Skull Structure and Evolution in Tyrannosaurid Dinosaurs

Total Page:16

File Type:pdf, Size:1020Kb

Skull Structure and Evolution in Tyrannosaurid Dinosaurs Skull structure and evolution in tyrannosaurid dinosaurs PHILIP J. CURRIE, JØRN H. HURUM, and KAROL SABATH Currie, P.J., Hurum, J.H., and Sabath, K. 2003. Skull structure and evolution in tyrannosaurid dinosaurs. Acta Palaeonto− logica Polonica 48 (2): 227–234. Tyrannosauridae can be subdivided into two distinct subfamilies—the Albertosaurinae and the Tyrannosaurinae. Previ− ously recognized subdivisions Aublysodontinae and Shanshanosaurinae are rejected because they are based on insuffi− cient material and juvenile specimens. Our results are based upon a phylogenetic analysis using PAUP program (Swofford 1999) of 77 skull characters and seven genera (Albertosaurus, Alioramus, Daspletosaurus, Gorgosaurus, Nanotyrannus, Tarbosaurus, and Tyrannosaurus); with Allosaurus as outgroup. Of the 77 characters used, more than half were parsimony informative. Asingle most parsimonious tree was obtained with the Tree Length being 88. The analysis of cranial characters and comparison of postcranial features reveal that Tarbosaurus bataar is not the sister taxon of Tyrannosaurus rex (contra Holtz 2001). Their similarities are partially due to the fact that both are extremely large ani− mals. Thus, Tarbosaurus should be considered a genus distinct from Tyrannosaurus. Key words: Dinosauria, Theropoda, Coelurosauria, Tyrannosauridae, phylogeny, parsimonious analysis. Philip J. Currie [[email protected]], Royal Tyrrell Museum of Palaeontology, Box 7500, Drumheller, Alberta TOJ OYO, Canada; Jørn H. Hurum [[email protected]], Geologisk museum, Universitetet i Oslo, Postboks 1172 Blindern, N−0318 Oslo, Norway; Karol Sabath [[email protected]], Instytut Paleobiologii PAN, ul. Twarda 51/55, PL−00−818 Warszawa, Poland (currently: [[email protected]], Polish Geological Institute, ul. Rakowiecka 4, PL−00−975 Warszawa, Poland). Introduction Allosaurus Marsh, 1877 was chosen as a theropod generalized enough to serve as the outgroup. Siamotyrannus Buffetaut, To the general public, tyrannosaurids are amongst the best Suteethorn, and Tong, 1996 and Eotyrannus Hutt, Naish, known and most popular dinosaurs. Yet there have been rela− Martill, Barker, and Newbery, 2001 (Naish et al. 2001) have tively few monographic descriptions of specimens, and there both been described as primitive relatives of the Tyranno− is considerable disagreement about valid generic and specific sauridae. Although the fused, dorsally convex nasals alone names, and relationships. For example, Paul (1988) recog− demonstrate the probable relationship of the latter to tyranno− nized 14 tyrannosaurid species in five genera (Albertosaurus, saurids, we have not examined the original specimens and did Alioramus, Aublysodon, Indosuchus,andTyrannosaurus); not feel enough was known to meaningfully code the genera. Molnar et al. (1990) listed 12 species in at least eight genera For similar reasons, the Asian tyrannosaurid Alectrosaurus (Albertosaurus, Alectrosaurus, Alioramus, Chingkankou− Gilmore, 1933 was also excluded from this analysis. The saurus, Daspletosaurus, Nanotyrannus, Tarbosaurus,and holotype material of Alectrosaurus does not include any cra− Tyrannosaurus); Olshevsky (1995) referred to 19 species nial material (Gilmore 1933; Mader and Bradley 1989), and level taxa in at least 14 genera (Albertosaurus, Alectrosaurus, the skull of the better preserved Mongolian specimen (Perle Alioramus, Aublysodon, Daspletosaurus, Dinotyrannus, 1977) has been unavailable for years. Gorgosaurus, Jenghizkhan, Maleevosaurus, Nanotyrannus, Holtz (2001) and earlier authors recognised two sub− Shanshanosaurus, Stygivenator, Tarbosaurus,andTyranno− families (Aublysodontinae and Tyrannosaurinae) within the saurus); Holtz (2001) incorporated eleven species level taxa in Tyrannosauridae. Aublysodontinae Nopcsa, 1928 has al− at least eight genera (Albertosaurus, Alectrosaurus, Alio− ways been a vague subfamily established on the basis of a ramus, Aublysodon, Daspletosaurus, Gorgosaurus, Shan− tooth genus (Aublysodon Leidy, 1868). Although several shanosaurus,andTyrannosaurus). skeletons have been assigned to this genus, the recent discov− The purpose of this paper is to examine the intra−relation− eries of juveniles of well−established tyrannosaurid genera ships of the Tyrannosauridae Osborn, 1906, a family that has (including Albertosaurus Osborn, 1905, Daspletosaurus been well established as coelurosaurian (Holtz 1994, 2000, Russell, 1970, Gorgosaurus Lambe, 1914, Tarbosaurus 2001; Sereno 1997, 1999; Makovicky and Sues 1998). As Maleev, 1955, and Tyrannosaurus Osborn, 1905) have made pointed out by Holtz (2001), the relationship of tyrannosaurids it increasingly obvious that Aublysodon is based strictly on to other Coelurosauria von Huene, 1914 is unclear. Because characters that are morphologically and allometrically im− the intention of this paper was not to resolve this problem, mature. Aublysodon molnari Paul, 1988 (= Stygivenator mol− Acta Palaeontol. Pol. 48 (2): 227–234, 2003 http://app.pan.pl/acta48/app48−227.pdf 228 ACTA PALAEONTOLOGICA POLONICA 48 (2), 2003 nari Olshevsky, 1995) and Albertosaurus megagracilis Paul, for character 32. However, it is also evident that in Daspleto− 1988 (=Dinotyrannus megagracilis Olshevsky, 1995) are saurus the maxillary fenestra is small in juveniles (TMP probably juveniles of Tyrannosaurus rex Osborn, 1905 (see 94.143.1) but large in adults (NMC 8506, TMP 85.64.1). Be− Currie 2003). The Kirtland Shale aublysodontine (Lehman cause we do not know what the maxillary fenestra of an adult and Carpenter 1990) may be a juvenile Daspletosaurus Nanotyrannus looks like, character 32 is coded with a ×. (Holtz 2001). Nanotyrannus Bakker et al., 1988 was in− Some characters (such as character 40) were coded as seen in cluded in the Aublysodontinae by Sereno (1998), but most the only known specimens, are different in coding from other authors recognize it as a tyrannosaurid that may even Tarbosaurus and/or Tyrannosaurus, but may ultimately be congeneric with Tyrannosaurus (Carr 1999; Holtz 2001). prove to also be age−related and therefore invalid. Alectrosaurus has been placed in this subfamily because it has premaxillary teeth that lack denticles (Currie 2000), but Characters if Aublysodon is congeneric with tyrannosaurine genera, then the lack of denticles cannot be used to define the subfamily The characters used in this analysis were mostly derived Aublysodontinae. Shanshanosaurus Dong, 1977 has been from the research done by Hurum and Sabath (2003), and variously assigned to its own family (Shanshanosauridae Currie (2003). Work by earlier researchers (especially Rus− Dong, 1977), its own subfamily (Shanshanosaurinae), or to sell 1970; Carr 1999) provided a suitable framework for the Aublysodontinae (Paul 1988), but Currie and Dong character selection, but the most relevant research is that of (2001) suggested it is a tyrannosaurid that is possibly conge− Holtz (1994, 2000, and especially 2001). neric with Tarbosaurus. In short, there is no reason at present Holtz (2001) has done the most formal, phylogenetic anal− to assume that the Aublysodontinae exists. ysis of the intrafamily relationships of the Tyrannosauridae, This paper is based mostly on recent studies of the skull although he considered it as preliminary. In this paper, many anatomy of North American tyrannosaurids (Currie 2003), of his characters (Holtz 2001: appendix 7.1: 2, 3, 4, 15, 42, 48, and of Asian tyrannosaurids (Hurum and Sabath 2003); more 69, 70, 72, 74, 96, 103, 106, 108, 110) have been adopted. detailed anatomical data are given in these two papers. Others (9, 12, 56, 65, 66, 104+105, 109) have been modified Institutional abbreviations: AMNH, American Museum to accommodate the different style of presentation, and the of Natural History; NMC, National Museum of Canada, Ot− different suites of specimens and taxa. Some of the characters tawa; PIN, Palaeontological Institute, Russian Academy of used by Holtz (6, 7, 13, 42, 47, 49–55, 57, 59, 62, 63, 68, 93, Sciences, Moscow; TMP, Royal Tyrrell Museum of Palae− 99) were incorporated into this paper, but were completely re− ontology, Drumheller, Canada. worked or were included within character suites that bear little resemblance to his original wording. Anumber of characters used by Holtz (2001) were not Phylogenetic analysis used in our data matrix. As this paper examines only cranial anatomy of tyrannosaurids, none of his postcranial charac− ters were included. His characters numbered 1, 40, 41, 43, Selection of taxa and the problem of juvenile 44, 46, 58, 61, 64, 76, and 77 are considered to be allometric specimens (either within a growth series or between taxa in which there are absolute size differences at maturity). The relative size of Atotal of seven tyrannosaurid genera are included in this the prefrontals (character 5 of Holtz 2001) could not be quan− analysis. Albertosaurus, Alioramus, Daspletosaurus, Gorgo− tified in a meaningful way, and was therefore dropped from saurus, Nanotyrannus, Tarbosaurus, and Tyrannosaurus; the analysis. Prominent muscular fossae (character 10) were with Allosaurus as outgroup. More than 200 original cata− not recognized on the dorsal surfaces of palatines, and there− logued specimens of Albertosaurus, Daspletosaurus, fore the character was omitted pending further research. The Gorgosaurus, Tarbosaurus, and Tyrannosaurus have been angular is supposed to terminate posteriorly in front of the studied. Whenever possible, characters were coded from posterior surangular fenestra in Tarbosaurus bataar (Holtz
Recommended publications
  • Jurassic Park" Have Come to Pass
    JURASSIC WORLD and INDOMINUS REX 0. JURASSIC WORLD and INDOMINUS REX - Story Preface 1. EARLY DINOSAUR DISCOVERIES 2. THE JURASSIC PERIOD 3. JURASSIC-ERA DINOSAURS 4. FOSSILIZED AMBER 5. THE SOLNHOFEN LIMESTONE 6. TYRANNOSAURUS REX 7. T-REX - SUE 8. PTERANODON 9. TRICERATOPS 10. VELOCIRAPTOR 11. SPINOSAURUS 12. DINOSAUR TRACKS AND DISPUTES 13. NEW DINOSAUR DISCOVERIES 14. JURASSIC WORLD and INDOMINUS REX What do you do when you want to boost visitor attendance to your dinosaur-dominated, Jurassic World theme park? Use DNA, from four different dinosaurs, and “in the Hammond lab” create something entirely new and fearsome. Then ... give the new creature a name which signifies its awesome power: Indominus rex. At least ... that’s how the story theme works in the 2015 film “Jurassic World.” So ... let’s travel back in time, to the age of the dinosaurs, and meet the four interesting creatures whose DNA led to this new and ferocious predator: Rugops; Carnotaurus; Giganotosaurus; Majungasaurus. If—contrary to plan—Indominus rex becomes a killing machine, we have to ask: Did she “inherit” that trait from her “ancestors?” Let’s examine the question, starting with Rugops (ROO-gops). What we know about this theropod, from a physical standpoint, comes from a single, nearly complete and fossilized skull. With its weak but gaping jaw and skull, Rugops—which means “wrinkle face”—is not a predator like the Cretaceous-Period Spinosaurus. Instead, Rugops is a natural-born scavenger, likely waiting in the wings for what’s left of a Spinosaurus-caught, Cretaceous-era fish known as Onchopristis. Living off the scraps of meals, killed by another creature, could be enough for a Rugops.
    [Show full text]
  • PALEONTOLOGY and BIOSTRATIGRAPHY of MONGOLIA the JOINT SOVIET-MONGOLIAN PALEONTOLOGICAL EXPEDITION (Transactions, Vol
    PALEONTOLOGY AND BIOSTRATIGRAPHY OF MONGOLIA THE JOINT SOVIET-MONGOLIAN PALEONTOLOGICAL EXPEDITION (Transactions, vol. 3) EDITORIAL BOARD: N. N. Kramarenko (editor-in-chief) B. Luvsandansan, Yu. I. Voronin, R. Barsbold, A. K. Rozhdestvensky, B. A. Trofimov, V. Yu. Reshetov 1976 S. M. Kurzanov A NEW CARNOSAUR FROM THE LATE CRETACEOUS OF NOGON-TSAV, MONGOLIA* The Upper Cretaceous locality of Nogon-Tsav, located in the Zaltaika Gobi, 20 km NW of Mt. Ongon-Ulan-Ula, was discovered by geologists of the MNR. Then, in a series of years (1969–1971, 1973) the joint Soviet-Mongolian Geological Expedition investigated the site. According to the oral report of B. Yu. Reshetova, the deposits in this region are composed basically of sandstone and clay, clearly subdivided into two deposits. The lower great thickness contains many complete skulls, separate bones of tarbosaurs, ornithomimids, and claws of therizinosaurs. The upper red-colored beds are characterized only by scattered fragments of skulls. The fragments described below are of a new carnivorous dinosaur, Alioramus remotus (coll. South Goby region), from the family Tyrannosauridae, which occurs in the lower gray beds. Genus Alioramus Kurzanov, gen. nov. G e n u s n a m e from alius (Lat.) – other, ramus (Lat.) – branch; masc. G e n o t y p e — A. remotus Kurzanov, sp. nov., Upper Cretaceous, Nemegetinskaya suite, southern Mongolia. D i a g n o s i s . Tyrannosaurid of average size. Skull low, with highly elongated jaws. Nasals with well-developed separate crests of 1–l.5 cm height. Second antorbital fenestrae displaced forward, reaching the anterior end of the 5th tooth.
    [Show full text]
  • Theropod Teeth from the Upper Maastrichtian Hell Creek Formation “Sue” Quarry: New Morphotypes and Faunal Comparisons
    Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons TERRY A. GATES, LINDSAY E. ZANNO, and PETER J. MAKOVICKY Gates, T.A., Zanno, L.E., and Makovicky, P.J. 2015. Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons. Acta Palaeontologica Polonica 60 (1): 131–139. Isolated teeth from vertebrate microfossil localities often provide unique information on the biodiversity of ancient ecosystems that might otherwise remain unrecognized. Microfossil sampling is a particularly valuable tool for doc- umenting taxa that are poorly represented in macrofossil surveys due to small body size, fragile skeletal structure, or relatively low ecosystem abundance. Because biodiversity patterns in the late Maastrichtian of North American are the primary data for a broad array of studies regarding non-avian dinosaur extinction in the terminal Cretaceous, intensive sampling on multiple scales is critical to understanding the nature of this event. We address theropod biodiversity in the Maastrichtian by examining teeth collected from the Hell Creek Formation locality that yielded FMNH PR 2081 (the Tyrannosaurus rex specimen “Sue”). Eight morphotypes (three previously undocumented) are identified in the sample, representing Tyrannosauridae, Dromaeosauridae, Troodontidae, and Avialae. Noticeably absent are teeth attributed to the morphotypes Richardoestesia and Paronychodon. Morphometric comparison to dromaeosaurid teeth from multiple Hell Creek and Lance formations microsites reveals two unique dromaeosaurid morphotypes bearing finer distal denticles than present on teeth of similar size, and also differences in crown shape in at least one of these. These findings suggest more dromaeosaurid taxa, and a higher Maastrichtian biodiversity, than previously appreciated.
    [Show full text]
  • KENNETH CARPENTER, Ph.D. Director and Curator Of
    KENNETH CARPENTER, Ph.D. Director and Curator of Paleontology Prehistoric Museum Utah State University - College of Eastern Utah 155 East Main Street Price, Utah 84501 Education May, 1996. Ph.D., Geology University of Colorado, Boulder, CO. Dissertation “Sharon Springs Member, Pierre Shale (Lower Campanian) depositional environment and origin of it' s Vertebrate fauna, with a review of North American plesiosaurs” 251 p. May, 1980. B.S. in Geology, University of Colorado, Boulder, CO. Aug-Dec. 1977 Apprenticeship, Smithsonian Inst., Washington DC Professional Museum Experience 1975 – 1980: University of Colorado Museum, Boulder, CO. 1983 – 1984: Mississippi Museum of Natural History, Jackson, MS. 1984 – 1986: Academy of Natural Sciences of Philadelphia, Philadelphia. 1986: Carnegie Museum of Natural History, Pittsburgh, PA. 1986: Oklahoma Museum of Natural History, Norman, OK. 1987 – 1989: Museum of the Rockies, Bozeman, MT. 1989 – 1996: Chief Preparator, Denver Museum of Nature and Science, Denver, CO. 1996 – 2010: Chief Preparator, and Curator of Vertebrate Paleontology, Denver Museum of Nature and Science, Denver, CO. 2006 – 2007; 2008-2009: Acting Department Head, Chief Preparator, and Curator of Vertebrate Paleontology, Denver Museum of Nature and Science, Denver, CO. 2010 – present: Director, Prehistoric Museum, Price, UT 2010 – present: Associate Vice Chancellor, Utah State University Professional Services: 1991 – 1998: Science Advisor, Garden Park Paleontological Society 1994: Senior Organizer, Symposium "The Upper Jurassic Morrison Formation: An Interdisciplinary Study" 1996: Scientific Consultant Walking With Dinosaurs , BBC, England 2000: Scientific Consultant Ballad of Big Al , BBC, England 2000 – 2003: Associate Editor, Journal of Vertebrate Paleontology 2001 – 2003: Associate Editor, Earth Sciences History journal 2003 – present: Scientific Advisor, HAN Project 21 Dinosaur Expos, Tokyo, Japan.
    [Show full text]
  • Rule Booklet
    Dig for fossils, build skeletons, and attract the most visitors to your museum! TM SCAN FOR VIDEO RULES AND MORE! FOSSILCANYON.COM Dinosaurs of North America edimentary rock formations of western North America are famous for the fossilized remains of dinosaurs The rules are simple enough for young players, but and other animals from the Triassic, Jurassic, and serious players can benefit Cretaceous periods of the Mesozoic Era. Your objective from keeping track of the cards that is to dig up fossils, build complete skeletons, and display have appeared, reasoning about them in your museum to attract as many visitors as possible. probabilities and expected returns, and choosing between aggressive Watch your museum’s popularity grow using jigsaw-puzzle and conservative plays. scoring that turns the competition into a race! GAME CONTENTS TM 200,000300,000 160,000 VISITORS VISITORS PER YEAR 140,000 VISITORS PER YEAR 180,000 VISITORS PER YEAR 400,000 VISITORS PER YEAR Dig for fossils, build skeletons, and 340,000 VISITORS PER YEAR RD COLOR ELETONS CA GENUS PERIODDIET SK FOSSIL VISITORSPARTS 360,000 VISITORS PER YEAR PER YEAR attract the most visitors to your museum! VISITORS PER YEAR PER YEAR Tyrannosaurus K C 1 4 500,000 Brachiosaurus J H 1 3 400,000 ON YOUR TURN: TM SCAN FOR VIDEO Triceratops K H 1 3 380,000 RULES AND MORE! Allosaurus J C 2 Dig3 a first360,000 card. If it is a fossil, keep it hidden. FOSSILCANYON.COM Ankylosaurus K H 2 If it3 is an340,000 action card, perform the action.
    [Show full text]
  • Implications for Predatory Dinosaur Macroecology and Ontogeny in Later Late Cretaceous Asiamerica
    Canadian Journal of Earth Sciences Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous Asiamerica Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2020-0174.R1 Manuscript Type: Article Date Submitted by the 04-Jan-2021 Author: Complete List of Authors: Holtz, Thomas; University of Maryland at College Park, Department of Geology; NationalDraft Museum of Natural History, Department of Geology Keyword: Dinosaur, Ontogeny, Theropod, Paleocology, Mesozoic, Tyrannosauridae Is the invited manuscript for consideration in a Special Tribute to Dale Russell Issue? : © The Author(s) or their Institution(s) Page 1 of 91 Canadian Journal of Earth Sciences 1 Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: 2 Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous 3 Asiamerica 4 5 6 Thomas R. Holtz, Jr. 7 8 Department of Geology, University of Maryland, College Park, MD 20742 USA 9 Department of Paleobiology, National Museum of Natural History, Washington, DC 20013 USA 10 Email address: [email protected] 11 ORCID: 0000-0002-2906-4900 Draft 12 13 Thomas R. Holtz, Jr. 14 Department of Geology 15 8000 Regents Drive 16 University of Maryland 17 College Park, MD 20742 18 USA 19 Phone: 1-301-405-4084 20 Fax: 1-301-314-9661 21 Email address: [email protected] 22 23 1 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 2 of 91 24 ABSTRACT 25 Well-sampled dinosaur communities from the Jurassic through the early Late Cretaceous show 26 greater taxonomic diversity among larger (>50kg) theropod taxa than communities of the 27 Campano-Maastrichtian, particularly to those of eastern/central Asia and Laramidia.
    [Show full text]
  • Paleopathological Analysis of a Sub-Adult Allosaurus Fragilis (MOR
    Paleopathological analysis of a sub-adult Allosaurus fragilis (MOR 693) from the Upper Jurassic Morrison Formation with multiple injuries and infections by Rebecca Rochelle Laws A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences Montana State University © Copyright by Rebecca Rochelle Laws (1996) Abstract: A sub-adult Allosaurus fragilis (Museum of the Rockies specimen number 693 or MOR 693; "Big Al") with nineteen abnormal skeletal elements was discovered in 1991 in the Upper Jurassic Morrison Formation in Big Horn County, Wyoming at what became known as the "Big Al" site. This site is 300 meters northeast of the Howe Quarry, excavated in 1934 by Barnum Brown. The opisthotonic position of the allosaur indicated that rigor mortis occurred before burial. Although the skeleton was found within a fluvially-deposited sandstone, the presence of mud chips in the sandstone matrix and virtual completeness of the skeleton showed that the skeleton was not transported very far, if at all. The specific goals of this study are to: 1) provide a complete description and analysis of the abnormal bones of the sub-adult, male, A. fragilis, 2) develop a better understanding of how the bones of this allosaur reacted to infection and trauma, and 3) contribute to the pathological bone database so that future comparative studies are possible, and the hypothesis that certain abnormalities characterize taxa may be evaluated. The morphology of each of the 19 abnormal bones is described and each disfigurement is classified as to its cause: 5 trauma-induced; 2 infection-induced; 1 trauma- and infection-induced; 4 trauma-induced or aberrant, specific origin unknown; 4 aberrant; and 3 aberrant, specific origin unknown.
    [Show full text]
  • Science WORK PACK SCIENCE
    SCIENCE SPECIFIC TOPICS FOR KEY STAGE 2 AGED 7 - 11 IN YEAR GROUPS 3 - 6 DINOSAURS science WORK PACK SCIENCE NOTES FOR TEACHERS SCIENCE-SPECIFIC TOPICS FOR KS2 CHILDREN AGED 7-11 IN YEAR GROUPS 3-6 Life Processes and Living Things G variation and classification G life processes G living things in their environment Mathematics / numeracy G arithmetic - addition G reasoning English / literacy G vocabulary extension General: The worksheets require: G observational skills G reading skills G arithmatic skills G The pupils need to apply some prior knowledge, but all the information required is on the sheets, posters or the actual exhibit, facilitating use on site or at school. G Specifically from the Dinosaur Family Tree worksheet, they will learn that organisms can be classified on the basis of their similarities, and that elementary arithmatic can be used to support (through quantification) observational (qualative) classification schemes. G Like with human families, family trees can be constructed over time periods.The Family Tree worksheet enables the children to place fifteen well known dinosaurs into a simplified Dinosaur Family Tree, by identifying (numerically) which line each individual sits on, and using the date given, its position on that line. G The tree also introduces the concept of geological time, and the large numbers used in its construction. Additionally, they will notice that geological time is divided and names given to those divisions. G The work can be extended, some children will notice that four distinct groupings of dinosaurs are formed as time blocks (Triassic, Late Jurassic, Early Cretaceous and Late Cretaceous).
    [Show full text]
  • Reference Site Taphofacies Lithology Paleontology Weathering Transport
    Reference Site Taphofacies Lithology Paleontology Weathering Transport Groups Allosaurus Ceratosaurus Torvosaurus Small Theropod Camarosaurus Apatosaurus Barasaurus Diplodocus Haplocathosaurus Brachyosaurus Mymo Stegosaurus Dryosaurus Heterodontosaurus Camptosaurus Pterosaurus Crocodiles Turtle Frogs Fish Lizards Sphenodont Mammals Snails Unionids coarse grained sand- articulated partial conglomerate, trough skeletons, associated cross-bedding, fining by largegly Kirkland, 2006 FPA Channel sandstone upward sequences disarticulated X X X X X X X fine to coarse sand with mud and carbonate clasts, Mass accumulations, Dodson, 1980 Bone Cabin Quarry Channel sandstone common, poorly to mostly disarticulated X X X X X X X X X X fine to coarse sand with mud and carbonate clasts, Mass accumulations, Dodson, 1980 Quarry 13 Channel sandstone common, poorly to mostly disarticulated X X X X X X fine to coarse sand with mud and Mass accumulation, I - 17; II - 30; III - 60; carbonate clasts, mixed high to low scrap -37 (Layton Dodson, 1980 Dinosaur NM Channel sandstone common, poorly to articulation 0-1 (Fiorillo, 1994) (1977) X X X X X X X X X X fine to coarse sand with mud and Mass accumulation, I - 1205, II - 712, III - carbonate clasts, mixed high to low 279 (Richmond and Richmond and Morrison,Dry 1998 Mesa Channel sandstone common, poorly to articulation Morrison) X X X X X X X X X X X X X X X X fine to coarse sand with mud and carbonate clasts, Mass accumulation, Evanoff and Carpenter, Felch1998 Quarry 1 Channel sandstone common, poorly to mostly
    [Show full text]
  • Dinosaurs Found at Cleveland-Lloyd Dinosaur
    WHAT DINOSAUR DID THESE BONES COME FROM? STUDENT RESOURCE 2019•2020 DINOSAURS FOUND AT CLEVELAND-LLOYD DINOSAUR QUARRY In the charts below you will find important information about the different types and species of dinosaur fossils excavated between 1960-1990 at the Cleveland-Lloyd Dinosaur Quarry in Emery County, Utah. ORNITHISCHIA SPECIES DIET SIZE WEIGHT ADULT FEMUR CLAWS JAW Camptosaurus dispar Hoof-like claws Toothless beak and Herbivore 24 feet long, 1,500 lbs. 10-20 inches long 4 feet tall on their hands small teeth along the and feet sides of its mouth. Stegosaurus armatus Hoof-like claws Toothless beak and Herbivore 30 feet long, 6,048 lbs. 15-25 inches long 9 feet tall on their hands small teeth along the and feet sides of its mouth. SAURISCHIA THEROPODA SPECIES DIET SIZE WEIGHT ADULT FEMUR CLAWS JAW Allosaurus fragilis Carnivore 35 feet long, 3,136 lbs. 15-25 inches long Sharp, clawed Sharp, pointed 16 feet tall hands teeth Ceratosaurus nasicornis Carnivore 20 feet long, 2,192 lbs. 12-20 inches long Sharp, clawed Sharp, pointed 6 feet tall hands teeth Stokesosaurus clevelandi Carnivore 13.5 feet long, 771 lbs. 26 inches long Sharp, clawed Sharp, pointed 6 feet tall hands teeth Torvosaurus tanneri Carnivore 33 feet long, 8,800 lbs. Unknown Sharp, clawed Sharp, pointed 14 feet tall hands teeth Marshosaurus bicentesimus Carnivore 20 feet long, 2,240 lbs. 21 inches long Sharp, clawed Sharp, pointed 8 feet tall hands teeth SAUROPODA SPECIES DIET SIZE WEIGHT ADULT FEMUR CLAWS JAW Barosaurus lentus 5 claws on each of its Herbivore 85 feet long, 44,000 lbs.
    [Show full text]
  • A Census of Dinosaur Fossils Recovered from the Hell Creek and Lance Formations (Maastrichtian)
    The Journal of Paleontological Sciences: JPS.C.2019.01 1 TAKING COUNT: A Census of Dinosaur Fossils Recovered From the Hell Creek and Lance Formations (Maastrichtian). ______________________________________________________________________________________ Walter W. Stein- President, PaleoAdventures 1432 Mill St.. Belle Fourche, SD 57717. [email protected] 605-210-1275 ABSTRACT: A census of Hell Creek and Lance Formation dinosaur remains was conducted from April, 2017 through February of 2018. Online databases were reviewed and curators and collections managers interviewed in an effort to determine how much material had been collected over the past 130+ years of exploration. The results of this new census has led to numerous observations regarding the quantity, quality, and locations of the total collection, as well as ancillary data on the faunal diversity and density of Late Cretaceous dinosaur populations. By reviewing the available data, it was also possible to make general observations regarding the current state of certain exploration programs, the nature of collection bias present in those collections and the availability of today's online databases. A total of 653 distinct, associated and/or articulated remains (skulls and partial skeletons) were located. Ceratopsid skulls and partial skeletons (mostly identified as Triceratops) were the most numerous, tallying over 335+ specimens. Hadrosaurids (Edmontosaurus) were second with at least 149 associated and/or articulated remains. Tyrannosaurids (Tyrannosaurus and Nanotyrannus) were third with a total of 71 associated and/or articulated specimens currently known to exist. Basal ornithopods (Thescelosaurus) were also well represented by at least 42 known associated and/or articulated remains. The remaining associated and/or articulated specimens, included pachycephalosaurids (18), ankylosaurids (6) nodosaurids (6), ornithomimids (13), oviraptorosaurids (9), dromaeosaurids (1) and troodontids (1).
    [Show full text]
  • Immigrant Species, Or Native Species?
    The Journal of Paleontological Sciences: JPS.C.2017.01 TESTING THE HYPOTHESES OF THE ORIGIN OF TYRANNOSAURUS REX: IMMIGRANT SPECIES, OR NATIVE SPECIES? __________________________________________________________________________________________________________________ Chan-gyu Yun Vertebrate Paleontological Institute of Incheon, Incheon 21974, Republic of Korea & Biological Sciences, Inha University, Incheon 22212, Republic of Korea [email protected] __________________________________________________________________________________________________________________ Abstract: It is an undoubtable fact that Tyrannosaurus rex is the most iconic dinosaur species of all time. However, it is currently debatable whether this species has a North American origin or Asian origin. In this paper, I test these two hypotheses based on current fossil records and former phylogenetic analyses. Phylogenetic and fossil evidence, such as derived tyrannosaurine fossils of Asia, suggests that the hypothesis of an Asian origin of Tyrannosaurus rex is the most plausible one, but this is yet to be certain due to the scarcity of fossil records. INTRODUCTION The most famous and iconic dinosaur of all time, Tyrannosaurus rex, is only known from upper Maastrichtian geological formations in Western North America (e.g. Carr and Williamson, 2004; Larson, 2008). However, older relatives of Tyrannosaurus rex (e.g. Daspletosaurus, Tarbosaurus) are known from both Asia and North America. This leads to an evolutionary question: is the origin of Tyrannosaurus rex from Asia, or North America? About six of the currently valid tyrannosaurine taxa were described in the twenty-first century (based on parsimony analysis of Brusatte and Carr, 2016), with new species which are being described (Sebastian Dalman, Pers. Comm., 2016; Thomas Carr, Pers. Comm., 2016). It can be said that "now" is the "golden age” for studying tyrannosaurine evolution.
    [Show full text]