Biodegradation of Petroleum in Marine Seep Sediments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regeneration of Unconventional Natural Gas by Methanogens Co
www.nature.com/scientificreports OPEN Regeneration of unconventional natural gas by methanogens co‑existing with sulfate‑reducing prokaryotes in deep shale wells in China Yimeng Zhang1,2,3, Zhisheng Yu1*, Yiming Zhang4 & Hongxun Zhang1 Biogenic methane in shallow shale reservoirs has been proven to contribute to economic recovery of unconventional natural gas. However, whether the microbes inhabiting the deeper shale reservoirs at an average depth of 4.1 km and even co-occurring with sulfate-reducing prokaryote (SRP) have the potential to produce biomethane is still unclear. Stable isotopic technique with culture‑dependent and independent approaches were employed to investigate the microbial and functional diversity related to methanogenic pathways and explore the relationship between SRP and methanogens in the shales in the Sichuan Basin, China. Although stable isotopic ratios of the gas implied a thermogenic origin for methane, the decreased trend of stable carbon and hydrogen isotope value provided clues for increasing microbial activities along with sustained gas production in these wells. These deep shale-gas wells harbored high abundance of methanogens (17.2%) with ability of utilizing various substrates for methanogenesis, which co-existed with SRP (6.7%). All genes required for performing methylotrophic, hydrogenotrophic and acetoclastic methanogenesis were present. Methane production experiments of produced water, with and without additional available substrates for methanogens, further confrmed biomethane production via all three methanogenic pathways. Statistical analysis and incubation tests revealed the partnership between SRP and methanogens under in situ sulfate concentration (~ 9 mg/L). These results suggest that biomethane could be produced with more fexible stimulation strategies for unconventional natural gas recovery even at the higher depths and at the presence of SRP. -
Historical Review Petroleum – Petroleum Use in Ancient Times Geology – Modern Petroleum Industry
GEOL493k Lecture Outline • Course logistics Advanced • Historical Review Petroleum – Petroleum use in ancient times Geology – Modern Petroleum Industry Geology 373 Intro Petroleum Geology Geology 493K Adv. Petroleum Geology Class Web Site: http://www.geo.wvu.edu/~jtoro/Petroleum/index.htm Instructor: Dr. Jaime Toro Prerequisites: Geology 101 Grades: Office: G39 White Hall • Test 1 – Feb. 10 (Wed) 20 % Phone: 293-9817 • Test 2 – Mar. 11 (Fri) 20 % Email: [email protected] • Test 3 – April 13 (Wed) 20% Office Hours: 1:30-2:30 MF • Test 4 – May 4 (Wed), 3:00-5:00 PM 20% Text: Elements of Petroleum Geology, • Weekly Reading Quizzes – 12% R. Selley. • Attendance – 8% Class Topics • 2. The petroleum system • 3. What is Petroleum? Historical Review • 4. The subsurface environment • 5. Well Drilling and completion • 6. Formation Evaluation Petroleum • 7. Sedimentary Basins and Sedimentary rocks • 8. The source: How oil forms (πετρέλαιον, Greek) • 9. Migration • 10. The Reservoir Petra= Rock • 11. Traps and Seals • 12. Geophysical Methods of Exploration Oleum= Oil • 13. Exploration Process • 14. Prospect Evaluation • 15. Field Development Term first used by Agricola in 1546 • 16. Unconventional Resources • 17. The future of the Petroleum Industry Genesis 6:13-16 La Brea Tar Pits, Los Angeles • “And God said onto Noah … make yourself an arc of gopher wood; make rooms in the arc and cover it inside and out with pitch” Oil Seep Oil seep Rock streaked by oil. Ventura County, CA. USGS photo Asphaltum in Oil seep in Santa Barbara, CA. USGS Photo Gas Seep Gas seeps on the seafloor Gas seep in Ventura County, CA emits methane, ethane, propane. -
Isolation and Characterization of Methanohalophilus Portucalensis Sp
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1993, p. 430-437 Vol. 43, No. 3 0020-7713/93/030430-08$02.00/0 Copyright 0 1993, International Union of Microbiological Societies Isolation and Characterization of Methanohalophilus portucalensis sp. nov. and DNA Reassociation Study of the Genus Methanohalophilus DAVID R. BOONE,ly2* INDRA M. MATHRLWI,~?YITAT LIU,l JOSE A. G. F. MENAIA,1-4 ROBERT A. AND JANE E. BOONE' Departments of Environmental Science and Engineering' and Chemical and Biological Sciences, Oregon Graduate Institute of Science & Technology, 19600 N. W. von Neumann Drive, Beaverton, Oregon 97006- 1999; School of Public Health, University of California, Los Angeles, California 900243; and Laboratbrio Nacional de Engenharia e Tecnologia Industrial, Estrada das Palmeiras, 2745 Queluz, Portugal4 Six strains of coccoid, halophilic methanogens were isolated from various salinaria and natural hypersaline environments. These isolates (strains FDF-lT [T = type strain], FDF-2, SF-2, Ret-1, SD-1, and Cas-1) grew on media containing methanol and mono-, di-, and trimethylamines as catabolic substrates, but not on media containing dimethyl sulfide, methane thiol, H,, formate, or acetate; when cells were provided with H, in addition to methanol or trimethylamine, they grew on the medium containing a methyl substrate but did not catabolize H,. All of the strains were capable of growth in mineral medium to which trimethylamine was added as a catabolic substrate, although some strains were greatly stimulated by biotin or p-aminobenzoate. DNA reassociation and denaturing electrophoresis of whole-cell proteins indicated that strains FDF-lT, FDF-2, SF-2, and Ret-1, together with previously described strains SF-1, 2-7302, 2-7401, 2-7404, and 2-7405, belong to a new taxon named Methunohalophilzuportucalensis sp. -
A37952) (A37952
(A37952) (A37952) Expert Opinion on Petroleum Tanker Accidents and Malfunctions in Browning Entrance and Principe Channel: Potential Marine Effects on Gitxaała Traditional Lands and Waters of a Spill During Tanker Transport of Bitumen from the Northern Gateway Pipeline Project (NGP) Contributors: CJ Beegle-Krause B. Emmett M. Hammond J. Short R. Spies Editor: L. Beckmann Prepared for: JFK Law Corporation, Counsel to Gitxaała First Nation 340 – 1122 Mainland Street Vancouver, BC V6B 5L1 December 2011 (A37952) Table of Contents 1.0 Background, Purpose and Scope of Work.......................................................................1 2.0 Report Structure .................................................................................................................1 3.0 Nearshore Habitats, Biological Communities, and Key Marine Resources .................2 3.1 Overview ..................................................................................................................2 3.2 Nearshore Physical Features...................................................................................3 3.3 Nearshore Habitats ..................................................................................................5 3.4 Nearshore Habitat Types and Oil Residency...........................................................9 3.5 Potentially Affected Marine Resources ..................................................................12 3.6 Critique of the Application with Respect to Habitat Issues ....................................13 -
Halophilic Methylotrophic Methanogens May Contribute to the High Ammonium Concentrations Found in Shale Oil and Shale Gas Reservoirs
ORIGINAL RESEARCH published: 07 March 2019 doi: 10.3389/fenrg.2019.00023 Halophilic Methylotrophic Methanogens May Contribute to the High Ammonium Concentrations Found in Shale Oil and Shale Gas Reservoirs Biwen Annie An 1,2*, Yin Shen 2, Johanna Voordouw 2 and Gerrit Voordouw 2 1 Division 4.1 Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing, Berlin, Germany, 2 Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada Flow-back and produced waters from shale gas and shale oil fields contain high ammonium, which can be formed by methanogenic degradation of methylamines Edited by: into methane and ammonium. Methylamines are added to fracturing fluid to prevent Claire Dumas, clay swelling or can originate from metabolism of the osmolyte triglycinebetaine (GB). Institut National de la Recherche We analyzed field samples from a shale gas reservoir in the Duvernay formation Agronomique (INRA), France Reviewed by: and from a shale oil reservoir in the Bakken formation in Canada to determine the Qaisar Mahmood, origin of high ammonium. Fresh waters used to make fracturing fluid, early flow-back COMSATS University Islamabad, waters, and late flow back waters from the shale gas reservoir had increasing salinity Pakistan Mohanakrishna Gunda, of 0.01, 0.58, and 2.66 Meq of NaCl, respectively. Microbial community analyses Qatar University, Qatar reflected this fresh water to saline transition with halophilic taxa including Halomonas, Jorge Gonzalez-Estrella, Halanaerobium, and Methanohalophilus being increasingly present. Early and late University of New Mexico, United States flow-back waters had high ammonium concentrations of 32 and 15 mM, respectively. -
Differential Taphonomic Effects of Petroleum Seeps and Karstic Sinkholes on Ancient Dire Wolf Teeth
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425345; this version posted January 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Differential taphonomic effects of petroleum seeps and karstic sinkholes on ancient dire wolf teeth: Hydrocarbon impregnation preserves fossils for chemical and histological analysis Sabrina B. Sholts1,2, Leslea J. Hlusko3,4, Joshua P. Carlson3,4, and Sebastian K. T. S. Wärmländer1,5,6* 1 Department of Biochemistry and Biophysics, Stockholm University, Sweden 2 Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA. 3 Department of Integrative Biology, University of California in Berkeley, California, USA 4 Human Evolution Research Center, University of California in Berkeley, California, USA 5 UCLA/Getty Conservation Programme, Cotsen Institute of Archaeology, UCLA, Los Angeles, California, USA 6 Department of Archaeology and Classical Studies, Stockholm University, Sweden *Corresponding author: Dr. Sebastian K.T.S. Wärmländer, Division of Biophysics, Stockholm University, 106 91 Stockholm, Sweden; Email: [email protected] Keywords: Dental histology; petroleum; tar seep; fossils; dire wolves Short title: Petroleum effects on fossil tooth histology 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425345; this version posted January 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Environmental Issues Associated with Fossil Fuel Resources an Evaluation of Research Opportunities for the U.S
uses science for a changing world Environmental Issues Associated with Fossil Fuel Resources An Evaluation of Research Opportunities for the U.S. Geological Survey's Energy Resources Program By M.L. Tuttle1 and G.N. Breit1 , with contributions from R.G. Stanley, 2 G.N. Breit, 1 R.B. Finkelman, 3 E.I. Bobbins3 and C.B. Cecil3 Open-File Report 99-590 1999 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY 'Denver, Colorado 2Menlo Park, California SReston Virginia TABLE OF CONTENTS Page Introduction.................................................................................................................... 1 Internal Workshops.........................................................................................................2 World Wide Webb Workshop......................................................................................... 3 Proposed Topics of Research .......................................................................................... 4 Geology Based Environmental Factors of Energy Production.............................. 4 Subsidence due to petroleum production, coal mining, and geothermal development................................................................................. 5 Overburden and associated waste -
Diversity of Archaea Domain in Cuatro Cienegas Basin: Archaean Domes
bioRxiv preprint doi: https://doi.org/10.1101/766709; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Diversity of Archaea Domain in Cuatro Cienegas Basin: Archaean Domes 2 3 Medina-Chávez Nahui Olin1, Viladomat-Jasso Mariette2, Olmedo-Álvarez Gabriela3, Eguiarte Luis 4 E2, Souza Valeria2, De la Torre-Zavala Susana1,4 5 6 1Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de 7 Biotecnología. Av. Pedro de Alba S/N Ciudad Universitaria. San Nicolás de los Garza, Nuevo León, 8 México. C.P. 66455. 9 2Instituto de Ecología, UNAM, Circuito Exterior S/N anexo Jardín Botánico exterior. Ciudad 10 Universitaria, Ciudad de México, C.P. 04500 11 3Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N. 12 Campus Guanajuato, AP 629 Irapuato, Guanajuato 36500, México 13 14 4Correspondence should be addressed to Susana De la Torre-Zavala; 15 [email protected]. 16 17 18 19 20 21 22 1 bioRxiv preprint doi: https://doi.org/10.1101/766709; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 23 Abstract 24 Herein we describe the Archaea diversity in a shallow pond in the Cuatro Ciénegas Basin (CCB), 25 Northeast Mexico, with fluctuating hypersaline conditions containing elastic microbial mats that 26 can form small domes where their anoxic inside reminds us of the characteristics of the Archaean 27 Eon, rich in methane and sulfur gases; thus, we named this site the Archaean Domes (AD). -
The Genome Sequence of Methanohalophilus Mahii SLPT
Hindawi Publishing Corporation Archaea Volume 2010, Article ID 690737, 16 pages doi:10.1155/2010/690737 Research Article TheGenomeSequenceofMethanohalophilus mahii SLPT Reveals Differences in the Energy Metabolism among Members of the Methanosarcinaceae Inhabiting Freshwater and Saline Environments Stefan Spring,1 Carmen Scheuner,1 Alla Lapidus,2 Susan Lucas,2 Tijana Glavina Del Rio,2 Hope Tice,2 Alex Copeland,2 Jan-Fang Cheng,2 Feng Chen,2 Matt Nolan,2 Elizabeth Saunders,2, 3 Sam Pitluck,2 Konstantinos Liolios,2 Natalia Ivanova,2 Konstantinos Mavromatis,2 Athanasios Lykidis,2 Amrita Pati,2 Amy Chen,4 Krishna Palaniappan,4 Miriam Land,2, 5 Loren Hauser,2, 5 Yun-Juan Chang,2, 5 Cynthia D. Jeffries,2, 5 Lynne Goodwin,2, 3 John C. Detter,3 Thomas Brettin,3 Manfred Rohde,6 Markus Goker,¨ 1 Tanja Woyke, 2 Jim Bristow,2 Jonathan A. Eisen,2, 7 Victor Markowitz,4 Philip Hugenholtz,2 Nikos C. Kyrpides,2 and Hans-Peter Klenk1 1 DSMZ—German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545-001, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 5 Oak Ridge National Laboratory, Oak Ridge, TN 37830-8026, USA 6 HZI—Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany 7 Davis Genome Center, University of California, Davis, CA 95817, USA Correspondence should be addressed to Stefan Spring, [email protected] and Hans-Peter Klenk, [email protected] Received 24 August 2010; Accepted 9 November 2010 Academic Editor: Valerie´ de Crecy-Lagard´ Copyright © 2010 Stefan Spring et al. -
Southern California Channel Islands Bibliography, Through 1992
UC San Diego Bibliography Title Southern California Channel Islands Bibliography, through 1992 Permalink https://escholarship.org/uc/item/8h79t1p0 Author Channel Islands National Marine Sanctuary Publication Date 1992-12-31 eScholarship.org Powered by the California Digital Library University of California Southern California Channel Islands Bibliography, through 1992 Comprises 4035 references to the scientific literature on Southern California's Channel Islands. The Bibliography was compiled by the Channel Islands National Marine Sanctuary and is presented here in a February 1993 version. The Santa Barbara Museum of Natural History presents a California Channel Islands Bibliography on its website. It has more recent references and overlaps considerably with this bibliography. However this bibliography has some references not in their database, so it is maintained in original form. # 1. Abbott PL, Kies RP, Bachmann WR, Natenstedt CJ (San Diego State Univ., Dep. Geol. Sci., San Diego, CA; Stanford Univ., Stanford, CA; Nor. Res. Cent., Norway; Union Oil Co., United- States). A tectonic slice of Eocene strata, northern part of California continental borderland. Larue DK, Steel RJ. in Cenozoic marine sedimentation; Pacific margin, U.S.A.: Society of Economic Paleontologists and Mineralogists, Pacific Section ; Cenozoic marine sedimentation; Pacific margin, U.S.A.; 1983 May 18; Sacramento, CA,. Stanford Univ., Stanford, CA: Society of Economic Paleontologists and Mineralogists, Pacific Section; 1983. p. 151-168. 29 refs., illus., 1 table, strat. cols., sect., sketch maps. sedimentation/tectonic controls/sedimentary rocks/clastic rocks/conglomerate/sedimentary petrology/paleogeography/Eocene/Paleogene/Tertiary/Pacific Coast/continental borderland/San Miguel Island/Santa Cruz Island/Santa Rosa Island/San Nicolas Island/rhyolite/volcanic rocks/SRD. -
Methanohalophilus Profundi Sp. Nov., a Methylotrophic Halophilic Piezophilic Methanogen Isolated from a Deep Hypersaline Anoxic Basin
1 Systematic and Applied Microbiology Archimer September 2020, Volume 43 Issue 5 Pages 126107 (8p.) https://doi.org/10.1016/j.syapm.2020.126107 https://archimer.ifremer.fr https://archimer.ifremer.fr/doc/00635/74744/ Methanohalophilus profundi sp. nov., a methylotrophic halophilic piezophilic methanogen isolated from a deep hypersaline anoxic basin L'Haridon Stéphane 4, * , Haroun Hani 4, Corre Erwan 2, Roussel Erwan 1, Chalopin Morgane 5, Pignet Patricia 1, Balière Charlotte 1, La Cono Violetta 3, Jebbar Mohamed 4, Yakimov Michail 3, Toffin Laurent 1 1 Univ Brest (UBO), Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F- 29280 Plouzané, France 2 Sorbonne Université, CNRS, Station Biologique de Roscoff, Plateforme ABiMS, F-29688 Roscoff, France 3 Institute for Coastal Marine Environment CNR, 98122 Messina, Italy 4 Univ Brest (UBO), Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F- 29280 Plouzané, France 5 Univ Brest (UBO), Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F- 29280 Plouzané, France * Corresponding author : Stéphane L’Haridon, email address : [email protected] Abstract : A novel anaerobic methylotrophic halophilic methanogen strain SLHTYROT was isolated from a deep hypersaline anoxic basin called “Tyro” located in the Eastern Mediterranean Sea. Cells of SLHTYROT were motile cocci. The strain SLHTYROT grew between 12 and 37 °C (optimum 30 °C), at pH between 6.5 and 8.2 (optimum pH 7.5) and salinity from 45 to 240 g L−1 NaCl (optimum 135 g L−1). Strain SLHTYROT was methylotrophic methanogen able to use methylated compounds (trimethylamine, dimethylamine, monomethylamine and methanol). Strain SLHTYROT was able to grow at in situ hydrostatic pressure and temperature conditions (35 MPa, 14 °C). -
Ice Age Megafauna and Time Notes Contents
Ice Age megafauna and time notes Contents 1 Ice age 1 1.1 Origin of ice age theory ........................................ 1 1.2 Evidence for ice ages ......................................... 2 1.3 Major ice ages ............................................ 3 1.4 Glacials and interglacials ....................................... 4 1.5 Positive and negative feedback in glacial periods ........................... 5 1.5.1 Positive feedback processes ................................. 5 1.5.2 Negative feedback processes ................................. 5 1.6 Causes of ice ages ........................................... 5 1.6.1 Changes in Earth’s atmosphere ................................ 6 1.6.2 Position of the continents ................................... 6 1.6.3 Fluctuations in ocean currents ................................ 7 1.6.4 Uplift of the Tibetan plateau and surrounding mountain areas above the snowline ...... 7 1.6.5 Variations in Earth’s orbit (Milankovitch cycles) ....................... 7 1.6.6 Variations in the Sun’s energy output ............................. 8 1.6.7 Volcanism .......................................... 8 1.7 Recent glacial and interglacial phases ................................. 8 1.7.1 Glacial stages in North America ............................... 8 1.7.2 Last Glacial Period in the semiarid Andes around Aconcagua and Tupungato ........ 9 1.8 Effects of glaciation .......................................... 9 1.9 See also ................................................ 10 1.10 References .............................................