Journal of Mammalogy, 91(5):1058–1072, 2010 Systematics of Malaysian woolly bats (Vespertilionidae: Kerivoula) inferred from mitochondrial, nuclear, karyotypic, and morphological data FAISAL ALI ANWARALI KHAN,* SERGIO SOLARI,VICKI J. SWIER,PETER A. LARSEN,M.T.ABDULLAH, AND ROBERT J. BAKER Department of Biological Sciences and the Museum, Texas Tech University, Lubbock, TX 79409, USA (FAAK, SS, VJS, PAL, RJB) Department of Zoology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia (FAAK, MTA) Present address of SS: Instituto de Biologı´a, Universidad de Antioquia, A.A. 1226, Medellı´n, Colombia * Correspondent:
[email protected] Downloaded from Examining species boundaries using data from multiple independent sources is an appropriate and robust method to identify genetically isolated evolutionary units. We used 5 data sets—cytochrome b (Cytb), cytochrome c oxidase (COI), amplified fragment length polymorphisms (AFLPs), karyotypes, and morphology—to estimate phylogenetic relationships and species limits within woolly bats, genus Kerivoula, http://jmammal.oxfordjournals.org/ from Southeast Asia. We genetically analyzed 54 specimens of Kerivoula from Malaysia, assigned to 6 of the 10 species currently reported from the country. Phylogenetic analyses of nuclear AFLPs (33 specimens) and mitochondrial DNA sequences from Cytb (51 specimens) and COI (48 specimens) resulted in similar statistically supported species-level clades with minimal change in branching order. Using comparisons of cranial and dental morphology and original species descriptions, we assigned the resulting phylogenetic clades to K. hardwickii, K. intermedia, K. lenis, K. minuta, K. papillosa, K pellucida, and 1 unidentified species. Karyotypes further documented variability among the 6 clades.