Common Name: Peppervine Scientific Name: Nekemias Arborea Order

Total Page:16

File Type:pdf, Size:1020Kb

Common Name: Peppervine Scientific Name: Nekemias Arborea Order Common Name: Peppervine Scientific Name: Nekemias arborea Order: Rhamnales Family: Vitaceae USDA Wetland Classification: Facultative Ecology & Description Peppervine is a deciduous woody vine that can also develop into a bushy shrub. The leaves of this plant are alternate and pinnately compound. They are 10-25 cm long and wide and can be either twice or three times divided. The leaflets are 2-5 cm long and 1-3 cm wide. They can be oval or diamond-shaped and have large serrated teeth. Peppervine flowers form in flat clusters that are 2-4 cm wide, each with five yellow-green petals. Berries are spherical, 6-10 mm wide, and turn from green to shiny red or black. Peppervine will spread via vine growth or by animals eating the seeds. Habitat Peppervine is most commonly found in wet to moist bottomland forests, along streams and rivers. It has also been known to grown in moist forest soils. Distribution The range of Peppervine stretches from Texas to Florida, and southern Virginia and west Illinois and Oklahoma to the Gulf Coast. It is, however, rare in the Southern Appalachian Mountains. Native/Invasive Status Peppervine is a native plant in the lower 48 states in the United States, as well as Puerto Rico. However, because of its growth behavior, it can be invasive. Wildlife Uses White-tailed deer (Odocoileus virginianus) will eat Peppervine foliage, but the plant is considered to be only a minor portion of their diet (2-5%). It only makes up 5-10% of the diet of small mammals. In the summer, however, the fruits are eaten by many wildlife species, especially raccoons (Procyon lotor). Management & Control Techniques If unwanted peppervine is growing in a small area, hand-pulling the plants is the best option for removal. This should be done in the spring before the plants have the chance to flower and produce seed. Herbicide is another option, especially if the taproot is deep or the area is large. Regardless of the method of control, it should be done consistently over the course of two years to ensure it is completely removed from the area. References Kimbrough, M. G. M. 2008. Peppervine (Ampelopsis arborea). Texas AgriLife Extension Service, Texas A&M University, College Station, TX. Online. <http://aggie- horticulture.tamu.edu/newsletters/hortupdate/2008/jan08/Peppervine.html> Accessed 11 August 2015. Miller, J. H. and K. V. Miller. 1999. Forest plants of the southeast and their wildlife uses. The University of Georgia Press, Athens, GA. 454 pp. United States Department of Agriculture Natural Resource Conservation Service. 2015. Online. <http://plants.usda.gov/core/profile?symbol=NEAR5> Accessed 11 August 2015. This document was authored by Dr. Heidi Adams, School of Forestry, Louisiana Tech University, August 2015. .
Recommended publications
  • Common Plants at the UHCC
    Flora Checklist Texas Institute for Coastal Prairie Research and Education University of Houston Donald Verser created this list by combining lists from studies by Grace and Siemann with the UHCC herbarium list Herbarium Collections Family Scientific Name Synonym Common Name Native Growth Accesion Dates Locality Comments Status Habit Numbers Acanthaceae Ruellia humilis fringeleaf wild petunia N forb 269 10/9/1973 Acanthaceae Ruellia nudiflora violet wild petunia N forb Agavaceae Manfreda virginica false aloe N forb Agavaceae Polianthes sp. polianthes ? forb 130 8/3/1971 2004 roadside Anacardiaceae Toxicodendron radicans eastern poison ivy N woody/vine Apiaceae Centella erecta Centella asiatica erect centella N forb 36 4/11/2000 Area 2 Apiaceae Daucus carota Queen Anne's lace I forb 139-142 1971 / 72 No collections by Dr. Brown. Perhaps Apiaceae Eryngium leavenworthii Leavenworth's eryngo N forb 144 7/20/1971 wooded area in pipeline ROW E. hookeri instead? Apiaceae Eryngium yuccifolium button eryngo N forb 77,143,145 71, 72, 2000 Apiaceae Polytaenia texana Polytaenia nuttallii Texas prairie parsley N forb 32 6/6/2002 Apocynaceae Amsonia illustris Ozark bluestar N Forb 76 3/24/2000 Area 4 Apocynaceae Amsonia tabernaemontana eastern bluestar N Forb Aquifoliaceae Ilex vomitoria yaupon N woody Asclepiadaceae Asclepias lanceolata fewflower milkweed N Forb Not on Dr. Brown's list. Would be great record. Asclepiadaceae Asclepias longifolia longleaf milkweed N Forb 84 6/7/2000 Area 6 Asclepiadaceae Asclepias verticillata whorled milkweed N Forb 35 6/7/2002 Area 7 Asclepiadaceae Asclepias viridis green antelopehorn N Forb 63, 92 1974 & 2000 Asteraceae Acmella oppositifolia var.
    [Show full text]
  • 1 History of Vitaceae Inferred from Morphology-Based
    HISTORY OF VITACEAE INFERRED FROM MORPHOLOGY-BASED PHYLOGENY AND THE FOSSIL RECORD OF SEEDS By IJU CHEN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2009 1 © 2009 Iju Chen 2 To my parents and my sisters, 2-, 3-, 4-ju 3 ACKNOWLEDGMENTS I thank Dr. Steven Manchester for providing the important fossil information, sharing the beautiful images of the fossils, and reviewing the dissertation. I thank Dr. Walter Judd for providing valuable discussion. I thank Dr. Hongshan Wang, Dr. Dario de Franceschi, Dr. Mary Dettmann, and Dr. Peta Hayes for access to the paleobotanical specimens in museum collections, Dr. Kent Perkins for arranging the herbarium loans, Dr. Suhua Shi for arranging the field trip in China, and Dr. Betsy R. Jackes for lending extant Australian vitaceous seeds and arranging the field trip in Australia. This research is partially supported by National Science Foundation Doctoral Dissertation Improvement Grants award number 0608342. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES...........................................................................................................................9 LIST OF FIGURES .......................................................................................................................11 ABSTRACT...................................................................................................................................14
    [Show full text]
  • Phylogenetic Analysis of Vitaceae Based on Plastid Sequence Data
    PHYLOGENETIC ANALYSIS OF VITACEAE BASED ON PLASTID SEQUENCE DATA by PAUL NAUDE Dissertation submitted in fulfilment of the requirements for the degree MAGISTER SCIENTAE in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG SUPERVISOR: DR. M. VAN DER BANK December 2005 I declare that this dissertation has been composed by myself and the work contained within, unless otherwise stated, is my own Paul Naude (December 2005) TABLE OF CONTENTS Table of Contents Abstract iii Index of Figures iv Index of Tables vii Author Abbreviations viii Acknowledgements ix CHAPTER 1 GENERAL INTRODUCTION 1 1.1 Vitaceae 1 1.2 Genera of Vitaceae 6 1.2.1 Vitis 6 1.2.2 Cayratia 7 1.2.3 Cissus 8 1.2.4 Cyphostemma 9 1.2.5 Clematocissus 9 1.2.6 Ampelopsis 10 1.2.7 Ampelocissus 11 1.2.8 Parthenocissus 11 1.2.9 Rhoicissus 12 1.2.10 Tetrastigma 13 1.3 The genus Leea 13 1.4 Previous taxonomic studies on Vitaceae 14 1.5 Main objectives 18 CHAPTER 2 MATERIALS AND METHODS 21 2.1 DNA extraction and purification 21 2.2 Primer trail 21 2.3 PCR amplification 21 2.4 Cycle sequencing 22 2.5 Sequence alignment 22 2.6 Sequencing analysis 23 TABLE OF CONTENTS CHAPTER 3 RESULTS 32 3.1 Results from primer trail 32 3.2 Statistical results 32 3.3 Plastid region results 34 3.3.1 rpL 16 34 3.3.2 accD-psa1 34 3.3.3 rbcL 34 3.3.4 trnL-F 34 3.3.5 Combined data 34 CHAPTER 4 DISCUSSION AND CONCLUSIONS 42 4.1 Molecular evolution 42 4.2 Morphological characters 42 4.3 Previous taxonomic studies 45 4.4 Conclusions 46 CHAPTER 5 REFERENCES 48 APPENDIX STATISTICAL ANALYSIS OF DATA 59 ii ABSTRACT Five plastid regions as source for phylogenetic information were used to investigate the relationships among ten genera of Vitaceae.
    [Show full text]
  • Porcelain Berry
    FACT SHEET: PORCELAIN-BERRY Porcelain-berry Ampelopsis brevipedunculata (Maxim.) Trautv. Grape family (Vitaceae) NATIVE RANGE Northeast Asia - China, Korea, Japan, and Russian Far East DESCRIPTION Porcelain-berry is a deciduous, woody, perennial vine. It twines with the help of non-adhesive tendrils that occur opposite the leaves and closely resembles native grapes in the genus Vitis. The stem pith of porcelain-berry is white (grape is brown) and continuous across the nodes (grape is not), the bark has lenticels (grape does not), and the bark does not peel (grape bark peels or shreds). The Ieaves are alternate, broadly ovate with a heart-shaped base, palmately 3-5 lobed or more deeply dissected, and have coarsely toothed margins. The inconspicuous, greenish-white flowers with "free" petals occur in cymes opposite the leaves from June through August (in contrast to grape species that have flowers with petals that touch at tips and occur in panicles. The fruits appear in September-October and are colorful, changing from pale lilac, to green, to a bright blue. Porcelain-berry is often confused with species of grape (Vitis) and may be confused with several native species of Ampelopsis -- Ampelopsis arborea and Ampelopsis cordata. ECOLOGICAL THREAT Porcelain-berry is a vigorous invader of open and wooded habitats. It grows and spreads quickly in areas with high to moderate light. As it spreads, it climbs over shrubs and other vegetation, shading out native plants and consuming habitat. DISTRIBUTION IN THE UNITED STATES Porcelain-berry is found from New England to North Carolina and west to Michigan (USDA Plants) and is reported to be invasive in twelve states in the Northeast: Connecticut, Delaware, Massachusetts, Maryland, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, Washington D.C., West Virginia, and Wisconsin.
    [Show full text]
  • 2010 Season Summary Index NEW WOFTHE~ Zone 1: Yukon Territory
    2010 Season Summary Index NEW WOFTHE~ Zone 1: Yukon Territory ........................................................................................... 3 Alaska ... ........................................ ............................................................... 3 LEPIDOPTERISTS Zone 2: British Columbia .................................................... ........................ ............ 6 Idaho .. ... ....................................... ................................................................ 6 Oregon ........ ... .... ........................ .. .. ............................................................ 10 SOCIETY Volume 53 Supplement Sl Washington ................................................................................................ 14 Zone 3: Arizona ............................................................ .................................... ...... 19 The Lepidopterists' Society is a non-profo California ............... ................................................. .............. .. ................... 2 2 educational and scientific organization. The Nevada ..................................................................... ................................ 28 object of the Society, which was formed in Zone 4: Colorado ................................ ... ............... ... ...... ......................................... 2 9 May 1947 and formally constituted in De­ Montana .................................................................................................... 51 cember
    [Show full text]
  • Downloaded from the Genbank with the Bioproject Accession Number PRJNA298058 and the Sequencing Depths Ranged from 4× to 7.4× Coverage (Average 5.6× Coverage)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.25.432805; this version posted February 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Running title: Deep genome skimming Capturing single-copy nuclear genes, organellar genomes, and nuclear ribosomal DNA from deep genome skimming data for plant phylogenetics: A case study in Vitaceae Bin-Bin Liua,b,c, Zhi-Yao Mac, Chen Rend,e, Richard G.J. Hodelc, Miao Sunf, Xiu-Qun Liug, Guang- Ning Liuh, De-Yuan Honga, Elizabeth A. Zimmerc, Jun Wenc* a State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China b State Key Laboratory of Vegetation and Environmental Change (LVEC), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China c Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA d Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China e Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China f Department of Biology - Ecoinformatics and Biodiversity, Aarhus University, 8000 Aarhus C, Denmark g Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China h College of Architecture and Urban Planning, Tongji University, Shanghai, China * Corresponding author.
    [Show full text]
  • Toxicodendron Risk Assessment
    Common Name Latin Name MN NWAC Risk Porcelain Berry, Ampelopsis brevipedunculata (Maxim.) Trautv. Assessment Worksheet (04-2011) Porcelain Ampelopsis, Porcelain- (synonyms: Ampelopsis glandulosa & var. vine, Amur Peppervine, Wild Grape brevipedunculata, var. glandulosa, and var. heterophylla, Ampelopsis sinica, and Vitis heterophylla) Reviewer Affiliation/Organization Date (mm/dd/yyyy) James Calkins Minnehaha Creek Watershed District 07/21/2014 Porcelain berry (Ampelopsis brevipedunculata) is a vigorous, deciduous, woody vine in the grape family (Vitaceae). Plants have variable, occasionally simple, cordate (heart-shaped), but most often maple/grape-like, 3- to 5-lobed, alternately arranged, toothed leaves (shiny on undersides with minute hairs along the veins). Plants have a fairly loose, rambling habit, are relatively fast growing, and climb by branched tendrils (modified leaves) attached opposite the leaves; plants can reach a height of 10-25 feet or more. Native to temperate Asia (China, Korea, Japan, and eastern Russia), porcelain berry was introduced as a landscape plant in 1870 and has since escaped cultivation and become naturalized in parts of the eastern United States. The flowers are perfect and borne in loose cymes from July until frost (September) in Minnesota and are greenish in color and small and insignificant; plants flower on new growth and are insect pollinated. The fruit is a shiny, 1- to 4-seeded berry that matures in September and October in Minnesota. As they mature, the fruits in a single cluster may be variously pale green to creamy yellow, lilac-pink, lavender, sky blue, purple and indigo-blue; mature fruits are various shades of blue and purple. The distinctively-colored fruits develop a speckled to mottled pattern that resembles the crackled appearance of porcelain which gives rise to the common name porcelain berry.
    [Show full text]
  • Checklist of Texas Lepidoptera Knudson & Bordelon, Jan 2018 Texas Lepidoptera Survey
    1 Checklist of Texas Lepidoptera Knudson & Bordelon, Jan 2018 Texas Lepidoptera Survey ERIOCRANIOIDEA TISCHERIOIDEA ERIOCRANIIDAE TISCHERIIDAE Dyseriocrania griseocapitella (Wlsm.) Eriocraniella mediabulla Davis Coptotriche citripennella (Clem.) Eriocraniella platyptera Davis Coptotriche concolor (Zell.) Coptotriche purinosella (Cham.) Coptotriche clemensella (Cham). Coptotriche sulphurea (F&B) NEPTICULOIDEA Coptotriche zelleriella (Clem.) Tischeria quercitella Clem. NEPTICULIDAE Coptotriche malifoliella (Clem.) Coptotriche crataegifoliae (Braun) Ectoedemia platanella (Clem.) Coptotriche roseticola (F&B) Ectoedemia rubifoliella (Clem.) Coptotriche aenea (F&B) Ectoedemia ulmella (Braun) Asterotriche solidaginifoliella (Clem.) Ectoedemia obrutella (Zell.) Asterotriche heliopsisella (Cham.) Ectoedemia grandisella (Cham.) Asterotriche ambrosiaeella (Cham.) Nepticula macrocarpae Free. Asterotriche helianthi (F&B) Stigmella scintillans (Braun) Asterotriche heteroterae (F&B) Stigmella rhoifoliella (Braun) Asterotriche longeciliata (F&B) Stigmella rhamnicola (Braun) Asterotriche omissa (Braun) Stigmella villosella (Clem.) Asterotriche pulvella (Cham.) Stigmella apicialbella (Cham.) Stigmella populetorum (F&B) Stigmella saginella (Clem.) INCURVARIOIDEA Stigmella nigriverticella (Cham.) Stigmella flavipedella (Braun) PRODOXIDAE Stigmella ostryaefoliella (Clem.) Stigmella myricafoliella (Busck) Tegeticula yuccasella (Riley) Stigmella juglandifoliella (Clem.) Tegeticula baccatella Pellmyr Stigmella unifasciella (Cham.) Tegeticula carnerosanella Pellmyr
    [Show full text]
  • Dear Fellow Bald Head Association Members
    D - LANDSCAPING In the end we will be defined, not by what we create, but by what we refuse to destroy. -John Sawhill, Nature Conservancy CEO 1980-1990 Two major communities on Bald Head Island, the open dunes and the Maritime Evergreen Forest, have been shaped by the natural forces working on the island. The relative stability of the island has been dependent upon its maritime forest. The forest prevents wind erosion and traps wind-blown sand to eventually form the large dunes on the seaward edge. Here in the forest, many species of plant and animal life find their home. Live oak, pine, palm, bay and laurel oak provide a canopy that rises from its salt-sheared edge to about fifty or sixty feet adjacent to the salt marshes. Much of the vegetation is evergreen, and the low light levels on the forest floor preclude much understory growth. A lesser variety of animals and vegetation occurs in the dune environment, comprising the scrub and pioneer zone. The plant varieties that do occur on the dunes are very important to the stability of these slow-moving dunes. The sea oats and other salt and wind tolerant grasses, vines, and shrubs inhibit the movement that would otherwise bury the forest. 07/5/16 BHA Design Guidelines 1 The property owners on Bald Head Island, as stewards of this sensitive natural island environment, must take special effort to preserve it. The existing flora must be protected, and the productive natural systems of any particular mini-environment must be increased. “Natural” landscaping can help accomplish both goals.
    [Show full text]
  • Preliminary Checklist of the Terrestrial Flora and Fauna of Fern Cave
    Preliminary Checklist of the Terrestrial Flora and Fauna of Fern Cave National Wildlife Refuge ______________________________________________ Prepared for: United States Fish & Wildlife Service Prepared by: J. Kevin England, MAT David Richardson, MS Completed: as of 22 Sep 2019 All rights reserved. Phone: 256-565-4933 Email: [email protected] Flora & Fauna of FCNWR2 ABSTRACT I.) Total Biodiversity Data The main objective of this study was to inventory and document the total biodiversity of terrestrial habitats located at Fern Cave National Wildlife Refuge (FCNWR). Table 1. Total Biodiversity of Fern Cave National Wildlife Refuge, Jackson Co., AL, USA Level of Classification Families Genera Species Lichens and Allied Fungi 14 21 28 Bryophytes (Bryophyta, Anthocerotophyta, Marchantiophyta) 7 9 9 Vascular Plants (Tracheophytes) 76 138 176 Insects (Class Insecta) 9 9 9 Centipedes (Class Chilopoda) 1 1 1 Millipedes (Class Diplopoda) 2 3 3 Amphibians (Class Amphibia) 3 4 5 Reptiles (Class Reptilia) 2 3 3 Birds (Class Aves) 1 1 1 Mammals (Class Mammalia) 2 2 2 Total 117 191 237 II. Vascular Flora (Appendix 3) Methods and Materials To compile a thorough vascular flora survey, several examples of different plant communities at numerous sites were visited and sampled during the study. Approximately 45 minutes was spent documenting community structure at each site. Lastly, all habitats, ecological systems, and plant associations found within the property boundaries were defined based on floristic content, soil characteristics (soil maps) and other abiotic factors. Flora & Fauna of FCNWR3 The most commonly used texts for specimen identification in this study were Flora of North America (1993+), Mohr (1901), Radford et al.
    [Show full text]
  • TAXONOMIC and BIOLOGICAL STUDIES of PTEROPHORIDAE of JAPAN (Lepidoptera)1
    Pacific Insects 5 (1) : 65-209 April 30, 1963 TAXONOMIC AND BIOLOGICAL STUDIES OF PTEROPHORIDAE OF JAPAN (Lepidoptera)1 By Koji Yano ENTOMOLOGICAL LABORATORY, FACULTY OF AGRICULTURE, KYUSHU UNIVERSITY, FUKUOKA, JAPAN Abstract: The present paper treats 57 species belonging to 18 genera of the Japanese Pterophoridae. Fourteen new species are described, 4 species are recorded for the first time from Japan and 3 new synonyms are proposed. The larvae and pupae of 20 species belong­ ing to 13 and 12 genera respectively are described as well as the biological notes of them. Eleven species are injurious to the useful plants. Forty-two host plants including those after the previous records are listed. Keys to subfamilies, genera and species for adults are given. Preliminary keys to subfamilies for both the larvae and pupae, those to genera of 2 sub­ families for larvae and to genera of 1 subfamily for pupae are also given. CONTENTS page Introduction 66 Acknowledgements 66 Historical review 67 Systematics 68 Characters of the family 68 Adult 68 Mature larva 69 Pupa 71 Biology 72 Subdivision of the family 72 Subfamily Agdistinae 74 Subfamily Platyptiliinae 80 Subfamily Pterophorinae 167 Notes on the host plants and economic significance 202 A list of the species of the Japanese Pterophoridae 203 References 205 1. Contribution Ser. 2, No. 163, Entomological Laboratory, Kyushu University. 66 Pacific Insects Vol. 5, no. 1 INTRODUCTION Since the publications of Dr. S. Matsumura's great work entitled " 6000 Illustrated In­ sects of Japan-Empire", in which 24 species including 21 new species of the family Ptero­ phoridae from Japan, Korea and Formosa were illustrated, and the excellent papers written by Mr.
    [Show full text]
  • 3. AMPELOPSIS Michaux, Fl. Bor.-Amer. 1: 159. 1803. 蛇葡萄属 She Pu Tao Shu Chen Zhiduan (陈之端); Jun Wen (文军) Lianas, Woody, Hermaphroditic Or Polygamo-Monoecious
    Flora of China 12: 178–184. 2007. 3. AMPELOPSIS Michaux, Fl. Bor.-Amer. 1: 159. 1803. 蛇葡萄属 she pu tao shu Chen Zhiduan (陈之端); Jun Wen (文军) Lianas, woody, hermaphroditic or polygamo-monoecious. Tendrils 2- or 3-branched. Leaves simple, 1- or 2-pinnately or pal- mately compound. Inflorescence a corymbose cyme, leaf-opposed or pseudoterminal, often at tips of tendrils. Flowers 5-merous. Ca- lyx saucer-shaped. Petals 5, free. Disk well developed, margin undulately lobed. Stamens 5. Style conspicuous; stigma inconspicu- ously expanded. Berry spherical, 1–4-seeded. Seed obovoid, base rostrate, apex rounded; cross-section of endosperm M-shaped. About 30 species: Asia, Central and North America, with most species in E Asia and two species in SW Asia; 17 species (13 endemic) in China. 1a. Leaves simple, undivided or 3–5-divided, but not deeply so to base. 2a. Branchlets, petioles, and leaf blade glabrous or abaxially with tufts of hairs limited to vein axils. 3a. Leaves conspicuously 3–5-divided. 4a. Leaves with 3–5 broad lobes (lobed up to middle), notch obtuse or acute .......................................... 6. A. humulifolia 4b. Leaves with 3–5 deep lobes, notch rounded ............................................................................................ 7. A. acerifolia 3b. Leaves undivided or slightly 3–5-cleft. 5a. Leaf margin irregularly toothed, usually with large, elliptic, triangular, or narrowly triangular teeth (to 1 cm) ................................................................................................................................................ 3. A. acutidentata 5b. Leaf margin with shallow, broadly triangular teeth. 6a. Leaf abaxially pale green, upper two lobes short or inconspicuous .................................................. 1. A. bodinieri 6b. Leaf abaxially green, upper two lobes triangular, conspicuous, and slightly extending outward ............................................................................................................................................. 2. A.
    [Show full text]