Workshop on Ecological Effects of Pest Resistance Genes in Managed Ecosystems,” in Bethesda, MD, January 31 – February 3, 1999

Total Page:16

File Type:pdf, Size:1020Kb

Workshop on Ecological Effects of Pest Resistance Genes in Managed Ecosystems,” in Bethesda, MD, January 31 – February 3, 1999 !"# $" $!"#% $!"#% & '& !"#$ %& '( )*%+ ,-& . /0( )*%+ ,-&% . 12( 2!"34'56# !()**+++,-,.,&/ Ecological Effects of Pest Resistance Genes in Managed Ecosystems ACKNOWLEDGMENTS The Editors wish to acknowledge the members of the Workshop Steering Committee, whose judicious guidance helped define the objectives and methodology of the program, and who were instrumental in assembling a superb group of participants. Helen M. Alexander, University of Kansas Hector Quemada, Crop Technology Consulting, Inc. Joy Bergelson, University of Chicago Steven Radosevich, Oregon State University Greg Dwyer, University of Notre Dame Erin Rosskopf, USDA-ARS Dave Heron, USDA-APHIS-PPQ-SS Allison Snow, Ohio State University Peggy Lemaux, UC Berkeley Pat Traynor, ISB, Virginia Tech Donna H. Mitten, AgrEvo/PGS Jim Westwood, Virginia Tech Calvin O. Qualset, UC Davis James White, USDA-APHIS-PPQ-SS This workshop was sponsored by Information Systems for Biotechnology, a program funded at Virginia Tech by a grant from USDA’s Cooperative State Research, Education, and Extension Service. Additional support from USDA/APHIS and BIO is gratefully acknowledged. The complete text of this Proceedings is available on the ISB web site (http://www.isb.vt.edu). Print copies are available at no charge; send your request by email to [email protected] or by fax to 540-231-2614. Please be sure to include a complete mailing address. ii Ecological Effects of Pest Resistance Genes in Managed Ecosystems FOREWORD The idea for a highly focused, multi-disciplinary risk assessment workshop emerged from conversations with scientists, regulatory officials and members of public interest groups. Discussions about the environmental release of transgenic crops, either for field tests or for commercial use, seemed always to touch on what constitutes the basis for decisions, and how those decisions could be strengthened. In 1989, the National Research Council published Field Testing Genetically Modified Organisms; Framework for Decisions, the so-called Green Book. Ten years later, it’s worth taking a look at one of the issues surrounding the use of genetically engineered crops—the impact of introducing pest resistance into crops, and the potential for related species to benefit by acquiring the trait. Combining our collective experience with conventional crops and what we know about engineered varieties brought into focus what we know now, and helped identify the gaps in our knowledge. From this came recommendations for experimental approaches that would generate the needed data. Most participants found the multi-disciplinary science- based approach used in this workshop to be surprisingly effective in bridging gaps between participants from different disciplines, and in stimulating new ideas for research. This format could well serve as a model for similar evaluations of other risk issues associated with the commercial use of transgenic crops in the US and other countries. It is our hope that the reports in this volume will serve to support decision making at all levels and will stimulate greater interest in and funding for risk assessment research. iii Ecological Effects of Pest Resistance Genes in Managed Ecosystems iv Ecological Effects of Pest Resistance Genes in Managed Ecosystems TABLE OF CONTENTS ACKNOWLEDGMENTS............................................................................................................................ ii FOREWORD..............................................................................................................................................iii EXECUTIVE SUMMARY........................................................................................................................... 3 James H. Westwood and Patricia Traynor PLENARY PAPERS ................................................................................................................................13 The Concept of Familiarity and Pest Resistant Plants ........................................................................... 15 Karen Hokanson et al. Weed Management: Implications of Herbicide Resistant Crops........................................................... 21 Stephen O. Duke Escape of Pest Resistance Transgenes to Agricultural Weeds: Relevant Facets of Weed Ecology...... 27 Nicholas Jordan Mechanisms of Pest Resistance in Plants .............................................................................................. 33 Noel Keen Consequences of Classical Plant Breeding for Pest Resistance............................................................. 37 Donald N. Duvick Insect Limitation of Weedy Plants and Its Ecological Implications...................................................... 43 Svata M. Louda Pathogens and Plant Population Dynamics: The Effects of Resistance Genes on Numbers and Distribution ............................................................................................................................................ 49 Janis Antonovics Extrapolating from Field Experiments that Remove Herbivores to Population-Level Effects of Herbivore Resistance Transgenes.......................................................................................................... 57 Michelle Marvier and Peter Kareiva WORKING GROUP REPORTS.............................................................................................................. 65 Report of the Berry Working Group...................................................................................................... 67 Report of the Brassica Crops Working Group ...................................................................................... 73 Report of the Cucurbit Working Group................................................................................................. 79 Report of the Grains Working Group .................................................................................................... 89 Report of the Turfgrasses Working Group ............................................................................................ 97 Report of the Poplar Working Group................................................................................................... 105 Report of the Sunflower Working Group ............................................................................................ 113 PARTICIPANT LIST .............................................................................................................................. 119 OBSERVER LIST................................................................................................................................... 127 1 Ecological Effects of Pest Resistance Genes in Managed Ecosystems 2 Ecological Effects of Pest Resistance Genes in Managed Ecosystems 3 Ecological Effects of Pest Resistance Genes in Managed Ecosystems 4 Ecological Effects of Pest Resistance Genes in Managed Ecosystems EXECUTIVE SUMMARY James H. Westwood and Patricia Traynor Virginia Tech INTRODUCTION releasing such crops pose any special risk of creating or exacerbating a weed problem? Genetically engineered crops have become a visible part of the US agricultural landscape. The Assessing the potential for transgenic pest first transgenic varieties in or near commercial resistant crops to become problem weeds, or to production have been modified for a range of enhance the weediness of nearby sexually characteristics conferring improved agronomic compatible relatives, is a complex task. performance, herbicide tolerance, pest and Information is required from many disciplines – disease resistance, handling and storage weed science, agronomy, population biology and properties, as well as other traits. However the genetics, entomology, plant breeding, ecology, use of biotechnology to address constraints in plant pathology, molecular biology, and more. agricultural production brings with it questions Scientific evidence in support of informed risk regarding the potential of genetically modified assessment and decision making thus lies in the organisms (GMOs) to cause unacceptable collective knowledge of experts from these impacts on the environment. fields. Among the ecological issues associated with The workshop on Ecological Effects of Pest transgenic crops is the possibility that some Resistance Genes in Managed Ecosystems was newly introduced traits, such as pest or pathogen organized to promote multidisciplinary resistance, could confer added fitness to the crop. discussions that would lead to a synthesis of As a result, the crop may gain weedy what we already know, and what we don’t know, characteristics if its ability to survive and spread regarding the environmental impact of pest outside of cultivation is enhanced. A second resistant crops. In so doing, the workshop issue arises if such crops are grown in the provided an opportunity to reexamine a key issue vicinity of compatible wild or weedy related related to the responsible development and use of species; transfer of the trait by natural agricultural biotechnology products. hybridization may produce hybrid progeny that are more aggressive or more difficult to control. APPROACH These issues are no longer hypothetical, as at least seven groups of crops being engineered for The workshop focused on seven groups of crop pest resistance are known to have sexually species that have weedy relatives in North compatible wild or weedy relatives in the US. America: berries, certain grains
Recommended publications
  • Safe Movement of Small Fruit Germplasm
    FOOD AND AGRICULTURE ORGANIZATION INTERNATIONAL PLANT OF THE UNITED NATIONS GENETIC RESOURCES INSTITUTE FAO/IPGRI TECHNICAL GUIDELINES FOR THE SAFE MOVEMENT OF SMALL FRUIT GERMPLASM Edited by M. Diekmann, E.A. Frison and T. Putter In collaboration with the Small Fruit Virus Working Group of the International Society for Horticultural Science 2 CONTENTS Introduction 4 2.Strawberrygreenpetal 31 3. Witches-broom and multiplier Contributors 6 disease 33 Prokaryoticdiseases-bacteria 35 General Recommendations 8 1.Strawberryangular leaf spot 35 2.Strawberrybacterialwilt 36 Technical Recommendations 8 3. Marginal chlorosis of strawberry 37 A. Pollen 8 Fungal diseases 38 B. Seed 9 1. Alternaria leaf spot 38 C. In vitro material 9 2 Anthracnose 39 D. Vegetative propagules 9 3. Fusarium wilt 40 E. Disease indexing 10 4.Phytophthoracrownrot 41 F. Therapy 11 5.Strawberry black root rot 42 6. Strawberry red stele (red core) 43 Descriptions of Pests 13 7. Verticillium wilt 44 Fragaria spp. (strawberry) 13 Ribesspp.(currant,gooseberry) 45 Viruses 13 Viruses 45 1. Ilarviruses 13 1.Alfalfamosaicvirus(AMV) 45 2. Nepoviruses 14 2. Cucumber mosaic virus (CMV) 46 3. Pallidosis 15 3. Gooseberry vein banding virus 4. Strawberry crinkle virus (SCrV) 17 (GVBV) 48 5. Strawberry latent C virus (SLCV) 18 4. Nepoviruses 50 6.Strawberry mildyellow-edge 19 5.Tobacco rattlevirus(TRV) 51 7. Strawberry mottle virus (SMoV) 21 Diseasesofunknownetiology 53 8. Strawberry pseudo mild 1. Black currant yellows 53 yellow-edgevirus(SPMYEV) 22 2. Reversion of red and black currant 54 9. Strawberry vein banding 3.Wildfireof blackcurrant 56 virus (SVBV) 23 4.Yellow leaf spotofcurrant 57 Diseasesofunknownetiology 25 Prokaryotic disease 58 1.
    [Show full text]
  • First Checklist of Rust Fungi in the Genus Puccinia from Himachal Pradesh, India
    Plant Pathology & Quarantine 6(2): 106–120 (2016) ISSN 2229-2217 www.ppqjournal.org Article PPQ Copyright © 2016 Online Edition Doi 10.5943/ppq/6/2/1 First checklist of rust fungi in the genus Puccinia from Himachal Pradesh, India Gautam AK1* and Avasthi S2 1 Faculty of Agriculture, Abhilashi University, Mandi-175028, India 2 Department of Botany, Abhilashi Institute of Life Sciences, Mandi- 175008, India Gautam AK, Avasthi S 2016 – First checklist of rust fungi in the genus Puccinia from Himachal Pradesh, India. Plant Pathology & Quarantine 6(2), 106–120, Doi 10.5943/ppq/6/2/1 Abstract A checklist of rust fungi belonging to the genus Puccinia was prepared for Himachal Pradesh, India. All Puccinia species published until 2014 are included in this list. A total of 80 species have been reported on 91 plant species belonging to 33 families. The family Poaceae supports the highest number of species (26 species) followed by Ranunculaceae (8), Asteraceae (7), Apiaceae and Polygonaceae (6 each), Rubiaceae and Cyperaceae (3 each), Acanthaceae, Berberidaceae, Lamiaceae and Saxifragaceae (2 each). The other host plant families are associated with a single species of Puccinia. This study provides the first checklist of Puccinia from Himachal Pradesh. Key words – checklist – Himachal Pradesh – Puccinia spp. – rust fungi Introduction Himachal Pradesh is a hilly state situated in the heart of Himalaya in the northern part of India. The state extends between 30° 22’ 40” – 33° 12’ 20” north latitudes and 75° 44’ 55” – 79° 04’ 20” east longitudes. The total area of the state is 55,670 km2, covered with very high mountains to plain grasslands.
    [Show full text]
  • The Fungi of Slapton Ley National Nature Reserve and Environs
    THE FUNGI OF SLAPTON LEY NATIONAL NATURE RESERVE AND ENVIRONS APRIL 2019 Image © Visit South Devon ASCOMYCOTA Order Family Name Abrothallales Abrothallaceae Abrothallus microspermus CY (IMI 164972 p.p., 296950), DM (IMI 279667, 279668, 362458), N4 (IMI 251260), Wood (IMI 400386), on thalli of Parmelia caperata and P. perlata. Mainly as the anamorph <it Abrothallus parmeliarum C, CY (IMI 164972), DM (IMI 159809, 159865), F1 (IMI 159892), 2, G2, H, I1 (IMI 188770), J2, N4 (IMI 166730), SV, on thalli of Parmelia carporrhizans, P Abrothallus parmotrematis DM, on Parmelia perlata, 1990, D.L. Hawksworth (IMI 400397, as Vouauxiomyces sp.) Abrothallus suecicus DM (IMI 194098); on apothecia of Ramalina fustigiata with st. conid. Phoma ranalinae Nordin; rare. (L2) Abrothallus usneae (as A. parmeliarum p.p.; L2) Acarosporales Acarosporaceae Acarospora fuscata H, on siliceous slabs (L1); CH, 1996, T. Chester. Polysporina simplex CH, 1996, T. Chester. Sarcogyne regularis CH, 1996, T. Chester; N4, on concrete posts; very rare (L1). Trimmatothelopsis B (IMI 152818), on granite memorial (L1) [EXTINCT] smaragdula Acrospermales Acrospermaceae Acrospermum compressum DM (IMI 194111), I1, S (IMI 18286a), on dead Urtica stems (L2); CY, on Urtica dioica stem, 1995, JLT. Acrospermum graminum I1, on Phragmites debris, 1990, M. Marsden (K). Amphisphaeriales Amphisphaeriaceae Beltraniella pirozynskii D1 (IMI 362071a), on Quercus ilex. Ceratosporium fuscescens I1 (IMI 188771c); J1 (IMI 362085), on dead Ulex stems. (L2) Ceriophora palustris F2 (IMI 186857); on dead Carex puniculata leaves. (L2) Lepteutypa cupressi SV (IMI 184280); on dying Thuja leaves. (L2) Monographella cucumerina (IMI 362759), on Myriophyllum spicatum; DM (IMI 192452); isol. ex vole dung. (L2); (IMI 360147, 360148, 361543, 361544, 361546).
    [Show full text]
  • A Systematic Study of the Family Rhynchitidae of Japan(Coleoptera
    Humans and Nature. No. 2, 1 ―93, March 1993 A Systematic Study of the Family Rhynchitidae of Japan (Coleoptera, Curculionoidea) * Yoshihisa Sawada Division of Phylogenetics, Museum of Nature and Human Activities, Hyogo, Yayoi~ga~oka 6, Sanda, 669~ 13 fapan Abstract Japanese RHYNCHITIDAE are systematically reviewed and revised. Four tribes, 17 genera and 62 species are recognized. Original and additional descriptions are given, with illustrations of and keys to their taxa. The generic and subgeneric names of Voss' system are reviewed from the viewpoint of nomenclature. At the species level, 12 new species Auletobius planifrons, Notocyrtus caeligenus, Involvulus flavus, I. subtilis, I. comix, I. aes, I. lupulus, Deporaus tigris, D. insularis, D. eumegacephalus, D. septemtrionalis and D. rhynchitoides are described and 1 species Engnamptus sauteri are newly recorded from Japan. Six species and subspecies names Auletes carvus, A. testaceus and A. irkutensis japonicus, Auletobius okinatuaensis, Aderorhinus pedicellaris nigricollis and Rhynchites cupreus purpuleoviolaceus are synonymized under Auletobius puberulus, A. jumigatus, A. uniformis, Ad. crioceroides and I. cylindricollis, respectively. One new name Deporaus vossi is given as the replacement name of the primally junior homonym D. pallidiventris Voss, 1957 (nec Voss, 1924). Generic and subgeneric classification is revised in the following points. The genus Notocyrtus is revived as an independent genus including subgenera Notocyrtus s. str., Exochorrhynchites and Heterorhynchites. Clinorhynckites and Habrorhynchites are newly treated as each independent genera. Caenorhinus is newly treated as a valid subgenus of the genus Deporaus. The genera Neocoenorrhinus and Piazorhynckites are newly synonymized under Notocyrtus and Agilaus, respectively, in generic and subgeneric rank. A subgeneric name, Aphlorhynehites subgen.
    [Show full text]
  • INCIDENCE and CHARACTERIZATION of MAJOR FUNGAL PATHOGENS of STRAWBERRY DISEASES NASIR MEHMOOD 06-Arid-109
    INCIDENCE AND CHARACTERIZATION OF MAJOR FUNGAL PATHOGENS OF STRAWBERRY DISEASES NASIR MEHMOOD 06-arid-109 Department of Plant Pathology Faculty of Crop and Food Sciences Pir Mehr Ali Shah Arid Agriculture University Rawalpindi Pakistan 2018 INCIDENCE AND CHARACTERIZATION OF MAJOR FUNGAL PATHOGENS OF STRAWBERRY DISEASES by NASIR MEHMOOD (06-arid-109) A thesis submitted in the partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Pathology Department of Plant Pathology Faculty of Crop and Food Sciences Pir Mehr Ali Shah Arid Agriculture University Rawalpindi Pakistan 2018 ivi v vi vii viiiii “IN THE NAME OF ALLAH, THE MOST BENEFICENT AND MERCIFUL” DEDICATION This Humble Effort Is Dedicated To “My Affectionate and Loving Parents” Who always Sacrifice For Me In Every Moment Of Their Life My Loving & Friendly “Brothers, Sister, Nephews and Nieces” Who Are Always A Source Of Happiness, Supports And Backup For Me to achieve my goals. “May Their Hands Ever Praying for Me These Hands may never fall down” iv CONTENTS List of Tables v List of Figures vi List of Abbreviations viii Acknowledgements x ABSTRACT 1 1. INTRODUCTION 3 2. REVIEW OF LITERATURE 10 2.1 STRAWBERRY HISTROY AND IMPORTANCE 10 2.2 MAJOR STRAWBERRY FUNGAL PATHOGENS 11 2.3 Botrytis cinerea (BOTRYTIS FRUIT ROT) 11 2.4 Colletotrichum acutatum AND C. gloeosporioides 15 (ANTHRACNOSE FRUIT ROT) 2.5 Alternaria alternata (ALTERNARIA LEAF SPOT) 19 2.6 Fusarium solani (FUSARIUM FRUIT ROT) 22 2.7 MOLECULAR TOOLS 25 3. MATERIALS AND METHODS 28 3.1 DISEASE SURVEY
    [Show full text]
  • Current Status of Research on Rust Fungi (Pucciniales) in India
    Asian Journal of Mycology 4(1): 40–80 (2021) ISSN 2651-1339 www.asianjournalofmycology.org Article Doi 10.5943/ajom/4/1/5 Current status of research on Rust fungi (Pucciniales) in India Gautam AK1, Avasthi S2, Verma RK3, Devadatha B 4, Sushma5, Ranadive KR 6, Bhadauria R2, Prasher IB7 and Kashyap PL8 1School of Agriculture, Abhilashi University, Mandi, Himachal Pradesh, India 2School of Studies in Botany, Jiwaji University, Gwalior, Madhya Pradesh, India 3Department of Plant Pathology, Punjab Agricultural University, Ludhiana, Punjab, India 4 Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, India 5Department of Biosciences, Chandigarh University Gharuan, Punjab, India 6Department of Botany, P.D.E.A.’s Annasaheb Magar Mahavidyalaya, Mahadevnagar, Hadapsar, Pune, Maharashtra, India 7Department of Botany, Mycology and Plant Pathology Laboratory, Panjab University Chandigarh, India 8ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana, India Gautam AK, Avasthi S, Verma RK, Devadatha B, Sushma, Ranadive KR, Bhadauria R, Prasher IB, Kashyap PL 2021 – Current status of research on Rust fungi (Pucciniales) in India. Asian Journal of Mycology 4(1), 40–80, Doi 10.5943/ajom/4/1/5 Abstract Rust fungi show unique systematic characteristics among all fungal groups. A single species of rust fungi may produce up to five morphologically and cytologically distinct spore-producing structures thereby attracting the interest of mycologist for centuries. In India, the research on rust fungi started with the arrival of foreign visiting scientists or emigrant experts, mainly from Britain who collected fungi and sent specimens to European laboratories for identification. Later on, a number of mycologists from India and abroad studied Indian rust fungi and contributed a lot to knowledge of the rusts to the Indian Mycobiota.
    [Show full text]
  • The Sally Walker Conservation Fund at Zoo Outreach Organization to Continue Key Areas of Her Interest
    Building evidence for conservaton globally Journal of Threatened Taxa ISSN 0974-7907 (Online) ISSN 0974-7893 (Print) 26 November 2019 (Online & Print) PLATINUM Vol. 11 | No. 14 | 14787–14926 OPEN ACCESS 10.11609/jot.2019.11.14.14787-14926 J TT www.threatenedtaxa.org ISSN 0974-7907 (Online); ISSN 0974-7893 (Print) Publisher Host Wildlife Informaton Liaison Development Society Zoo Outreach Organizaton www.wild.zooreach.org www.zooreach.org No. 12, Thiruvannamalai Nagar, Saravanampat - Kalapat Road, Saravanampat, Coimbatore, Tamil Nadu 641035, India Ph: +91 9385339863 | www.threatenedtaxa.org Email: [email protected] EDITORS English Editors Mrs. Mira Bhojwani, Pune, India Founder & Chief Editor Dr. Fred Pluthero, Toronto, Canada Dr. Sanjay Molur Mr. P. Ilangovan, Chennai, India Wildlife Informaton Liaison Development (WILD) Society & Zoo Outreach Organizaton (ZOO), 12 Thiruvannamalai Nagar, Saravanampat, Coimbatore, Tamil Nadu 641035, Web Design India Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India Deputy Chief Editor Typesetng Dr. Neelesh Dahanukar Indian Insttute of Science Educaton and Research (IISER), Pune, Maharashtra, India Mr. Arul Jagadish, ZOO, Coimbatore, India Mrs. Radhika, ZOO, Coimbatore, India Managing Editor Mrs. Geetha, ZOO, Coimbatore India Mr. B. Ravichandran, WILD/ZOO, Coimbatore, India Mr. Ravindran, ZOO, Coimbatore India Associate Editors Fundraising/Communicatons Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Mrs. Payal B. Molur, Coimbatore, India Dr. Mandar Paingankar, Department of Zoology, Government Science College Gadchiroli, Chamorshi Road, Gadchiroli, Maharashtra 442605, India Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA Editors/Reviewers Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Subject Editors 2016-2018 Fungi Editorial Board Ms. Sally Walker Dr.
    [Show full text]
  • Rust Diseases of Brambles
    University of Kentucky College of Agriculture, Food & Environment Extension Plant Pathology College of Agriculture, Food and Environment Cooperative Extension Service Plant Pathology Fact Sheet PPFS-FR-S-06 Rust Diseases of Brambles Nicole Gauthier Jessica Sayre Plant Pathology Horticulture Extension Specialist Extension Agent Importance Cane & Leaf Rust The three most important rust diseases occurring Symptoms & Signs on brambles in Kentucky are cane and leaf rust, late The first evidence of cane and leaf rust is the presence rust, and orange rust. The most destructive of these of elongated, bright yellow pustules appearing on diseases is orange rust, which is ultimately lethal to infected floricanes (year-old canes that will produce plants. Once infected, entire plants must be removed fruit) in spring (Figure 1). Pustules rupture through and destroyed. In contrast, cane and leaf rust, along the bark and result in brittle canes that break easily. with late rust, are not lethal to plants and can be Small yellow pustules may also appear on undersides managed using cultural practices and fungicides. of leaves (Figure 2) and less frequently on fruit Distinguishing between these rust diseases is critical (Figure 3). Fungal signs (pustules of powdery yellow for proper management. rust spores) may be evident in mid-April and extend through summer. Premature defoliation, which results in stress and loss of plant vigor, can occur if 1a leaf infections are severe. Hosts Blackberry is susceptible; raspberry infections are rare. 1a Figure 1. (A) Cane and leaf rust pustules erupt through the bark of floricanes in spring. (B) Close-up of cane and leaf rust pustule containing abundant powdery yellow spores.
    [Show full text]
  • Future Fungal Distributions COMPLETE
    Chaloner et al. Crop disease burdens Supplementary Material Supplementary Figures (Fig. S1 – S15) Supplementary Tables (Table S1 – S6) 1 Chaloner et al. Crop disease burdens Maize Rice 3 4 2 1 2 0 0 −1 −2 −2 −4 −3 Soybean Wheat 4 3 2 2 1 0 0 −1 −2 −2 −3 −4 Cassava Millet 1.5 2 1.0 1 0.5 0 0.0 −1 −0.5 −2 −1.0 −1.5 Peanut Pea 4 1.5 1.0 2 0.5 0 0.0 −0.5 −2 −1.0 −4 −1.5 Rapeseed Sugarbeet 1.5 6 1.0 4 0.5 2 0.0 0 −0.5 −2 −4 −1.0 −6 −1.5 Sugarcane Sunflower 10 1.5 1.0 5 0.5 0 0.0 −0.5 −5 −1.0 −10 −1.5 Fig. S1. Projected yield differences (2020 – 2070), LPJmL crop model. Values are difference between 2061 – 2080 mean and 2011 – 2030 mean (t ha-1), averaged over four climate models (GFDL-ESM2M, HADGEM2- ES, IPSL-CM5A-LR, MIROC5). 2 Chaloner et al. Crop disease burdens Maize Rice 1.5 1.0 1.0 0.5 0.5 0.0 0.0 −0.5 −0.5 −1.0 −1.0 −1.5 Soybean Wheat 0.6 1.0 0.4 0.2 0.5 0.0 0.0 −0.2 −0.5 −0.4 −0.6 −1.0 Fig. S2. Projected yield differences (2020 – 2070), GEPIC crop model. Values are difference between 2061 – 2080 mean and 2011 – 2030 mean (t ha-1), averaged over four climate models (GFDL-ESM2M, HADGEM2- ES, IPSL-CM5A-LR, MIROC5).
    [Show full text]
  • Ohio Plant Disease Index
    Special Circular 128 December 1989 Ohio Plant Disease Index The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio This page intentionally blank. Special Circular 128 December 1989 Ohio Plant Disease Index C. Wayne Ellett Department of Plant Pathology The Ohio State University Columbus, Ohio T · H · E OHIO ISJATE ! UNIVERSITY OARilL Kirklyn M. Kerr Director The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio All publications of the Ohio Agricultural Research and Development Center are available to all potential dientele on a nondiscriminatory basis without regard to race, color, creed, religion, sexual orientation, national origin, sex, age, handicap, or Vietnam-era veteran status. 12-89-750 This page intentionally blank. Foreword The Ohio Plant Disease Index is the first step in develop­ Prof. Ellett has had considerable experience in the ing an authoritative and comprehensive compilation of plant diagnosis of Ohio plant diseases, and his scholarly approach diseases known to occur in the state of Ohia Prof. C. Wayne in preparing the index received the acclaim and support .of Ellett had worked diligently on the preparation of the first the plant pathology faculty at The Ohio State University. edition of the Ohio Plant Disease Index since his retirement This first edition stands as a remarkable ad substantial con­ as Professor Emeritus in 1981. The magnitude of the task tribution by Prof. Ellett. The index will serve us well as the is illustrated by the cataloguing of more than 3,600 entries complete reference for Ohio for many years to come. of recorded diseases on approximately 1,230 host or plant species in 124 families.
    [Show full text]
  • Evaluation of Host Plant Resistance Against Sunflower Moth, <I
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Student Research in Entomology Entomology, Department of 8-2017 Evaluation of host plant resistance against sunflower moth, Homoeosoma electellum (Hulst), in cultivated sunflower in western Nebraska Dawn M. Sikora University of Nebraska - Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/entomologydiss Part of the Entomology Commons Sikora, Dawn M., "Evaluation of host plant resistance against sunflower moth, Homoeosoma electellum (Hulst), in cultivated sunflower in western Nebraska" (2017). Dissertations and Student Research in Entomology. 50. http://digitalcommons.unl.edu/entomologydiss/50 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Student Research in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Evaluation of host plant resistance against sunflower moth, Homoeosoma electellum (Hulst), in cultivated sunflower in western Nebraska by Dawn Sikora A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Entomology Under the Supervision of Professors Jeff Bradshaw and Gary Brewer Lincoln, Nebraska August, 2017 Evaluation of host plant resistance against sunflower moth, Homoeosoma electellum (Hulst), in cultivated sunflower in western Nebraska Dawn Sikora, M.S. University of Nebraska, 2017 Advisors: Jeff Bradshaw and Gary Brewer Sunflower moth, Homoeosoma electellum, is a serious pest of oilseed and confection sunflowers. In this study, we determine efficacy of resistance against this pest. Thirty commercial hybrids, inbreds, and varieties of sunflowers were tested in replicated field and laboratory studies.
    [Show full text]
  • Monitoring Arthropods Fauna Associated with Sunflower (Helianthus Annuus L.) Varieties Used in Cut Flower Trade Industry in South Florida, USA
    International Journal of Botany Studies International Journal of Botany Studies ISSN: 2455-541X; Impact Factor: RJIF 5.12 Received: 25-03-2019; Accepted: 30-04-2019 www.botanyjournals.com Volume 4; Issue 3; May 2019; Page No. 191-195 Monitoring arthropods fauna associated with sunflower (Helianthus annuus L.) Varieties used in cut flower trade industry in South Florida, USA Fazal Said1, Catharine Mannion2, Hussain Ali3, Fazal Jalal4, Muhammad Imtiaz5, Muhammad Ali Khan6, Sayed Hussain7 1, 4-7 Department of Agriculture, Abdul Wali Khan University, Mardan, Pakistan 2 University of Florida/IFAS Tropical research & education center, Homestead, USA 3 Entomology Section, Agriculture Research Institute (ARI), D.I. Khan Peshawar, Pakistan Abstract Sunflower (Helianthus annuus L.) is a profitable cash crop in the southern and eastern states of United States of America mainly for the production of edible oils, biodiesel as well as cut flower for ornamental purposes. Field experiment was conducted during spring season 2014 at Tropical Research and Education Centre (TREC) of The University of Florida at Homestead to monitor different arthropods fauna on four different sunflower cultivars i.e. Sunrich Lemon, Sunbright, Sunrich Orange and Russian Mammoth. Basic purpose of the study was to document different arthropods fauna associated with the crop. Among all four varieties of sunflower, three were cut flowers whereas Russian Mammoth was oilseed variety. While monitoring, no attempt was made to collect all the available individuals, only the representative species of each individual was collected since the basic purpose of the study was to report all the existing arthropod species on sunflower in the area.
    [Show full text]