Biodegradation of Petroleum in Marine Seep Sediments

Total Page:16

File Type:pdf, Size:1020Kb

Biodegradation of Petroleum in Marine Seep Sediments Biodegradation of petroleum in marine seep sediments Sonakshi Mishra Biodegradation of petroleum in marine seep sediments Dissertation Submitted for the degree of Doctorate in Natural Sciences - Dr. rer. nat. - Zur Erlangung des Grades eines Doktors der Naturwissenschaften - Dr. rer. nat. - Faculty of Mathematics and Nature Science, Christian-Albrechts-University of Kiel Mathematisch-Naturwissenschaftliche Fakultät der Christian-Albrechts-Universität zu Kiel Submitted by Vorgelegt von Sonakshi Mishra, M.Sc. Kiel, 2016 Declaration I, Sonakshi Mishra, hereby declare that apart from the guidance of my supervisors, I have independently and entirely conducted this doctoral work and written the dissertation without any kind of unauthorized aid. Neither this nor a similar work has been published, submitted for publication, or submitted for an examination procedure to another department or institution. I assure that the presented research project has been conducted in full compliance with the rules of good scientific practice laid by the German Research Foundation (DFG). Kiel, .................................. .....................………………………………………… Sonakshi Mishra, M.Sc. Erklärung Hiermit erkläre ich, Sonakshi Mishra, dass ich, abgesehen von der Unterstützung meiner Betreuer, diese Doktorarbeit eigenständig und ohne unerlaubte Hilfe durchgeführt habe. Weder diese noch eine ähnliche Arbeit wurde an einer anderen Abteilung oder Hochschule im Rahmen eines Prüfungsverfahrens vorgelegt, veröffentlicht oder zur Veröffentlichung vorgelegt. Ich versichere, dass die Arbeit unter Einhaltung der guten wissenschaftlichen Praxis der Deutschen Forschungsgemeinschaft entstanden ist. Kiel, .................................. .....................………………………………………… Sonakshi Mishra, M.Sc. 1. Reviewer: Prof. Dr. Klaus Wallmann 2. Reviewer: Prof. Dr. Tina Treude Date of PhD defense: 23.03.2016 Place of PhD defense: Kiel, Germany I dedicate my entire doctoral work to both my beloved grandfathers, Shri Bamadev Mishra (1904 - 2007) and Shri Raghunath Mahapatra (1929 - 2015). This is for you both Bapa and Aja, the first teacher I ever had and the first scientist I ever saw. Thank you for that and a lot more………. I missed the final goodbye. But this is how I will keep both of you with me, forever. Contents Abstract ......................................................................................................................................... 2 Zusammenfassung ...................................................................................................................... 3 1. Introduction .......................................................................................................................... 5 1.1 Petroleum: Formation and Composition.............................................................................5 1.2 Sources of petroleum in the ocean ......................................................................................6 1.3 Natural seepage of petroleum.............................................................................................7 1.4 Fate of petroleum in the marine environment .................................................................. 10 1.5 Biodegradation of petroleum in marine sediments........................................................... 12 2. Objectives ............................................................................................................................ 24 3. Outline of manuscripts ..................................................................................................... 26 4. Manuscript I ........................................................................................................................ 28 5. Manuscript II. ...................................................................................................................... 70 6. Manuscript III. ..................................................................................................................110 7. Final Summary and Conclusion.....................................................................................165 1 Abstract This study presented for the first time the use of intact sediment cores in a continuous sediment-oil-flow-through (SOFT) system for investigating the degradation of petroleum under a simulated petroleum seepage. It suggests that the use of the SOFT system, which is designed to maintain the natural fabric and heterogeneity of the marine sediments, provides a more comprehensive understanding of the in situ processes involved in petroleum degradation at marine seeps compared to the traditional use of sediment slurries. The SOFT system enabled quasi in situ monitoring of ongoing biogeochemical changes taking place in sediments during petroleum seepage and to the best of our knowledge, showed microbial methanogenic degradation of hydrocarbons in an almost natural setting. The biogeochemical response of sediments from hydrocarbon adapted sites like the Caspian Sea, North Alex Mud Volcano in the Eastern Mediterranean, the Santa Barbara Channel and non-adapted site like the Eckernfoerde Bay in the Baltic Sea to petroleum seepage was investigated and compared using the SOFT system. Distinct redox zonation was established in the sediment cores that evolved temporally and spatially during the upward migration of petroleum. Sulfate reduction and methanogenesis were identified as two major processes involved in the degradation of petroleum at seeps. The concentrations of n-alkanes decreased successively towards the sediment surface. Methanogenesis was identified to be involved in degradation of mid- to long-chain alkanes whereas sulfate reduction was identified to be the more dominant process involved in both short and mid- to long chain alkane degradation. The microbial diversity decreased in sediments after the onset of petroleum seepage indicating that only few specialized microbes are involved in the degradation of petroleum under in situ conditions. Short-chain volatile alkanes like ethane, propane, isobutane, n-butane, pentane and hexane were almost completely depleted in the sulfate reducing zone. Clade SCA1 and clade LCA2 were identified as two key sulfate reducing bacteria in the Caspian Sea sediments responsible for short-chain alkane degradation and for mid- to long-chain alkane degradation, respectively, whereas 2 syntrophic archaea of the genus Methanosarcina was identified to be involved in the methanogenic degradation of long- chain alkanes. Among all sites, the fastest response to petroleum addition was seen in the North Alex Mud Volcano sediments followed by sediments from the Caspian Sea, the Santa Barbara Channel and the Eckernfoerde Bay suggesting that microbial communities in sediments with prior adaptation to hydrocarbon seepage are more efficient in degrading hydrocarbons compared to microbial communities from non-adapted sediments. Zusammenfassung Diese Studie zeigt die erstmalige Anwendung intakter Sedimentkerne in einem kontinuierlichen Sediment-Öl-Durchflusssystem (SOFT-System), welches den Abbau von Erdöl unter einem simulierten Erdölaustritt untersuchte. Das SOFT-System, welches entwickelt wurde um die natürliche Struktur und Heterogenität des marinen Sediments aufrechtzuerhalten, ermöglichte ein umfassenderes Verständnis der in situ Prozesse während des Erdölabbaus an den marinen Quellen, als die traditionell genutzten Sediment- Slurries (Sedimentgemische). Das SOFT System ermöglichte quasi in situ Untersuchungen der biogeochemischen Veränderungen, welche im Sediment während des Ölabbaus stattfanden. Des Weiteren wurde, nach bestem Wissen, der mikrobielle methanogene Abbau des Erdöls in einer beinahe natürlichen Umgebung gezeigt. Die biogeochemische Reaktion der Sedimente in an Kohlenwasserstoffe angepasste Gebieten wie dem Kaspischen Meer, dem North Alex Schlammvulkan im östlichen Mittelmeer und dem Santa Barbara Kanal, wurden mit einem Gebiet das nicht an einen Erdölausritt angepasst war, der Eckernfoerder Bucht in der Ostsee, unter Verwendung des SOFT Systems untersucht und verglichen. Es wurde eine ausgeprägte Redox-Zonierung in den Sedimentkernen festgestellt, welche sich mit dem aufsteigenden Erdöl zeitlich und räumlich bildete. Als die zwei, am Erdölabbau beteiligen Hauptprozesse, wurden Sulfatreduktion und Methanogenese identifiziert. Die Konzentration der n-Alkane verringerte sich sukzessiv in Richtung der Sedimentoberfläche. Die Methanogenese wurde 3 als beteiligter Prozess beim Abbau der mittel- und langkettigen Alkene erkannt, während Sulfatreduktion als dominanter Prozess in beides involviert war, den Abbau der kur z-, sowie der mittel- und langkettigen Alkane. Die mikrobielle Diversität verringerte sich nach Beginn des Erdölaustritts im Sediment, was darauf hinweist, dass nur einige wenige spezialisierte Bakterien in den Erdölabbau unter in situ Bedingungen involviert waren. Kurzkettige, flüchtige Alkane wie Ethan, Propan, Isobutan, n-Butan, Pentan und Hexan wurden beinahe vollständig in der Sulfatreduktionszone aufgebraucht. Die monophyletische Gruppe SCA1 wurde als eine der zwei Hauptsulfatreduzierer im Sediment des Kaspischen Meers identifiziert und war für den Abbau der kurzkettigen Alkane verantwortlich, während die monophyletische Gruppe LCA2 als zweiter Hauptsulfatreduzierer für den Abbau der mittel- und langkettigen Alkane identifiziert wurde. Wohingegen syntrophische Archaea der Gattung Methanosarcina für den methanogenen Abbau der langkettigen Alkane identifiziert wurden. Alle Beprobungsstandorte
Recommended publications
  • Regeneration of Unconventional Natural Gas by Methanogens Co
    www.nature.com/scientificreports OPEN Regeneration of unconventional natural gas by methanogens co‑existing with sulfate‑reducing prokaryotes in deep shale wells in China Yimeng Zhang1,2,3, Zhisheng Yu1*, Yiming Zhang4 & Hongxun Zhang1 Biogenic methane in shallow shale reservoirs has been proven to contribute to economic recovery of unconventional natural gas. However, whether the microbes inhabiting the deeper shale reservoirs at an average depth of 4.1 km and even co-occurring with sulfate-reducing prokaryote (SRP) have the potential to produce biomethane is still unclear. Stable isotopic technique with culture‑dependent and independent approaches were employed to investigate the microbial and functional diversity related to methanogenic pathways and explore the relationship between SRP and methanogens in the shales in the Sichuan Basin, China. Although stable isotopic ratios of the gas implied a thermogenic origin for methane, the decreased trend of stable carbon and hydrogen isotope value provided clues for increasing microbial activities along with sustained gas production in these wells. These deep shale-gas wells harbored high abundance of methanogens (17.2%) with ability of utilizing various substrates for methanogenesis, which co-existed with SRP (6.7%). All genes required for performing methylotrophic, hydrogenotrophic and acetoclastic methanogenesis were present. Methane production experiments of produced water, with and without additional available substrates for methanogens, further confrmed biomethane production via all three methanogenic pathways. Statistical analysis and incubation tests revealed the partnership between SRP and methanogens under in situ sulfate concentration (~ 9 mg/L). These results suggest that biomethane could be produced with more fexible stimulation strategies for unconventional natural gas recovery even at the higher depths and at the presence of SRP.
    [Show full text]
  • Historical Review Petroleum – Petroleum Use in Ancient Times Geology – Modern Petroleum Industry
    GEOL493k Lecture Outline • Course logistics Advanced • Historical Review Petroleum – Petroleum use in ancient times Geology – Modern Petroleum Industry Geology 373 Intro Petroleum Geology Geology 493K Adv. Petroleum Geology Class Web Site: http://www.geo.wvu.edu/~jtoro/Petroleum/index.htm Instructor: Dr. Jaime Toro Prerequisites: Geology 101 Grades: Office: G39 White Hall • Test 1 – Feb. 10 (Wed) 20 % Phone: 293-9817 • Test 2 – Mar. 11 (Fri) 20 % Email: [email protected] • Test 3 – April 13 (Wed) 20% Office Hours: 1:30-2:30 MF • Test 4 – May 4 (Wed), 3:00-5:00 PM 20% Text: Elements of Petroleum Geology, • Weekly Reading Quizzes – 12% R. Selley. • Attendance – 8% Class Topics • 2. The petroleum system • 3. What is Petroleum? Historical Review • 4. The subsurface environment • 5. Well Drilling and completion • 6. Formation Evaluation Petroleum • 7. Sedimentary Basins and Sedimentary rocks • 8. The source: How oil forms (πετρέλαιον, Greek) • 9. Migration • 10. The Reservoir Petra= Rock • 11. Traps and Seals • 12. Geophysical Methods of Exploration Oleum= Oil • 13. Exploration Process • 14. Prospect Evaluation • 15. Field Development Term first used by Agricola in 1546 • 16. Unconventional Resources • 17. The future of the Petroleum Industry Genesis 6:13-16 La Brea Tar Pits, Los Angeles • “And God said onto Noah … make yourself an arc of gopher wood; make rooms in the arc and cover it inside and out with pitch” Oil Seep Oil seep Rock streaked by oil. Ventura County, CA. USGS photo Asphaltum in Oil seep in Santa Barbara, CA. USGS Photo Gas Seep Gas seeps on the seafloor Gas seep in Ventura County, CA emits methane, ethane, propane.
    [Show full text]
  • Isolation and Characterization of Methanohalophilus Portucalensis Sp
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1993, p. 430-437 Vol. 43, No. 3 0020-7713/93/030430-08$02.00/0 Copyright 0 1993, International Union of Microbiological Societies Isolation and Characterization of Methanohalophilus portucalensis sp. nov. and DNA Reassociation Study of the Genus Methanohalophilus DAVID R. BOONE,ly2* INDRA M. MATHRLWI,~?YITAT LIU,l JOSE A. G. F. MENAIA,1-4 ROBERT A. AND JANE E. BOONE' Departments of Environmental Science and Engineering' and Chemical and Biological Sciences, Oregon Graduate Institute of Science & Technology, 19600 N. W. von Neumann Drive, Beaverton, Oregon 97006- 1999; School of Public Health, University of California, Los Angeles, California 900243; and Laboratbrio Nacional de Engenharia e Tecnologia Industrial, Estrada das Palmeiras, 2745 Queluz, Portugal4 Six strains of coccoid, halophilic methanogens were isolated from various salinaria and natural hypersaline environments. These isolates (strains FDF-lT [T = type strain], FDF-2, SF-2, Ret-1, SD-1, and Cas-1) grew on media containing methanol and mono-, di-, and trimethylamines as catabolic substrates, but not on media containing dimethyl sulfide, methane thiol, H,, formate, or acetate; when cells were provided with H, in addition to methanol or trimethylamine, they grew on the medium containing a methyl substrate but did not catabolize H,. All of the strains were capable of growth in mineral medium to which trimethylamine was added as a catabolic substrate, although some strains were greatly stimulated by biotin or p-aminobenzoate. DNA reassociation and denaturing electrophoresis of whole-cell proteins indicated that strains FDF-lT, FDF-2, SF-2, and Ret-1, together with previously described strains SF-1, 2-7302, 2-7401, 2-7404, and 2-7405, belong to a new taxon named Methunohalophilzuportucalensis sp.
    [Show full text]
  • A37952) (A37952
    (A37952) (A37952) Expert Opinion on Petroleum Tanker Accidents and Malfunctions in Browning Entrance and Principe Channel: Potential Marine Effects on Gitxaała Traditional Lands and Waters of a Spill During Tanker Transport of Bitumen from the Northern Gateway Pipeline Project (NGP) Contributors: CJ Beegle-Krause B. Emmett M. Hammond J. Short R. Spies Editor: L. Beckmann Prepared for: JFK Law Corporation, Counsel to Gitxaała First Nation 340 – 1122 Mainland Street Vancouver, BC V6B 5L1 December 2011 (A37952) Table of Contents 1.0 Background, Purpose and Scope of Work.......................................................................1 2.0 Report Structure .................................................................................................................1 3.0 Nearshore Habitats, Biological Communities, and Key Marine Resources .................2 3.1 Overview ..................................................................................................................2 3.2 Nearshore Physical Features...................................................................................3 3.3 Nearshore Habitats ..................................................................................................5 3.4 Nearshore Habitat Types and Oil Residency...........................................................9 3.5 Potentially Affected Marine Resources ..................................................................12 3.6 Critique of the Application with Respect to Habitat Issues ....................................13
    [Show full text]
  • Halophilic Methylotrophic Methanogens May Contribute to the High Ammonium Concentrations Found in Shale Oil and Shale Gas Reservoirs
    ORIGINAL RESEARCH published: 07 March 2019 doi: 10.3389/fenrg.2019.00023 Halophilic Methylotrophic Methanogens May Contribute to the High Ammonium Concentrations Found in Shale Oil and Shale Gas Reservoirs Biwen Annie An 1,2*, Yin Shen 2, Johanna Voordouw 2 and Gerrit Voordouw 2 1 Division 4.1 Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing, Berlin, Germany, 2 Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada Flow-back and produced waters from shale gas and shale oil fields contain high ammonium, which can be formed by methanogenic degradation of methylamines Edited by: into methane and ammonium. Methylamines are added to fracturing fluid to prevent Claire Dumas, clay swelling or can originate from metabolism of the osmolyte triglycinebetaine (GB). Institut National de la Recherche We analyzed field samples from a shale gas reservoir in the Duvernay formation Agronomique (INRA), France Reviewed by: and from a shale oil reservoir in the Bakken formation in Canada to determine the Qaisar Mahmood, origin of high ammonium. Fresh waters used to make fracturing fluid, early flow-back COMSATS University Islamabad, waters, and late flow back waters from the shale gas reservoir had increasing salinity Pakistan Mohanakrishna Gunda, of 0.01, 0.58, and 2.66 Meq of NaCl, respectively. Microbial community analyses Qatar University, Qatar reflected this fresh water to saline transition with halophilic taxa including Halomonas, Jorge Gonzalez-Estrella, Halanaerobium, and Methanohalophilus being increasingly present. Early and late University of New Mexico, United States flow-back waters had high ammonium concentrations of 32 and 15 mM, respectively.
    [Show full text]
  • Differential Taphonomic Effects of Petroleum Seeps and Karstic Sinkholes on Ancient Dire Wolf Teeth
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425345; this version posted January 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Differential taphonomic effects of petroleum seeps and karstic sinkholes on ancient dire wolf teeth: Hydrocarbon impregnation preserves fossils for chemical and histological analysis Sabrina B. Sholts1,2, Leslea J. Hlusko3,4, Joshua P. Carlson3,4, and Sebastian K. T. S. Wärmländer1,5,6* 1 Department of Biochemistry and Biophysics, Stockholm University, Sweden 2 Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA. 3 Department of Integrative Biology, University of California in Berkeley, California, USA 4 Human Evolution Research Center, University of California in Berkeley, California, USA 5 UCLA/Getty Conservation Programme, Cotsen Institute of Archaeology, UCLA, Los Angeles, California, USA 6 Department of Archaeology and Classical Studies, Stockholm University, Sweden *Corresponding author: Dr. Sebastian K.T.S. Wärmländer, Division of Biophysics, Stockholm University, 106 91 Stockholm, Sweden; Email: [email protected] Keywords: Dental histology; petroleum; tar seep; fossils; dire wolves Short title: Petroleum effects on fossil tooth histology 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425345; this version posted January 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Environmental Issues Associated with Fossil Fuel Resources an Evaluation of Research Opportunities for the U.S
    uses science for a changing world Environmental Issues Associated with Fossil Fuel Resources An Evaluation of Research Opportunities for the U.S. Geological Survey's Energy Resources Program By M.L. Tuttle1 and G.N. Breit1 , with contributions from R.G. Stanley, 2 G.N. Breit, 1 R.B. Finkelman, 3 E.I. Bobbins3 and C.B. Cecil3 Open-File Report 99-590 1999 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY 'Denver, Colorado 2Menlo Park, California SReston Virginia TABLE OF CONTENTS Page Introduction.................................................................................................................... 1 Internal Workshops.........................................................................................................2 World Wide Webb Workshop......................................................................................... 3 Proposed Topics of Research .......................................................................................... 4 Geology Based Environmental Factors of Energy Production.............................. 4 Subsidence due to petroleum production, coal mining, and geothermal development................................................................................. 5 Overburden and associated waste
    [Show full text]
  • Diversity of Archaea Domain in Cuatro Cienegas Basin: Archaean Domes
    bioRxiv preprint doi: https://doi.org/10.1101/766709; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Diversity of Archaea Domain in Cuatro Cienegas Basin: Archaean Domes 2 3 Medina-Chávez Nahui Olin1, Viladomat-Jasso Mariette2, Olmedo-Álvarez Gabriela3, Eguiarte Luis 4 E2, Souza Valeria2, De la Torre-Zavala Susana1,4 5 6 1Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de 7 Biotecnología. Av. Pedro de Alba S/N Ciudad Universitaria. San Nicolás de los Garza, Nuevo León, 8 México. C.P. 66455. 9 2Instituto de Ecología, UNAM, Circuito Exterior S/N anexo Jardín Botánico exterior. Ciudad 10 Universitaria, Ciudad de México, C.P. 04500 11 3Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N. 12 Campus Guanajuato, AP 629 Irapuato, Guanajuato 36500, México 13 14 4Correspondence should be addressed to Susana De la Torre-Zavala; 15 [email protected]. 16 17 18 19 20 21 22 1 bioRxiv preprint doi: https://doi.org/10.1101/766709; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 23 Abstract 24 Herein we describe the Archaea diversity in a shallow pond in the Cuatro Ciénegas Basin (CCB), 25 Northeast Mexico, with fluctuating hypersaline conditions containing elastic microbial mats that 26 can form small domes where their anoxic inside reminds us of the characteristics of the Archaean 27 Eon, rich in methane and sulfur gases; thus, we named this site the Archaean Domes (AD).
    [Show full text]
  • The Genome Sequence of Methanohalophilus Mahii SLPT
    Hindawi Publishing Corporation Archaea Volume 2010, Article ID 690737, 16 pages doi:10.1155/2010/690737 Research Article TheGenomeSequenceofMethanohalophilus mahii SLPT Reveals Differences in the Energy Metabolism among Members of the Methanosarcinaceae Inhabiting Freshwater and Saline Environments Stefan Spring,1 Carmen Scheuner,1 Alla Lapidus,2 Susan Lucas,2 Tijana Glavina Del Rio,2 Hope Tice,2 Alex Copeland,2 Jan-Fang Cheng,2 Feng Chen,2 Matt Nolan,2 Elizabeth Saunders,2, 3 Sam Pitluck,2 Konstantinos Liolios,2 Natalia Ivanova,2 Konstantinos Mavromatis,2 Athanasios Lykidis,2 Amrita Pati,2 Amy Chen,4 Krishna Palaniappan,4 Miriam Land,2, 5 Loren Hauser,2, 5 Yun-Juan Chang,2, 5 Cynthia D. Jeffries,2, 5 Lynne Goodwin,2, 3 John C. Detter,3 Thomas Brettin,3 Manfred Rohde,6 Markus Goker,¨ 1 Tanja Woyke, 2 Jim Bristow,2 Jonathan A. Eisen,2, 7 Victor Markowitz,4 Philip Hugenholtz,2 Nikos C. Kyrpides,2 and Hans-Peter Klenk1 1 DSMZ—German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545-001, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 5 Oak Ridge National Laboratory, Oak Ridge, TN 37830-8026, USA 6 HZI—Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany 7 Davis Genome Center, University of California, Davis, CA 95817, USA Correspondence should be addressed to Stefan Spring, [email protected] and Hans-Peter Klenk, [email protected] Received 24 August 2010; Accepted 9 November 2010 Academic Editor: Valerie´ de Crecy-Lagard´ Copyright © 2010 Stefan Spring et al.
    [Show full text]
  • Southern California Channel Islands Bibliography, Through 1992
    UC San Diego Bibliography Title Southern California Channel Islands Bibliography, through 1992 Permalink https://escholarship.org/uc/item/8h79t1p0 Author Channel Islands National Marine Sanctuary Publication Date 1992-12-31 eScholarship.org Powered by the California Digital Library University of California Southern California Channel Islands Bibliography, through 1992 Comprises 4035 references to the scientific literature on Southern California's Channel Islands. The Bibliography was compiled by the Channel Islands National Marine Sanctuary and is presented here in a February 1993 version. The Santa Barbara Museum of Natural History presents a California Channel Islands Bibliography on its website. It has more recent references and overlaps considerably with this bibliography. However this bibliography has some references not in their database, so it is maintained in original form. # 1. Abbott PL, Kies RP, Bachmann WR, Natenstedt CJ (San Diego State Univ., Dep. Geol. Sci., San Diego, CA; Stanford Univ., Stanford, CA; Nor. Res. Cent., Norway; Union Oil Co., United- States). A tectonic slice of Eocene strata, northern part of California continental borderland. Larue DK, Steel RJ. in Cenozoic marine sedimentation; Pacific margin, U.S.A.: Society of Economic Paleontologists and Mineralogists, Pacific Section ; Cenozoic marine sedimentation; Pacific margin, U.S.A.; 1983 May 18; Sacramento, CA,. Stanford Univ., Stanford, CA: Society of Economic Paleontologists and Mineralogists, Pacific Section; 1983. p. 151-168. 29 refs., illus., 1 table, strat. cols., sect., sketch maps. sedimentation/tectonic controls/sedimentary rocks/clastic rocks/conglomerate/sedimentary petrology/paleogeography/Eocene/Paleogene/Tertiary/Pacific Coast/continental borderland/San Miguel Island/Santa Cruz Island/Santa Rosa Island/San Nicolas Island/rhyolite/volcanic rocks/SRD.
    [Show full text]
  • Methanohalophilus Profundi Sp. Nov., a Methylotrophic Halophilic Piezophilic Methanogen Isolated from a Deep Hypersaline Anoxic Basin
    1 Systematic and Applied Microbiology Archimer September 2020, Volume 43 Issue 5 Pages 126107 (8p.) https://doi.org/10.1016/j.syapm.2020.126107 https://archimer.ifremer.fr https://archimer.ifremer.fr/doc/00635/74744/ Methanohalophilus profundi sp. nov., a methylotrophic halophilic piezophilic methanogen isolated from a deep hypersaline anoxic basin L'Haridon Stéphane 4, * , Haroun Hani 4, Corre Erwan 2, Roussel Erwan 1, Chalopin Morgane 5, Pignet Patricia 1, Balière Charlotte 1, La Cono Violetta 3, Jebbar Mohamed 4, Yakimov Michail 3, Toffin Laurent 1 1 Univ Brest (UBO), Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F- 29280 Plouzané, France 2 Sorbonne Université, CNRS, Station Biologique de Roscoff, Plateforme ABiMS, F-29688 Roscoff, France 3 Institute for Coastal Marine Environment CNR, 98122 Messina, Italy 4 Univ Brest (UBO), Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F- 29280 Plouzané, France 5 Univ Brest (UBO), Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F- 29280 Plouzané, France * Corresponding author : Stéphane L’Haridon, email address : [email protected] Abstract : A novel anaerobic methylotrophic halophilic methanogen strain SLHTYROT was isolated from a deep hypersaline anoxic basin called “Tyro” located in the Eastern Mediterranean Sea. Cells of SLHTYROT were motile cocci. The strain SLHTYROT grew between 12 and 37 °C (optimum 30 °C), at pH between 6.5 and 8.2 (optimum pH 7.5) and salinity from 45 to 240 g L−1 NaCl (optimum 135 g L−1). Strain SLHTYROT was methylotrophic methanogen able to use methylated compounds (trimethylamine, dimethylamine, monomethylamine and methanol). Strain SLHTYROT was able to grow at in situ hydrostatic pressure and temperature conditions (35 MPa, 14 °C).
    [Show full text]
  • Ice Age Megafauna and Time Notes Contents
    Ice Age megafauna and time notes Contents 1 Ice age 1 1.1 Origin of ice age theory ........................................ 1 1.2 Evidence for ice ages ......................................... 2 1.3 Major ice ages ............................................ 3 1.4 Glacials and interglacials ....................................... 4 1.5 Positive and negative feedback in glacial periods ........................... 5 1.5.1 Positive feedback processes ................................. 5 1.5.2 Negative feedback processes ................................. 5 1.6 Causes of ice ages ........................................... 5 1.6.1 Changes in Earth’s atmosphere ................................ 6 1.6.2 Position of the continents ................................... 6 1.6.3 Fluctuations in ocean currents ................................ 7 1.6.4 Uplift of the Tibetan plateau and surrounding mountain areas above the snowline ...... 7 1.6.5 Variations in Earth’s orbit (Milankovitch cycles) ....................... 7 1.6.6 Variations in the Sun’s energy output ............................. 8 1.6.7 Volcanism .......................................... 8 1.7 Recent glacial and interglacial phases ................................. 8 1.7.1 Glacial stages in North America ............................... 8 1.7.2 Last Glacial Period in the semiarid Andes around Aconcagua and Tupungato ........ 9 1.8 Effects of glaciation .......................................... 9 1.9 See also ................................................ 10 1.10 References .............................................
    [Show full text]