 Knowledge of construction technology. 19 CSA-L1Occ09 Produce woodworking joints. 22 CSA-L1Occ10 Maintain and use carpentry and joinery hand tools. 27 CSA-L1Occ11 Prepare and use carpentry and joinery portable power tools. 32 3 Additional information 36 4 Glossary of Terms 37 3 Introduction Introduction This document contains all of the information required for the delivery of the level 1 and level 2 core units that support a number of Cskills Awards training qualifications. The unit content identifies the breadth and knowledge, and understanding needed to design and deliver a programme of learning to achieve each of the learning outcomes and assessment criteria. The learning outcomes set out what a learner is expected to know, understand or be able to do as the result of a process of learning. The assessment criteria specify the standard a learner is expected to meet to demonstrate that a learning outcome, or set of learning outcomes, has been achieved. The Notes for Guidance content provides further subject material for the programme of learning on what areas within the assessment criteria must be covered in the delivery of the unit. Additional Information This is informed by the underpinning knowledge and understanding requirements of the related NOS, where relevant. -
Woodworking Joints.Key
Woodworking making joints Using Joints Basic Butt Joint The butt joint is the most basic woodworking joint. Commonly used when framing walls in conventional, stick-framed homes, this joint relies on mechanical fasteners to hold the two pieces of stock in place. Learn how to build a proper butt joint, and when to use it on your woodworking projects. Basic Butt Joint The simplest of joints is a butt joint - so called because one piece of stock is butted up against another, then fixed in place, most commonly with nails or screws. The addition of glue will add some strength, but the joint relies primarily upon its mechanical fixings. ! These joints can be used in making simple boxes or frames, providing that there will not be too much stress on the joint, or that the materials used will take nails or screws reliably. Butt joints are probably strongest when fixed using glued dowels. Mitered Butt Joint ! A mitered butt joint is basically the same as a basic butt joint, except that the two boards are joined at an angle (instead of square to one another). The advantage is that the mitered butt joint will not show any end grain, and as such is a bit more aesthetically pleasing. Learn how to create a clean mitered butt joint. Mitered Butt Joint The simplest joint that requires any form of cutting is a miter joint - in effect this is an angled butt joint, usually relying on glue alone to construct it. It requires accurate 45° cutting, however, if the perfect 90° corner is to result. -
Digital Joinery for Hybrid Carpentry
Digital Joinery For Hybrid Carpentry Shiran Magrisso1 Moran Mizrahi2 Amit Zoran12 [email protected] [email protected] [email protected] Bezalel Academy of Arts and Design, Jerusalem 1 & The Hebrew University of Jerusalem2, Israel Figure 1 Digital Joinery and five development stages of a hybrid stool. (A) An early sketch of a stool design relying on Digital Joinery; (B) using the Generative Joinery Design Tool, the software generates digital joints; (C) a rendering of a complete stool with digital joints; (D) a 3D-printed (by selective laser sintering) Nylon-12 joint with its anchors; (D) a closeup photograph of a dyed and assembled Voronoi diagram skeleton joint, connecting four wooden beams; (E) a photograph of the finished stool (by Daniel Shechter). ABSTRACT INTRODUCTION The craft of carpentry relies on joinery: the connections Good joinery... is difficult to design and even more difficult between pieces of wood to create multipart structures. In to execute. It should be thought of as an investment, an traditional woodworking, joints are limited to the manual unseen morality. chisel skills of the craftsperson, or to capabilities of the George Nakashima [22] machines, which favorite 90° or 180° angle joints with no more than two elements. We contribute an interactive The craft of designing and implementing wood joints has a design process in which joints are generated digitally to long-standing and important role in all traditional allow for unrestricted beam connectors, then produced from woodworking practices [22,23,28]. Joints are the elements Nylon-12 using selective laser sintering (SLS) 3D printing. that transform lumber into a practical artifact. -
Introduction to Carpentry Tools and Joints
INTRODUCTION TO CARPENTRY TOOLS 1. Try Square 2. Steel Rule 3. Marking Guage 4. Coping Saw 5. Tenon Saw 6. Penon Saw 7. Ironjack Plane 8. Benchwise 1. Try Square This is used to mark lines at 90 degrees to a straight edge. It is used to mark out lines square to the face edge and face side. It may also be used to check if edges are straight. If the try square is placed on the edge of the material and held up to a light, any light shining through between the material and the try square blade indicates that the edge of the material is not straight. 2. Steel Rule A steel rule is a very accurate marking and measuring tool. The steel is thin and the markings on the rule are very fine. The measurements are in millimetres on one edge and inches on the other. The steel rule can also be used as a straight edge to check if materials or edges of materials are straight. The measurements on the steel rule go all the way to the end unlike the plastic ruler. This is because the rule may be used to measure inside pipes. It may also be used to measure diameters and circumferences of pipes and tubes accurately. The end of the rule with the measurements to the edge is called the zero end. By: Harish Gupta Page 1 3. Marking Guage The marking gauge is used on wood.It is used to mark straight lines parallel to a straight edge.The marking tool has an adjustable stock (the stock slides up and down the stem) and is set using a steel rule. -
CNC Router Machine Operator ______
ISO 9001 Certified 160 Charles Street | PO Box 76 Oconto, WI 54153 phone 920.834.2777 fax 920.834.3041 CNC Router Machine Operator www.letourneauplastics.net _________________________________________________________________________________________________ Location: Oconto, WI Reports to: CNC Supervisor Schedule: Full-time | 7:00AM to 3:30PM | Monday through Friday Comp | Benefits: Based on experience | Health, Life, Dental, Vacation, Paid Holidays, Profit Sharing, 401(k) _________________________________________________________________________________________________ POSITION DESCRIPTION This position works in a fast-paced manufacturing team environment to trim custom plastic parts by operating CNC routers. Responsibilities include but are not limited to those described herein. RESPONSIBILITIES ▪ Apply work order instructions and quality control requirements to job. ▪ Use computer manufacturing software to log in/out of jobs, and document work onto work orders. ▪ Work alongside Setup Technicians and Supervisors to understand job requirements. ▪ Load formed plastic parts into position and unload trimmed parts. ▪ Complete in-process visual quality checks throughout machining process to verify parts meet specifications. ▪ Operate bandsaw to downsize and manage scrap material. ▪ Multitask and maintain pace while operating multiple machines throughout each day. ▪ Work closely with team to efficiently react to production schedule changes and troubleshoot issues. ▪ Maintain a safe and tidy work environment according to guidelines and standards. -
Computer Numerical Control of Woodworking Machines in Secondary Manufacture
United States fl , Department of *I ' Agriculture Computer Numerical Forest Service Control of Woodworking SouthernExperiment Forest Station Machines in Secondarv New Orleans, II Louisiana acture General Technical Report Received SO-42 January, 1983 AUG 0 3 1983 Charles W. McMillin DOCUMENTS UGA LIBRARIES The function and operation of computer numerical controllers is summarized and a number of computer controlled machines used in secondary manufacture are described and illustrated. Included are machines for routing, boring, carving, laser profiling, panel sizing, injection bonding, and upholstery and foam contour cutting. Additionally, a discussion is given on a proposed computer-aided manufacturing system for laser cutting furniture parts under control of defect scanners. CONTENTS Page INTRODUCTION ............................................... 1 COMPUTER NUMERICAL CONTROLLERS ...................... 1 PROGRAMMING .................................................. 3 COMPUTER CONTROLLED MACHINES ......................... 5 Routers .......................................................... 5 Boring ........................................................... 9 Carving ....................................................... 13 Laser Profiling ................................................... 14 Panel Sizing ....................................................16 Injection Bonding ................................................ 16 Upholstery Cutting ............................................... 17 Foam Contour Cutting .......................................... -
Digital Fabrication Strategies for Timber Thin-Walled Sections
This paper is part of the Proceedings of the 2nd International Conference on High Performance and Optimum Design of Structures and Materials (HPSM 2016) www.witconferences.com Digital fabrication strategies for timber thin-walled sections Y. Al-Qaryouti, J. M. Gattas, R. Shi & L. McCann School of Civil Engineering, University of Queensland, Australia Abstract A rise in digital fabrication technologies has led to numerous recent advances in the design and manufacture of woodworking joints. Computational generative processes can be used to create a part with integral mechanical attachments for friction-fit, adhesion-less connections between parts. These processes can additionally create machine code for production of such parts on computer- numerically controlled (CNC) cutters. This paper investigates such computational processes for digital design and manufacture of timber thin-walled structural sections. Assembly procedures are first presented for rectangular hollow sections and I-sections, with a series of timber prototypes produced to demonstrate their CNC production. An experimental analysis on square hollow sections under uniaxial compressive loading is then conducted. Tight fit digitally-fabricated sections are seen to possess a structural capacity approaching that of the glued sections. Prototypes with different assembly tolerances and grain directions produce a range of novel failure modes and give insight into potential failure paths of digitally-fabricated timber sections. Keywords: digital fabrication, timber engineering, thin-walled sections. 1 Introduction 1.1 Digital Fabrication The Digital Age is transforming how we design, build, and produce structures [1] with digital modelling and fabrication tools now available that provide a degree of flexibility and coordination never previously available [2].