Ecomorphology and Ecology of the Grassland Specialist, Rusingoryx Atopocranion (Artiodactyla: Bovidae), from the Late Pleistocene of Western Kenya

Total Page:16

File Type:pdf, Size:1020Kb

Ecomorphology and Ecology of the Grassland Specialist, Rusingoryx Atopocranion (Artiodactyla: Bovidae), from the Late Pleistocene of Western Kenya Quaternary Research Copyright © University of Washington. Published by Cambridge University Press, 2021. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/qua.2020.102 Ecomorphology and ecology of the grassland specialist, Rusingoryx atopocranion (Artiodactyla: Bovidae), from the late Pleistocene of western Kenya Kris Kovarovic1* , J. Tyler Faith2,3, Kirsten E. Jenkins4,5, Christian A. Tryon6, Daniel J. Peppe7 1Department of Anthropology, Durham University, South Road, Durham DH1 3LE, United Kingdom 2Natural History Museum of Utah, University of Utah, Salt Lake City, UT, 84108, USA 3Department of Anthropology, University of Utah, Salt Lake City, UT, 84112, USA 4Department of Social Sciences, Tacoma Community College, 6501 S 19th St, Tacoma, WA, 98466, USA 5Department of Anthropology, University of Minnesota, 301 19th Ave S, Minneapolis MN, 55455, USA 6Department of Anthropology, University of Connecticut, Beach Hall, 354 Mansfield Rd., Storrs, CT 06269 USA 7Department of Geosciences, Terrestrial Paleoclimatology Research Group, Baylor University, One Bear Place #97354, Waco, TX, 76798, USA *Corresponding author email address: <[email protected]> (RECEIVED December 3, 2019; ACCEPTED October 1, 2020) Abstract Rusingoryx atopocranion is an extinct alcelaphin bovid from the late Pleistocene of Kenya, known for its distinctive hollow nasal crest. A bonebed of R. atopocranion from the Lake Victoria Basin provides a unique opportunity to examine the nearly complete postcranial ecomorphology of an extinct species, and yields data that are important to studying paleoenvironments and human-environment interaction. With a comparative sample of extant African bovids, we used discriminant function analyses to develop statistical ecomorphological models for 18 skeletal elements and element portions. Forelimb and hin- dlimb element models overwhelmingly predict that R. atopocranion was an open-adapted taxon. However, the phalanges of Rusingoryx are remarkably short relative to their breadth, a morphology outside the range of extant African bovids, which we interpret as an extreme open-habitat adaptation. It follows that even recently extinct fossil bovids can differ in important morphological ways relative to their extant counterparts, particularly if they have novel adaptations for past envi- ronments. This unusual phalanx morphology (in combination with other skeletal indications), mesowear, and dental enamel stable isotopes, demonstrate that Rusingoryx was a grassland specialist. Together, these data are consistent with independent geological and paleontological evidence for increased aridity and expanded grassland habitats across the Lake Victoria Basin. Keywords: Alcelaphin; Bovid; Discriminant function analysis; Ecomorphology; Grassland; Kenya; Late Pleistocene; Rusinga Island; Rusingoryx; Wakondo INTRODUCTION faunas until the onset of the Holocene (MacInnes, 1956; Marean and Gifford-Gonzalez, 1991; Marean, 1992; Faith, Researchers have only recently begun to understand the late 2014; Faith et al., 2015; Lesur et al., 2016; Tryon et al., Pleistocene faunas of eastern Africa, despite their critical 2016). This emerging perspective has been reinforced by role for interpreting the paleoenvironmental context of a fi ongoing research in the Kenyan portions of the Lake Victo- time and place central to the diversi cation and dispersal of ria Basin since 2008, which has documented numerous Homo sapiens early modern humans ( ) (Henn et al., 2018; extinct taxa (Rusingoryx atopocranion, Damaliscus hypso- Scerri et al., 2018; Tryon, 2019). The late Pleistocene large don, Kolpochoerus, and others) in late Pleistocene sedi- mammal communities were composed of numerous extinct ’ ments, including new species or those formerly thought to taxa, some of which were dominant members of the region s have disappeared from eastern Africa during the middle Pleistocene (e.g., Tryon et al., 2010, 2012, 2016; Faith et al., Cite this article: Kovarovic, K., Faith, J. T., Jenkins, K. E., Tryon, C. A., 2011, 2014, 2015; Jenkins et al., 2017). These new data Peppe, D. J. 2021. Ecomorphology and ecology of the grassland specialist, show that Homo sapiens in eastern Africa evolved among non- Rusingoryx atopocranion (Artiodactyla: Bovidae), from the late analog faunal communities (e.g., Faith et al., 2016), as has long Pleistocene of western Kenya. Quaternary Research 101, 187–204. https://doi.org/10.1017/qua.2020.102 been recognized for southern Africa (e.g., Klein, 1980). 187 Downloaded from https://www.cambridge.org/core. IP address: 170.106.202.126, on 23 Sep 2021 at 19:34:53, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/qua.2020.102 188 K. Kovarovic et al. A better understanding of the paleoecology of the extinct 2014). However, the craniodental remains of this species species that were a part of these communities is critical to are unusual compared to other bovids and, indeed, are with- paleoenvironmental and archaeological research. Developing out parallel among other mammals—it has a large, hollow a robust understanding of dietary ecology, habitat prefer- nasal crest otherwise known only from lambeosaurine hadro- ences, and locomotor strategy is an essential step in the use saur dinosaurs (O’Brien et al., 2016). That the postcranial of fossil taxa as paleoenvironmental indicators (Faith and anatomy and other behavioral aspects of Rusingoryx are com- Lyman, 2019). In turn, such knowledge facilitates the study parable to those of other alcelaphin bovids represents a series of human-environment interactions, and provides insight of assumptions or untested hypotheses. By relying solely on into hunting and subsistence methods, potential proxies for the untested assumption of taxonomic uniformitarianism, we past human mobility, population density, and cognitive abil- cannot evaluate how the past might have differed from the ity (e.g., Marean, 1997; Klein and Cruz-Uribe, 2000; Faith, present (e.g., Behrensmeyer et al., 2007). With this in mind, 2008; Wadley, 2010). However, a challenge in developing our goal here is to provide an assessment of the habitat pref- a fuller and more detailed paleoecological understanding of erences of R. atopocranion through an ecomorphological extinct species from African Pleistocene sites (and earlier) analysis of the large postcranial sample from Bovid Hill. is that most are known almost exclusively from taxonomically diagnostic craniodental remains. Sites with large assemblages Rusingoryx atopocranion of reliably associated postcranial remains or taxa with diag- nostic features in many postcranial elements are rare. An Rusingoryx atopocranion was described by Pickford and important exception is the Bovid Hill archaeological site at Thomas (1984) on the basis of a partial cranium from the Wakondo on Rusinga Island within Lake Victoria (Fig. 1) Wakondo locality on Rusinga Island. Because most of the (see also Marean, 1990, 1992, 1997), which preserves a face was not preserved, they did not anticipate the nasal large, monospecific bonebed that resulted from the targeted dome that has since been observed on more complete speci- hunting of a herd of the extinct bovid R. atopocranion mens (O’Brien et al., 2016). This resulted in incorrect ana- (Jenkins et al., 2017). tomical orientation of the type specimen (e.g., the dorsal Rapid burial in fluvial and alluvial sediments at Bovid Hill cranium was thought to be anterior), leading Pickford and led to the preservation of a large amount of associated skeletal Thomas (1984) to infer an aberrant morphology that included material with both cranial and postcranial elements of R. ato- dramatic shortening of the face and the presence of a probos- pocranion. The Bovid Hill assemblage thus affords a rare cis—hence the species name atopocranion (= strange skull). opportunity to provide a more holistic understanding of its Harris (1991) later observed similarities between the cranial ecology. In addition to the bonebed accumulation at Bovid architecture of the type specimen and Megalotragus from Hill, remains of the alcelaphin bovid Rusingoryx have been Koobi Fora, and suggested that Rusingoryx be considered a recovered from other late Pleistocene sediments (∼100–36 junior synonym of Megalotragus. This opinion prevailed ka) around the Kenyan Lake Victoria Basin, including both for the next two decades, until Faith et al. (2011) provided Rusinga and Mfangano islands and mainland sites Luanda morphological and systematic analyses of new material West and Karungu (Faith et al., 2011;O’Brien et al., 2016; recovered from Rusinga Island that suggested Rusingoryx Tryon et al., 2016; Blegen et al., 2017; Jenkins et al., 2017). could not be accommodated within Megalotragus. Subse- Rusingoryx atopocranion is the most abundant species quent analyses of complete crania recovered from the Bovid recovered from many of these late Pleistocene deposits, indi- Hill site on Rusinga Island supported this taxonomic assess- cating its important role for understanding the paleoecology ment, though it is clear that Rusingoryx is a recent offshoot of and paleoenvironments of the Lake Victoria Basin (Faith Megalotragus (O’Brien et al., 2016). O’Brien et al. (2016) et al., 2015; Tryon et al., 2016). Importantly,
Recommended publications
  • The Giant Alcelaphine Antelope, M. Priscus, Is One of Six Extinct Species
    Palaeont. afr. , 32, 17-22 (1995) A NEW FIND OF MEGALOTRAGUS PRISCUS (ALCELAPHINI, BOVIDAE) FROM THE CENTRAL KAROO, SOUTH AFRICA by J.S. Brink!, H. de Bruiyn2, L.B. Rademeyer2 and W.A. van der Westhuizen2 lFlorisbad Quaternary Research Dept., National Museum, POBox 266, Bloemfontein 9300, South Africa 2Dept. of Geology, University of the Orange Free State, Bloemfontein 9300, South Africa ABSTRACT We document the occurrence of the Florisian, or late Quaternary, form of the giant a1celaphine, Megalotragus priscus, from dongas on the Ongers River, near Britstown in the central Karoo. This is significant as it confirms the occurrence of the species in the Karoo and it suggests significantly wetter environments and productive grasslands in the central Karoo in pre-Holocene times. The present-day Karoo environment did not maintain populations of large ruminant grazers similar to M. priscus, and other specialized Florisian grazers, prior to the advent of agriculture and pasture management. Aridification in recent times is the likely cause of changes in grassland quality and the local dissappearance of these animals, if not their extinction. KEY WORDS: A1celaphine evolution, Florisian mammals, Late Pleistocene extinction INTRODUCTION modem bovid fauna is the product (Vrba 1976, 1979; The giant alcelaphine antelope, M. priscus, is one of Bigalke 1978; Gentry 1978; Gentry & Gentry 1978). six extinct species which define the Florisian Land One example of this increase in end~mism is the Mammal Age (Brink 1994; Hendey 1974). The evolution of M. priscus. An ancestral form, species is known from a variety of late Quaternary M. katwinkeli, is known from East Africa and possibly sites in the interior of southern Africa as well as from some southern African Plio-Pleistocene sites, but in the Cape Ecozone in pre-Holocene times (Brink 1987; the Middle and Late Pleistocene the genus Bender & Brink 1992; Klein 1980, 1984; Klein & Megalotragus is only found in southern African fossil Cruz-Uribe 1991).
    [Show full text]
  • Late Quaternary Extinction of Ungulates in Sub-Saharan Africa: a Reductionist's Approach
    Late Quaternary Extinction of Ungulates in Sub-Saharan Africa: a Reductionist's Approach Joris Peters Ins/itu/ für Palaeoanatomie, Domestikationsforschung und Geschichte der Tiermedizin, Universität München. Feldmochinger Strasse 7, D-80992 München, Germany AchilIes Gautier Laboratorium VDor Pa/eonlo/agie, Seclie Kwartairpaleo1ltologie en Archeozoölogie, Universiteit Gent, Krijgs/aon 2811S8, B-9000 Gent, Belgium James S. Brink National Museum, P. 0. Box 266. Bloemfontein 9300. Republic of South Africa Wim Haenen Instituut voor Gezandheidsecologie, Katholieke Universiteit Leuven, Capucijnenvoer 35, B-3000 Leuven, Belgium (Received 24 January 1992, revised manuscrip/ accepted 6 November 1992) Comparative osteomorphology and sta ti st ical analysis cf postcranial limb bone measurements cf modern African wildebeest (Collnochaetes), eland (Taura/ragus) and Africa n buffala (Sy" cer"s) have heen applied to reassess the systematic affiliations between these bovids and related extinct Pleistocene forms. The fossil sam pies come from the sites of Elandsfontein (Cape Province) .nd Flarisb.d (Orange Free State) in South Afrie • . On the basis of differenees in skull morphology and size of the appendicular skeleton between fossil and modern blaek wildebeest (ConlJochaeus gnou). the subspecies name anliquus, proposed earlier to designate the Pleistoeene form, ean be retained. The same taxonomie level is accepted for the large Pleistocene e1and, whieh could be named Taurolragus oryx antiquus. The long horned or giant buffa1o, Pelorovis antiquus, can be inc1uded in the polymorphous Syncerus caffer stock and could therefore be called Syncerus caffer antiquus. The ecology of Pleistocene and modern Connochaetes, Taurolragus and Syncerus is discussed. A relationship between herbivore body size and c1imate, as Bergmann's Rule predicts, could not be demonstrated.
    [Show full text]
  • Jonah Nathaniel Choiniere
    Jonah Nathaniel Choiniere American Museum of Natural History Division of Paleontology Central Park West at 79th Street New York, NY 10024 [email protected] (703) – 403 – 5865 (mobile) (212) – 769 – 5868 (office) Education BA 2002 Anthropology cum laude BS 2002 Geology cum laude University of Massachusetts Amherst Ph.D. 2010 Biology The George Washington University Professional Experience and Appointments 2010–2012. Kalbfleisch Fellow and Gerstner Scholar: American Museum of Natural History 2011-present. Paleontology Advisor: The Excursionist. 2010–2011. Curatorial Assistant, “The World’s Largest Dinosaurs”: American Museum of Natural History 2007—2010. Research Student: National Museum of Natural History 2002–2004. Property Manager: Boston Nature Center 2000. Archaeology Intern: Yosemite National Park Grants 2011. Co-PI Grant in Aid of Research, University of Cambridge: £17,000 2011. Jurassic Foundation Grant, Jurassic Foundation: $3084 2011. Waitt Grant, National Geographic Society: $15,000 2009. Mortensen Fund, The George Washington University: $250 2009. Exploration Fund, The Explorers Club: $1500 2009. Jurassic Foundation Grant, Jurassic Foundation: $2500 2009. Jackson School of Geosciences Travel Grant, Society of Vertebrate Paleontology: $1200 J. N. Choiniere 2 2008. East Asia and Pacific Summer Institutes Grant, National Science Foundation: $10,000 Awards and Fellowships September, 2010–August, 2012. Kalbfleisch Fellowship and Gerstner Scholar, American Museum of Natural History Fall, 2004–Spring, 2010. Weintraub Fellowship for Systematics and Evolution, The George Washington University Fall, 2009. King Fellowship, The George Washington University July, 2007. Cladistics Workshop Fellowship, The Ohio State University May, 2002. L.R. Wilson Award, University of Massachusetts Amherst Fall, 1997–Spring, 2002. Commonwealth Scholarship, University of Massachusetts Amherst Publications 2011.
    [Show full text]
  • 1 VITA STEVEN GEORGE DRIESE Personal
    VITA STEVEN GEORGE DRIESE Personal - Home Address: 330 Austin Ave., Apt. #322 Born: 9/21/56, Chicago, IL Waco, TX 767 01 Marital: Married, 3 grown children Cell: (254) 640-1832 Office: (254) 710-2194 E-mail: [email protected] Fax: (254) 710-2673 Internet: http://www.baylor.edu/Geology/ ORCID ID: 0000-0003-2389-6391 Education - 1974-1977 Southern Illinois University, B.S. Geology 1977 (summer) Southern Illinois University Field Camp 1977-1979 University of Wisconsin-Madison, M.S. Geology 1979-1982 University of Wisconsin-Madison, Ph.D. Geology Professional Affiliations - Society for Sedimentary Geology (SEPM); Secretary-Treasurer (1994-1996) and President (2009-2010): elected an Honorary Member in 2015 International Association of Sedimentologists (IAS) Geological Society of America (GSA; elected a Fellow in 1998) American Association for the Advancement of Science (AAAS; elected a Fellow in 2012) Geochemical Society Sigma Xi, the Scientific Society Soil Science Society of America (SSSA) National Association of Geoscience Teachers (NAGT) University of Tennessee-Knoxville (adjunct in Earth & Planetary Sciences) Professional Experience - 1975 (summer) Exploration Geologist, Amoco Production Company, Texas Gulf Coast Exploration 1976-1977 Laboratory and Field Assistant, Southern Illinois University, Acid mine drainage research 1977 (summer) Field Geologist (GS-5), U.S. Geological Survey, and mineral resources appraisal program 1977-1980 Graduate Teaching Assistant, University of Wisconsin-Madison, sedimentology, introductory geology
    [Show full text]
  • Proceedings of the 18Th Biennial Conference of the Palaeontological Society of Southern Africa Johannesburg, 11–14 July 2014
    Proceedings of the 18th Biennial Conference of the Palaeontological Society of Southern Africa Johannesburg, 11–14 July 2014 Table of Contents Letter of Welcome· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 63 Programme · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 64 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 66 Hand, K.P., Bringing Two Worlds Together: How Earth’s Past and Present Help Us Search for Life on Other Planets · · · · · · · 66 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67 Erwin, D.H., Major Evolutionary Transitions in Early Life: A Public Goods Approach · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67 Lelliott, A.D., A Survey of Visitors’ Experiences of Human Origins at the Cradle of Humankind, South Africa· · · · · · · · · · · · · · 68 Looy, C., The End-Permian Biotic Crisis: Why Plants Matter · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 69 Reed, K., Hominin Evolution and Habitat: The Importance of Analytical Scale · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
    [Show full text]
  • Palaeontological Impact Assessment: Desktop Study
    PALAEONTOLOGICAL IMPACT ASSESSMENT: DESKTOP STUDY PROPOSED GROOTPOORT PHOTOVOLTAIC SOLAR ENERGY FACILITY NEAR LUCKHOFF, FREE STATE PROVINCE John E. Almond PhD (Cantab.) Natura Viva cc, PO Box 12410 Mill Street, Cape Town 8010, RSA [email protected] June 2016 1. EXECUTIVE SUMMARY Pele Green Energy (Pty) Ltd Is proposing to develop a photovoltaic (PV) solar energy facility of up to 100 MW photovoltaic generation capacity as well as associated infrastructure on the Farm Grootpoort 168, Registration Division Fauresmith (Letsemeng Local Municipality), Free State. The total footprint of the project, including supporting infrastructure on site, will be approximately 250 hectares. The study area is situated on the northern side of the Gariep River some 15.5 km southwest of the small town of Luckhoff. It is underlain by (1) potentially fossiliferous basinal sediments of the marine to lacustrine Tierberg Formation (Ecca Group, Karoo Supergroup) of Middle Permian age that are locally intruded by (2) unfossiliferous Early Jurassic igneous rocks of the Karoo Dolerite suite. The Tierberg mudrocks are very poorly exposed due to the pervasive cover by Late Caenozoic superficial sediments (calcrete, soils, surface gravels, alluvium etc). The Ecca mudrocks in this region of the Karoo are frequently weathered and extensively calcretised near- surface. Well-exposed bedding planes that might reveal fossil material are rarely seen. The numerous large concretions of rusty-brown iron carbonate and silicified mudstone encountered at some horizons within the Tierberg succession are usually unfossiliferous; complex stromatolite-like features seen within them are not of biological origin. Baking by dolerite intrusion has probably further compromised fossil preservation within the Ecca mudrocks.
    [Show full text]
  • 1 TABLE S1 Global List of Extinct and Extant Megafaunal Genera By
    Supplemental Material: Annu. Rev. Ecol. Syst.. 2006. 37:215-50 doi: 10.1146/annurev.ecolsys.34.011802.132415 Late Quaternary Extinctions: State of the Debate Koch and Barnosky TABLE S1 Global list of extinct and extant megafaunal genera by continent. STATUS TAXON TIME AFRICA Mammalia Carnivora Felidae Acinonyx Panthera Hyaenidae Crocuta Hyaena Ursidae Ursusa Primates Gorilla Proboscidea Elephantidae C Elephas <100 Loxodonta Perissodactyla Equidae S Equus <100 E Hipparion <100 Rhinocerotidae Ceratotherium Diceros E Stephanorhinus <100 Artiodactyla Bovidae Addax Ammotragus Antidorcas Alcelaphus Aepyceros C Bos 11.5-0 Capra Cephalopus Connochaetes Damaliscus Gazella S Hippotragus <100 Kobus E Rhynotragus/Megalotragus 11.5-0 Oryx E Pelorovis 11.5-0 E Parmulariusa <100 Redunca Sigmoceros Syncerus Taurotragus Tragelaphus Camelidae C Camelus <100 1 Supplemental Material: Annu. Rev. Ecol. Syst.. 2006. 37:215-50 doi: 10.1146/annurev.ecolsys.34.011802.132415 Late Quaternary Extinctions: State of the Debate Koch and Barnosky Cervidae E Megaceroides <100 Giraffidae S Giraffa <100 Okapia Hippopotamidae Hexaprotodon Hippopotamus Suidae Hylochoerus Phacochoerus Potamochoerus Susa Tubulidenta Orycteropus AUSTRALIA Reptilia Varanidae E Megalania 50-15.5 Meiolanidae E Meiolania 50-15.5 E Ninjemys <100 Crocodylidae E Palimnarchus 50-15.5 E Quinkana 50-15.5 Boiidae? E Wonambi 100-50 Aves E Genyornis 50-15.5 Mammalia Marsupialia Diprotodontidae E Diprotodon 50-15.5 E Euowenia <100 E Euryzygoma <100 E Nototherium <100 E Zygomaturus 100-50 Macropodidae S Macropus 100-50 E Procoptodon <100 E Protemnodon 50-15.5 E Simosthenurus 50-15.5 E Sthenurus 100-50 Palorchestidae E Palorchestes 50-15.5 Thylacoleonidae E Thylacoleo 50-15.5 Vombatidae S Lasiorhinus <100 E Phascolomys <100 E Phascolonus 50-15.5 E Ramsayia <100 2 Supplemental Material: Annu.
    [Show full text]
  • Continuous Evolutionary Change in Plio-Pleistocene Mammals of Eastern Africa
    Continuous evolutionary change in Plio-Pleistocene mammals of eastern Africa Faysal Bibia,1 and Wolfgang Kiesslinga,b aMuseum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany; and bGeoZentrum Nordbayern, Paläoumwelt, Universität Erlangen-Nürnberg, 91054 Erlangen, Germany Edited by Richard Potts, Smithsonian Institution, Washington, DC, and accepted by the Editorial Board July 6, 2015 (received for review March 5, 2015) Much debate has revolved around the question of whether the Eastern Africa (here including Eritrea, Ethiopia, Kenya, Tanza- mode of evolutionary and ecological turnover in the fossil record nia, and Uganda) today encompasses primarily a single vegeta- of African mammals was continuous or pulsed, and the degree to tional zone [Somalia-Masai (27)], and constitutes a reasonable which faunal turnover tracked changes in global climate. Here, we subcontinental scale at which to examine turnover (1). We ex- assembled and analyzed large specimen databases of the fossil amine the fossil record for the occurrence of pulsed evolutionary record of eastern African Bovidae (antelopes) and Turkana Basin events (here large-scale and rapid changes in turnover rates, rel- large mammals. Our results indicate that speciation and extinction ative abundances, or body size) based on expectations from proceeded continuously throughout the Pliocene and Pleistocene, changes in global climate. In particular, there are two temporal as did increases in the relative abundance of arid-adapted bovids, intervals during which elevated mammalian speciation rates have and in bovid body mass. Species durations were similar among been reported in close timing with major global climatic changes, clades with different ecological attributes. Occupancy patterns at 3–2.5 Ma (28, 29) and 2–1.5 Ma (reviewed in ref.
    [Show full text]
  • Notations and Terms
    ENNEX Solar Energy Facility: Archaeological Impact Assessment Report 11 ADDENDUM: PALAEONTOLOGICAL SPECIALIST STUDY AGES (PTY) LTD - 58- PALAEONTOLOGICAL SPECIALIST STUDY: COMBINED DESKTOP AND FIELD-BASED ASSESSMENTS Proposed solar power generation facilities on the remaining extent of the farm Vetlaagte No. 4, De Aar, Northern Cape Province John E. Almond PhD (Cantab.) Natura Viva cc, PO Box 12410 Mill Street, Cape Town 8010, RSA [email protected] May 2012 1. SUMMARY It is proposed to develop seven small (30-75 MW) photovoltaic solar power generation facilities with associated infrastructure within an area of c. 935 ha on the Farm Vetlaagte, located 7 km east of De Aar, Pixley ka Seme District Municipality, Northern Cape. The potentially fossiliferous sediments of the Late Palaeozoic Karoo Supergroup (Ecca and Lower Beaufort Groups) that underlie the study area are almost entirely mantled in a thick layer of superficial deposits of probable Pleistocene to Recent age. These include various soils, gravels and – at least in some areas - a well-developed calcrete hardpan. The upper Ecca Group bedrocks in the northern portion of the study area contain locally abundant fossil wood (of palaeontological interest for dating and palaeoenvironmental studies), as well as low diversity non-marine trace fossil assemblages typical of the Waterford Formation, rather than the Tierberg Formation as mapped. No vertebrate fossils and only scattered woody plant impressions of the Permian Glossopteris Flora were observed within the Lower Beaufort Group rocks that are very poorly exposed in the southern portion of the Vetlaagte study area. Trace fossils, silicified wood and rare vertebrate remains (therapsids, parareptiles) of the Middle Permian Pristerognathus Assemblage Zone have recently been recorded from this succession in the De Aar region (Almond 2010b).
    [Show full text]
  • Paleoanthropology Society Meeting Abstracts, Minneapolis, Mn, 12-13 April 2011
    PALEOANTHROPOLOGY SOCIETY MEETING ABSTRACTS, MINNEAPOLIS, MN, 12-13 APRIL 2011 The Role of Paleosol Carbon Isotopes in Reconstructing the Aramis Ardipithecus ramidus habitat: Woodland or Grassland? Stanley H. Ambrose, Department of Anthropology, University of Illinois, Urbana, USA Giday WoldeGabriel, Environmental Sciences Division, Los Alamos National Laboratory, USA Tim White, Human Evolution Research Center, University of California, Berkeley, USA Gen Suwa, The University Museum, University of Tokyo, JAPAN Paleosols (fossil soils) were sampled across a 9km west to east curvilinear transect of the Aramis Member of the Sagantole Formation in the Middle Awash Valley. Paleosol carbon isotope ratios are interpreted as reflecting floral habitats with 30% to 70%4 C grass biomass, representing woodlands to wooded grasslands (WoldeGabriel et al. Science 326: 65e1–5, 2009). Pedogenic carbonate carbon and oxygen isotope ratios increase from west to east, reflecting grassier, drier habitats on the east, where Ardipithecus ramidus fossils are absent. These data are consistent with diverse lines of geological, paleontological, anatomical, and dental isotopic evidence for the character and distribution of floral habitats associated with Ardipithecus 4.4 Ma (White et al. Science 326: 87–93, 2009). Cerling et al. (Science 328: 1105-d, 2010) presented a new model for interpreting soil carbon isotopes from Aramis. They concluded that Ardipithecus occupied mainly wooded to open grasslands with less than 25% trees and shrubs and narrow strips of riparian woodlands. Geological and pale- ontological evidence for fluviatile deposition and riparian habitats is absent at Aramis. Their isotopic model contradicts all previously published paleosol carbon isotope-based reconstructions of tropical fossil sites, including all previous publications by six coauthors of Cerling et al.
    [Show full text]
  • Macromammalian Faunas, Biochronology and Palaeoecology
    Macromammalian faunas, biochronology and palaeoecology of the early Pleistocene Main Quarry hominin-bearing deposits of the Drimolen Palaeocave System, South Africa Justin W. Adams1,*, Douglass S. Rovinsky1,*, Andy I.R. Herries2,3 and Colin G. Menter3 1 Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia 2 The Australian Archaeomagnetism Laboratory, Department of Archaeology and History, La Trobe University, Bundoora, Victoria, Australia 3 Centre for Anthropological Research, University of Johannesburg, Johannesburg, Gauteng, South Africa * These authors contributed equally to this work. ABSTRACT The Drimolen Palaeocave System Main Quarry deposits (DMQ) are some of the most prolific hominin and primate-bearing deposits in the Fossil Hominids of South Africa UNESCO World Heritage Site. Discovered in the 1990s, excavations into the DMQ have yielded a demographically diverse sample of Paranthropus robustus (including DNH 7, the most complete cranium of the species recovered to date), early Homo, Papio hamadryas robinsoni and Cercopithecoides williamsi. Alongside the hominin and primate sample is a diverse macromammalian assemblage, but prior publications have only provided a provisional species list and an analysis of the carnivores recovered prior to 2008. Here we present the first description and analysis of the non-primate macromammalian faunas from the DMQ, including all 826 taxonomically identifiable specimens catalogued from over two decades of excavation. We also provide a biochronological interpretation of the DMQ deposits and an initial discussion of local palaeoecology based on taxon representation.The current DMQ assemblage consists of Submitted 6 March 2016 Accepted 25 March 2016 the remains of minimally 147 individuals from 9 Orders and 14 Families of mammals.
    [Show full text]
  • Andrew Y. Glikson Colin Groves the Deep Time Dimensions of The
    Modern Approaches in Solid Earth Sciences Andrew Y. Glikson Colin Groves Climate, Fire and Human Evolution The Deep Time Dimensions of the Anthropocene Modern Approaches in Solid Earth Sciences Volume 10 Series editor Yildirim Dilek , Department of Geology and Environmental Earth Science, Miami University , Oxford , OH, U.S.A Franco Pirajno , Geological Survey of Western Australia, and The University of Western, Australia, Perth , Australia M. J. R. Wortel , Faculty of Geosciences, Utrecht University, The Netherlands More information about this series at http://www.springer.com/series/7377 Andrew Y. Glikson • Colin Groves Climate, Fire and Human Evolution The Deep Time Dimensions of the Anthropocene Andrew Y. Glikson Colin Groves School of Archaeology and Anthropology School of Archaeology and Anthropology Australian National University Australian National University Canberra, ACT, Australia Canberra , ACT , Australia Responsible Series Editor: F. Pirajno This book represents an expansion of the book by Andrew Y. Glikson, Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon (Springer, 2014). ISSN 1876-1682 ISSN 1876-1690 (electronic) Modern Approaches in Solid Earth Sciences ISBN 978-3-319-22511-1 ISBN 978-3-319-22512-8 (eBook) DOI 10.1007/978-3-319-22512-8 Library of Congress Control Number: 2015951975 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
    [Show full text]