Geomechanics Challenges and Its Future Direction – Food for Thought*

Total Page:16

File Type:pdf, Size:1020Kb

Geomechanics Challenges and Its Future Direction – Food for Thought* Geomechanics Challenges and its Future Direction – Food for Thought* F. T. Suorineni Suorineni F. T. (2013), “Geomechanics Challenges and its Future Direction – Food for Thought”, Ghana Mining Journal, pp. 14 - 20. Abstract Geomechanics has proven to be the backbone of safe and cost effective mining practice. However, experience shows it still does not have the appreciation of most mine managements until there is a fatality or costly ore sterilization. The problem can be traced back to the training of mining engineers. The subject is also picked up later in life by other professionals with limited background in geology. The consequences of these limitations are lack of fundamental knowledge in the subject by some who practice it. This lack of understanding has affected the growth and maturity of the subject of rock mechanics, a key component of geomechanics. Today, we are beginning to understand that failure criteria that were inherited from soil mechanics for appli- cation to rock are wrong and misleading. Despite these problems, some major achievements have been made towards a better understanding of rock behavior under load. Many more challenges still lie ahead. This paper takes a look at the history of rock mechanics, and therefore geomechanics, its development, required training, present status and what lies ahead in the future. The goal is to provide educators, industry and practicing engineers what it takes to be a good rock engineer and the real benefits of the subject for the good of society. 1 Introduction was in 1963 Professor Bjerrum, from Norway, speaking on behalf of A. Casagrande (President of Even the definition of geomechanics is confusing. Is the International Conference on Soil Mechanics) there a difference among geotechnology, geotechni- brilliantly explained how rock mechanics should be cal engineering, and geomechanics? Furthermore, is integrated into soil mechanics as a mere chapter of a there a difference between engineering geology and wider, more advanced technical science. geological engineering, areas also closely related to geotechnology, geotechnical engineering and ge- The links between rock mechanics, engineering ge- omechanics? ology, geological engineering and classical geology are intricate and complex. It is not possible to think Historically, geotechnology and geotechnical engi- about rock mechanics without examining and dis- neering are courses or branches of civil engineering. cussing these links. Geotechnology often implies the study of soil me- chanics. Until the 18th century, no theoretical basis Geotechnical engineering is soil mechanics and for soil design had been developed, and the disci- foundation engineering (VanDine, 1987). The princi- pline was more of an art than a science, relying on ple of effective stress, bearing capacity theory, and past experience. Failure of important structural foun- the theory of consolidation are all attributed to Ter- dations such as the Leaning Tower of Pisa prompted zaghi. Roscoe et al. (1958) introduced the theory of the development of a more scientific approach to the critical state soil mechanics that is now the basis for use of soil mechanics. This initiative was led by many contemporary advanced constitutive models Gauthier (1717) with the development of earth pres- describing the behavior of soil. sure theories and soil classification based on unit Geomechanics is defined in Wikipedia as the geo- weight (Muni, 2007). This development was fol- logic study of the behavior of soil and rock. Note the lowed by the work of Coulomb (1773) and Mohr keywords in the definition as geology, soil and rock. (1882). The Mohr-Coulomb failure criterion is well While geotechnology and geotechnical engineering known in both soil and rock mechanics. Other con- focus on soils, geomechanics combines geology, soil tributors to the science of soil mechanics include mechanics and rock mechanics. Hence, it is danger- Darcy, Rankine, Atterberg and Reynolds. ous to be trained in geomechanics without a good Advances in soil mechanics and foundation engi- background in geology. This is the focus of this neering peaked in 1925 with the publication of Erd- paper. baumechanik by Karl Terzaghi (a civil engineer and The limitations in the knowledge of soil mechanics geologist) who is commonly referred to as the father practitioners in geology prompted the introduction of of soil mechanics and geotechnical engineering. Ter- the engineering geology profession. In 1951, one of zaghi was a mechanical engineer by training. Note the earliest definitions of "Engineering geologist" now the use of the geotechnical engineering term. It * Manuscript received February 10, 2012 Revised version accepted April 7, 2012 14 GMJ Vol. 14, June, 2013 was provided by the Executive Committee of the to understand the earth through his knowledge in Division on Engineering Geology of the Geological geology and to manage it through his understanding Society of America as a geologist trained in the dis- of engineering principles. cipline of engineering geology. Emphasis is the per- son being a geologist first and then trained by prac- Finance Geomechanics. Water tice in engineering. This background in geology pro- Resources Geophysics vides the engineering geologist with an understand- Civil Engineering- ing of how the earth works, which is crucial in miti- Geotech. Mining Tunnelling engineer Engineering gating for earth related hazards. This training also Ground Control enabled the geologists to effectively communicate Exploration Geological Engineer Geology Mine Technical with engineers. The need for geologist on engineer- Engineering Superintendent Management – ing works gained worldwide attention in 1928 with Director Univ. Risk Analysis the failure of the St. Francis dam in California and President Careers Teaching- the loss of 426 lives. Commenting on the disaster Environmental University Prof. Ransome (1928) wrote “so far as can be ascertained, Science/Engineering Computer no geological examination was made of the dam-site Science/En Research before construction began. The plain lesson of the gineering Mineral Scientist/Engineer Processing disaster is that engineers, no matter how extensive Processing their experience in building of dams cannot safely meneralogist dispense with the knowledge of the character and structure of the adjacent rocks, such as only an ex- Fig. 1 Versatility of the Geological Engineering pert and thorough geological examination can pro- Profession vide.” (Ransome, 1928). Turning geologists into engineers solved some prob- lems. The limitations of this approach originate from 3 Soil Mechanics Principles and Theo- the fact that the so called engineering geologists had ries and how they have misled Rock difficulties in integrating design principles into their Mechanics evaluations to appreciate and understand the de- mands and frustration and the burden of the engineer The Mohr-Coulomb failure criterion is given by as being the safe keeper of society. Price (2009) Equation (1). states: (1) c n tan “Engineering geologists” are essentially geologists who deliver basic geological data to engineers, with- where t is the shear strength of the soil, c is the co- out interpretation.” hesion of the soil. σn is the normal stress acting on Few geologists had sufficient engineering knowl- the shear plane, and f is the frictional resistance of edge to understand the requirements of the engineer, the soil. and few engineers had more than the most superfi- Anyone who has sat in both a soil mechanics class cial knowledge of geology. It was then thought that and a rock mechanics class would have seen this to resolve the issue, it is best to train someone simul- equation at least twice, once in soil mechanics and a taneously with engineering and geological principles second time in the rock mechanics class. at the same time. The geological engineering pro- fession was born. Equation (1) implies that the shear strength of the material is due to the simultaneous mobilization of Mathews (1967) describes the geological engineer cohesion and frictional resistance or strength. best, when he stated that the geological engineer is one soundly trained in both geology and engineering What is wrong in applying this criterion, which has its origin in soil mechanics, to rocks? fundamentals, and that that is the man, he believes, is best qualified to work closely with the civil engi- First, what is the definition of a soil? Second, what neer responsible for the execution of engineering is the definition of rock? works. Craig (2004) defines soil as any uncemented or weakly cemented accumulation of mineral particles 2 The Geological Engineer formed by the weathering of rocks, the void space The geological engineering profession is a versatile between the particles containing water and/or air. one (see Fig. 1). The following figure illustrates how The key words in the definition of soil are versatile the geological engineering profession is. It “uncemented” and “accumulation of mineral parti- is my belief that to be able to control or manage the cles”. earth, one must understand the earth. By the nature By the definition of soil, its shear strength can be of the training of the geological engineer, he is able mobilized by simultaneous activation of its cohesive 15 GMJ Vol. 14, June, 2013 , ' and frictional strength. This is because of the fact ' ' m 3 (2) that the particles are uncemented or weakly ce- 1 3 ci s ci mented, and therefore Equation (1) applies. On the other hand, by definition a rock is a naturally occur- ring and coherent aggregate of one or more minerals. ci (3) The key words here are “coherent” and “aggregate”. 1 3 3 Friction occurs when two or more surfaces rub where σ and σ are the induced major and minor against each other as will occur in soils because of 1 3 principal stresses, and σci is the uniaxial compressive their nature. However, in rocks free surfaces rarely strength of the intact rock. exist until fracture occurs through breaking the cohe- sive bonding in the aggregate of minerals! Thus, the Equation (3) implies that for massive strong brittle strength of rocks is NOT a simultaneous mobiliza- rocks friction plays little role in their failure.
Recommended publications
  • Engineering Geology and Seismology for Public Schools and Hospitals in California
    The Resources Agency California Geological Survey Michael Chrisman, Secretary for Resources Dr. John G. Parrish, State Geologist Engineering Geology and Seismology for Public Schools and Hospitals in California to accompany California Geological Survey Note 48 Checklist by Robert H. Sydnor, Senior Engineering Geologist California Geological Survey www.conservation.ca.gov/cgs July 1, 2005 316 pages Engineering Geology and Seismology performance–based analysis, diligent subsurface for Public Schools and Hospitals sampling, careful reading of the extensive geologic in California literature, thorough knowledge of the California Building Code, combined with competent professional geological work. by Robert H. Sydnor Engineering geology aspects of hospital and public California Geological Survey school sites include: regional geology, regional fault July 1, 2005 316 pages maps, site-specific geologic mapping, geologic cross- sections, active faulting, official zones of investigation Abstract for liquefaction and landslides, geotechnical laboratory The 446+ hospitals, 1,400+ skilled nursing facilities testing of samples, expansive soils, soluble sulfate ±9,221 public schools, and 109 community college evaluation for Type II or V Portland-cement selection, campuses in California are regulated under California and flooding. Code of Regulations, Title 24, California Building Code. Seismology aspects include: evaluation of historic These facilities are plan–checked by senior–level seismicity, probabilistic seismic hazard analysis of Registered Structural Engineers within the Office of earthquake ground–motion, use of proper code terms Statewide Health Planning and Development (OSHPD) (Upper–Bound Earthquake ground–motion and Design– for hospitals and skilled nursing facilities, and the Basis ground–motion), classification of the geologic Division of the State Architect (DSA) for public schools, subgrade by shear–wave velocity to select the correct community colleges, and essential services buildings.
    [Show full text]
  • Engineering Geologist Examination Content
    CONTENT SPECIFICATIONS AND REFERENCES FOR ENGINEERING GEOLOGIST EXAMINATION I. PROJECT PLANNING (17%) – Determine scope and objectives of project, applicable regulatory or jurisdictional statutes, and evaluate research and background information. Tasks T1. Define type and level of engineering geologic investigation for intended application. T2. Plan monitoring system to quantify ground movement and fluctuations in groundwater. T3. Identify types and quantity of subsurface explorations to adequately characterize the geologic conditions at the site for the intended application. T4. Identify regulatory permits and requirements for field exploration and project application. T5. Review grading and development plans to evaluate potential impacts from adverse geologic conditions and impacts to exploration program. T6. Plan areal reconnaissance to evaluate potential geologic impacts and constraints on site exploration and development. T7. Review published and unpublished geologic information to identify geologic conditions that could impact site development. T8. Review site conditions, and historical and anecdotal information to support observed geological conditions, past site usage and site modification. T9. Review aerial photographs and other remote sensing data to plan explorations, and identify past site usage, ground surface changes and landforms. T10.Plan laboratory programs to characterize earth materials for intended application. References • 1997 Uniform Building Code • Bell, F. G. (1998). Environmental geology. Oxford: Blackwell Publishing, Ltd. • Burns, S. (1998). Environmental, groundwater and engineering geology: Applications from Oregon. Belmont, CA: Star Publishing Company • Cheny, R. & Chassie, R. (2000). Soils and foundations workshop reference manual. Washington, DC: National Highway Institute Publication NHI-00-045, Federal Highway Administration • Crandell, D. R., & Mullineaux, D. R. (1975). Technique and rationale of volcanic hazards appraisals in the Cascade Range, northwestern United States.
    [Show full text]
  • Towards a Geo-Hydro-Mechanical Characterization of Landslide Classes: Preliminary Results
    applied sciences Article Towards A Geo-Hydro-Mechanical Characterization of Landslide Classes: Preliminary Results Federica Cotecchia 1 , Francesca Santaloia 2 and Vito Tagarelli 1,* 1 DICATECH, Polytechnic University of Bari, 4, 70126 Bari, Italy; [email protected] 2 IRPI, National Research Council, 4, 70126 Bari, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-3928654797 Received: 21 September 2020; Accepted: 4 November 2020; Published: 10 November 2020 Abstract: Nowadays, landslides still cause both deaths and heavy economic losses around the world, despite the development of risk mitigation measures, which are often not effective; this is mainly due to the lack of proper analyses of landslide mechanisms. As such, in order to achieve a decisive advancement for sustainable landslide risk management, our knowledge of the processes that generate landslide phenomena has to be broadened. This is possible only through a multidisciplinary analysis that covers the complexity of landslide mechanisms that is a fundamental part of the design of the mitigation measure. As such, this contribution applies the “stage-wise” methodology, which allows for geo-hydro-mechanical (GHM) interpretations of landslide processes, highlighting the importance of the synergy between geological-geomorphological analysis and hydro-mechanical modeling of the slope processes for successful interpretations of slope instability, the identification of the causes and the prediction of the evolution of the process over time. Two case studies are reported, showing how to apply GHM analyses of landslide mechanisms. After presenting the background methodology, this contribution proposes a research project aimed at the GHM characterization of landslides, soliciting the support of engineers in the selection of the most sustainable and effective mitigation strategies for different classes of landslides.
    [Show full text]
  • Crustal Stress State and Seismic Hazard Along Southwest Segment of the Longmenshan Thrust Belt After Wenchuan Earthquake
    Journal of Earth Science, Vol. 25, No. 4, p. 676–688, August 2014 ISSN 1674-487X Printed in China DOI: 10.1007/s12583-014-0457-z Crustal Stress State and Seismic Hazard along Southwest Segment of the Longmenshan Thrust Belt after Wenchuan Earthquake Xianghui Qin*, Chengxuan Tan, Qunce Chen, Manlu Wu, Chengjun Feng Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China; Key Laboratory of Neotectonic Movement & Geohazard, Ministry of Land and Resources, Beijing 100081, China ABSTRACT: The crustal stress and seismic hazard estimation along the southwest segment of the Longmenshan thrust belt after the Wenchuan Earthquake was conducted by hydraulic fracturing for in-situ stress measurements in four boreholes at the Ridi, Wasigou, Dahegou, and Baoxing sites in 2003, 2008, and 2010. The data reveals relatively high crustal stresses in the Kangding region (Ridi, Wasigou, and Dahegou sites) before and after the Wenchuan Earthquake, while the stresses were relatively low in the short time after the earthquake. The crustal stress in the southwest of the Longmenshan thrust belt, especially in the Kangding region, may not have been totally released during the earthquake, and has since increased. Furthermore, the Coulomb failure criterion and Byerlee’s law are adopted to analyzed in-situ stress data and its implications for fault activity along the southwest segment. The magnitudes of in-situ stresses are still close to or exceed the expected lower bound for fault activity, revealing that the studied region is likely to be active in the future. From the conclusions drawn from our and other methods, the southwest segment of the Longmenshan thrust belt, especially the Baoxing region, may present a future seismic hazard.
    [Show full text]
  • Downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE)
    INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here: https://www.issmge.org/publications/online-library This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE. * 9 * Geological aspects of geotechnical engineering Aspects geologiques de genie geotechnique G. TER-STEPANIAN, Prof., DrSc. (Eng.), Corr.Mem.Armen.Ac.Sc., Yerevan, Armenia, USSR SYNOPSIS Analytical methods used in soil mechanics are based on considerable simplifica­ tion of geological structure. The influence of geological conditions on geotechnical engineering is discussed. The inverse - influence of Man's activity on geological conditions - has become evident at present. Therefore, the knowledge of engineering geology and some other geological disciplines is important for geotechnical engineers. Geotechnical engineering should be separated from civil engineering and be engaged in foundation, fill, dam, and subsurface problems. Geomechanics is one of the bases of geotechnical engineering; it is concerned with studying the mechanisms of geological processes. Use of back analyses for integral evaluation of earthen masses, the observational method, and monitoring for decreasing the time and costs of construction are discussed. Combating geological hazards is one of the important geotechnical problems in the near future. Discussion topics are commented upon. INTRODUCTION be of prime importance in the turn of the century. It is a great honor for me to deliver this Theme Lecture before the International We live in a very dynamic, difficult, and Conference on Soil Mechanics and Foundation interesting time.
    [Show full text]
  • Numerical Methods in Geomechanics
    Antonio Bobet NUMERICAL METHODS IN GEOMECHANICS Antonio Bobet School of Civil Engineering, Purdue University, West Lafayette, IN, USA اﻟﺨﻼﺻـﺔ: ﺗﻘﺪم هﺬﻩ اﻟﻮرﻗﺔ وﺻﻔ ﺎً ﻟﻠﻄﺮق اﻟﻌﺪدﻳﺔ اﻷآﺜﺮ اﺳﺘﺨﺪاﻣﺎ ﻓﻲ اﻟﻤﻴﻜﺎﻧﻴﻜﺎ اﻟﺠﻴﻮﻟﻮﺟﻴﺔ. وهﻲ أرﺑﻌﺔ ﻃﺮق : (1) ﻃﺮﻳﻘﺔ اﻟﻌﻨﺼﺮ اﻟﻤﻤﻴﺰ (2) ﻃﺮﻳﻘﺔ ﺗﺤﻠﻴﻞ اﻟﻨﺸﻮة اﻟﻤﺘﻘﻄﻊ (3) ﻃﺮﻳﻘﺔ اﻟﺘﺤﺎم اﻟﺠﺴﻴﻤﺎت (4) ﻃﺮﻳﻘﺔ اﻟﺸﺒﻜﺔ اﻟﻌﺼﺒﻴﺔ اﻟﺼﻨﺎﻋﻴﺔ. وﺗﻀﻤﻨﺖ اﻟﻮرﻗﺔ أ ﻳ ﻀ ﺎً وﺻﻔ ﺎً ﻣﻮﺟﺰ اً ﻟﺘﻄﺒﻴﻖ اﻟﻤﺒﺎدئ اﻟﺨﻮارزﻣﻴﺔ ﻟﻜﻞ ﻃﺮﻳﻘﺔ إﺿﺎﻓﺔ إﻟﻰ ﺣﺎﻟﺔ ﺑﺴﻴﻄﺔ ﻟﺘﻮﺿﻴﺢ اﺳﺘﺨﺪاﻣﻬﺎ. ______________________ *Corresponding Author: E-mail: [email protected] Paper Received November 7, 2009; Paper Revised January 17, 2009; Paper Accepted February 3, 2010 April 2010 The Arabian Journal for Science and Engineering, Volume 35, Number 1B 27 Antonio Bobet ABSTRACT The paper presents a description of the numerical methods most used in geomechanics. The following methods are included: (1) The Distinct Element Method; (2) The Discontinuous Deformation Analysis Method; (3) The Bonded Particle Method; and (4) The Artificial Neural Network Method. A brief description of the fundamental algorithms that apply to each method is included, as well as a simple case to illustrate their use. Key words: numerical methods, geomechanics, continuum, discontinuum, finite difference, finite element, discrete element, discontinuous deformation analysis, bonded particle, artificial neural network 28 The Arabian Journal for Science and Engineering, Volume 35, Number 1B April 2010 Antonio Bobet NUMERICAL METHODS IN GEOMECHANICS 1. INTRODUCTION Analytical methods are very useful in geomechanics because they provide results with very limited effort and highlight the most important variables that determine the solution of a problem. Analytical solutions, however, have often a limited application since they must be used within the range of assumptions made for their development.
    [Show full text]
  • The Development of Rock Engineering
    The development of rock engineering Introduction We tend to think of rock engineering as a modern discipline and yet, as early as 1773, Coulomb included results of tests on rocks from Bordeaux in a paper read before the French Academy in Paris (Coulomb, 1776, Heyman, 1972). French engineers started construction of the Panama Canal in 1884 and this task was taken over by the US Army Corps of Engineers in 1908. In the half century between 1910 and 1964, 60 slides were recorded in cuts along the canal and, although these slides were not analysed in rock mechanics terms, recent work by the US Corps of Engineers (Lutton et al, 1979) shows that these slides were predominantly controlled by structural discontinuities and that modern rock mechanics concepts are fully applicable to the analysis of these failures. In discussing the Panama Canal slides in his Presidential Address to the first international conference on Soil Mechanics and Foundation Engineering in 1936, Karl Terzaghi (Terzaghi, 1936, Terzaghi and Voight, 1979) said ‘The catastrophic descent of the slopes of the deepest cut of the Panama Canal issued a warning that we were overstepping the limits of our ability to predict the consequences of our actions ....’. In 1920 Josef Stini started teaching ‘Technical Geology’ at the Vienna Technical University and before he died in 1958 he had published 333 papers and books (Müller, 1979). He founded the journal Geologie und Bauwesen, the forerunner of today’s journal Rock Mechanics, and was probably the first to emphasise the importance of structural discontinuities on the engineering behaviour of rock masses.
    [Show full text]
  • Guideline for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Planning” Ref: AGS (2007A)
    Extract from Australian Geomechanics Journal and News of the Australian Geomechanics Society Volume 42 No 1 March 2007 Extract containing: “Guideline for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Planning” Ref: AGS (2007a) Landslide Risk Management ISSN 0818-9110 GUIDELINE FOR LANDSLIDE SUSCEPTIBILITY, HAZARD AND RISK ZONING FOR LAND USE PLANNING Australian Geomechanics Society Landslide Zoning Working Group TABLE OF CONTENTS 1 INTRODUCTION................................................................................................................................................. 13 2 DEFINITIONS AND TERMINOLOGY............................................................................................................. 14 3 LANDSLIDE RISK MANAGEMENT FRAMEWORK ................................................................................... 15 4 DESCRIPTION OF LANDSLIDE SUSCEPTIBILITY, HAZARD AND RISK ZONING FOR LAND USE PLANNING ........................................................................................................................................................... 16 5 GUIDANCE ON WHERE LANDSLIDE ZONING IS USEFUL FOR LAND USE PLANNING................. 17 6 SELECTION OF THE TYPE AND LEVEL OF LANDSLIDE ZONING ...................................................... 19 7 LANDSLIDE ZONING MAP SCALES AND DESCRIPTORS FOR SUSCEPTIBILITY, HAZARD AND RISK ZONING.....................................................................................................................................................
    [Show full text]
  • The Significance of Engineering Geology to Construction F. G. Bell L
    Downloaded from http://egsp.lyellcollection.org/ by guest on September 26, 2021 The significance of engineering geology to construction F. G. Bell l, J. C. Cripps 2 & M. G. Culshaw 3 1 Department of Geology and Applied Geology, University of Natal, King George V Avenue, Durban 4001, South Africa 2 Department of Earth Sciences, University of Sheffield, Dainton Building, Brookhill, Sheffield, $3 7HF, UK 3 Engineering Geology and Geophysics Group, British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK Abstract. The paper discusses the important contribution that engineering geology makes to the construction processes of excavation and the forming of foundations. The contribution to the construction of highways is described. In particular, the influence of geology on cut slope stability, soft and hard ground excavation (including tunnelling), bearing capacity, settlement, subsidence and the choice of foundation type are all considered. Particular problems associated with the use of fills and waste materials are also mentioned. The importance of adequate site investigation is stressed. In 1993, the International Association of Engineering For any engineering geologist, and particularly those Geology defined the subject of engineering geology as working in the civil engineering and construction 'The science devoted to the investigation, study and industries, an understanding of the relevance of the solution of the engineering and environmental pro- geology to the construction process involved is blems which may arise as the result of the interaction essential. In the following sections, the importance of between geology and the works and activities of man engineering geology to excavation, both at the surface as well as to the prediction of and the development of and below ground, and foundations is discussed.
    [Show full text]
  • Earthquake-Triggered Landslides in Southwest China
    Nat. Hazards Earth Syst. Sci., 12, 351–363, 2012 www.nat-hazards-earth-syst-sci.net/12/351/2012/ Natural Hazards doi:10.5194/nhess-12-351-2012 and Earth © Author(s) 2012. CC Attribution 3.0 License. System Sciences Earthquake-triggered landslides in southwest China X. L. Chen, Q. Zhou, H. Ran, and R. Dong Key Laboratory of Active Tectonics and Volcano, China Earthquake Administration, Beijing, 100029, China Correspondence to: X. L. Chen ([email protected]) Received: 31 May 2011 – Revised: 4 November 2011 – Accepted: 14 December 2011 – Published: 17 February 2012 Abstract. Southwest China is located in the southeastern ities were due to landslides triggered by the shaking (Yin et margin of the Tibetan Plateau and it is a region of high seis- al., 2009; Zhang, 2009). Different from the landslides caused mic activity. Historically, strong earthquakes that occurred by rainfall, earthquake-triggered landslides can take place in here usually generated lots of landslides and brought de- a comparatively wider region, and sometimes they are the structive damages. This paper introduces several earthquake- most potentially destructive amongst the secondary geotech- triggered landslide events in this region and describes their nical hazard associated with earthquakes. These large and characteristics. Also, the historical data of earthquakes with widely distributed landslides usually cannot be prevented by a magnitude of 7.0 or greater, having occurred in this region, current mitigating measures, nor can the regular measures is collected and the relationship between the affected area used to monitor or predict rainfall-triggered landslides. In- of landslides and earthquake magnitude is analysed.
    [Show full text]
  • The Analytical Method in Geomechanics
    The Analytical Method in 1 A. P. S. Selvadurai Geomechanics Department of Civil Engineering and Applied Mechanics, This article presents an overview of the application of analytical methods in the theories McGill University, of elasticity, poroelasticity, flow, and transport in porous media and plasticity to the 817 Sherbrooke Street West, solution of boundary value problems and initial boundary value problems of interest to Montreal, QC, H3A 2K6 Canada geomechanics. The paper demonstrates the role of the analytical method in geomechanics e-mail: [email protected] in providing useful results that have practical importance, pedagogic value, and serve as benchmarking tools for calibrating computational methodologies that are ultimately used for solving more complex practical problems in geomechanics. There are 315 references cited in this article. ͓DOI: 10.1115/1.2730845͔ The development of classical soil mechanics and geomechanics bedded structures, stability and failure of soils, flow in porous owes a great deal to the availability and utilization of theoretical media, and consolidation and creep of soils. results in elasticity, plasticity, poroelasticity, and flow and trans- The analytical method has always played an important role not port in porous media. As the discipline evolves to encompass only as a component of the educational enterprise in geomechan- either new areas of application or the use of new theories of geo- ics but also as a tool for the development of concise results of material behavior, the natural tendency
    [Show full text]
  • Engineering Geologist, 7255
    Form PDES 8 THE CITY OF LOS ANGELES CIVIL SERVICE COMMISSION CLASS SPECIFICATION (04-20-90) ENGINEERING GEOLOGIST (Code 7255) Summary of Duties: Directs, or assists in the directing of, an engineering geology section; conducts and prepares, or reviews for acceptability, professional reports on engineering geological investigations and studies relating to environmental impact reports and the design and construction of tracts, dams, reservoirs, tanks, residential and office buildings, streets and highways, tunnels, electric power generating plants, transmission towers, distributing stations, and other structures; classifies rock and soil samples; performs geologic field inspections and investigations for water bearing strata, methane seepage, geologic hazards, hillside stabilization and landslide repairs, new hillside construction, proposed subdivisions, and grading projects; investigates and provides expert testimony on legal matters involving the City; assigns, reviews and evaluates the work of Assistant Engineering Geologists and other employees engaged in geotechnical or related professional work; applies sound supervisory principles and techniques in building and maintaining an effective work force; fulfills affirmative action responsibilities; and does related work. Distinguishing Features: An Engineering Geologist is responsible for the accuracy and adequacy of professional geological interpretations and reports. The work requires making frequent field trips and being subject to various hazards such as operational grading equipment, hiking on steep and unstable slopes, snake bites, poison oak, exposure, and excessive noise and dust. Such work is normally performed without technical supervision and may affect major engineering and administrative decisions for both private and public projects. An Engineering Geologist is a full supervisor. Incumbents in this class may supervise and review the work of other Engineering Geologists, Geotechnical Engineers, and other personnel engaged in geotechnical engineering work.
    [Show full text]