Appendicular Skeleton of Protoceratops Andrewsi

Total Page:16

File Type:pdf, Size:1020Kb

Appendicular Skeleton of Protoceratops Andrewsi Appendicular skeleton of Protoceratops andrewsi Comparative morphology, ontogenetic changes, and the implications for non- ceratopsid ceratopsian locomotion PROTOCERATOPS ANDREWSI Protoceratops andrewsi is a member of Ornithischia (‘bird-hipped’ dinosaurs), which inhabited what we call today the Gobi Desert in Central Asia, during the Late Cretaceous time (i.e., between 83 and 72 million years ago). It was discovered in 1922. Protoceratops belongs to a group of horned dinosaurs (Ceratopsia), but contrary to the large Triceratops, it was a relatively small (up to 2 m long) dinosaur and had no horns, just a medium-sized frill at the back of its head (called the parietal frill). Protoceratops fed on plants and supposedly lived in herds. Adults were rather stocky and quadrupedal animals, but when young, Protoceratops was much more agile. SUBADULT PROTOCERATOPS Our analysis of the subadult skeleton of Protoceratops andrewsi indicates that it could occasionally stand on two legs either feeding this way (to reach higher growing plants) or for behavioral reasons (checking its surroundings for potential enemies). ADULT SUBADULT DIFFERENCES Narrow Wide scapular scapular blade blade Narrow Wide glenoid glenoid Arched Straight femur femur MAJOR DIFFERENCES BETWEEN BIPEDAL AND QUADRUPEDAL NON-CERATOPSID CERATOPSIANS Tibia longer than the femur Tibia shorter than the femur Slender and pointy hand unguals Broad (hoof-like) hand unguals Narrow ilium Wider ilium Long and slender foot Broader, more stocky foot This is an open access graphic distributed under the terms of the Appendicular skeleton of Protoceratops andrewsi Creative Commons Attribution License. (Dinosauria, Ornithischia): comparative morphology, ontogenetic changes, and the implications for non- ceratopsid ceratopsian locomotion PeerJ 4:e7324 DOI: 10.7717/peerj.7324 http://peerj.com/articles/7324/.
Recommended publications
  • A Neoceratopsian Dinosaur from the Early Cretaceous of Mongolia And
    ARTICLE https://doi.org/10.1038/s42003-020-01222-7 OPEN A neoceratopsian dinosaur from the early Cretaceous of Mongolia and the early evolution of ceratopsia ✉ Congyu Yu 1 , Albert Prieto-Marquez2, Tsogtbaatar Chinzorig 3,4, Zorigt Badamkhatan4,5 & Mark Norell1 1234567890():,; Ceratopsia is a diverse dinosaur clade from the Middle Jurassic to Late Cretaceous with early diversification in East Asia. However, the phylogeny of basal ceratopsians remains unclear. Here we report a new basal neoceratopsian dinosaur Beg tse based on a partial skull from Baruunbayan, Ömnögovi aimag, Mongolia. Beg is diagnosed by a unique combination of primitive and derived characters including a primitively deep premaxilla with four pre- maxillary teeth, a trapezoidal antorbital fossa with a poorly delineated anterior margin, very short dentary with an expanded and shallow groove on lateral surface, the derived presence of a robust jugal having a foramen on its anteromedial surface, and five equally spaced tubercles on the lateral ridge of the surangular. This is to our knowledge the earliest known occurrence of basal neoceratopsian in Mongolia, where this group was previously only known from Late Cretaceous strata. Phylogenetic analysis indicates that it is sister to all other neoceratopsian dinosaurs. 1 Division of Vertebrate Paleontology, American Museum of Natural History, New York 10024, USA. 2 Institut Català de Paleontologia Miquel Crusafont, ICTA-ICP, Edifici Z, c/de les Columnes s/n Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès Sabadell, Barcelona, Spain. 3 Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA. 4 Institute of Paleontology, Mongolian Academy of Sciences, ✉ Ulaanbaatar 15160, Mongolia.
    [Show full text]
  • A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
    A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member.
    [Show full text]
  • A Revision of the Ceratopsia Or Horned Dinosaurs
    MEMOIRS OF THE PEABODY MUSEUM OF NATURAL HISTORY VOLUME III, 1 A.R1 A REVISION orf tneth< CERATOPSIA OR HORNED DINOSAURS BY RICHARD SWANN LULL STERLING PROFESSOR OF PALEONTOLOGY AND DIRECTOR OF PEABODY MUSEUM, YALE UNIVERSITY LVXET NEW HAVEN, CONN. *933 MEMOIRS OF THE PEABODY MUSEUM OF NATURAL HISTORY YALE UNIVERSITY Volume I. Odontornithes: A Monograph on the Extinct Toothed Birds of North America. By Othniel Charles Marsh. Pp. i-ix, 1-201, pis. 1-34, text figs. 1-40. 1880. To be obtained from the Peabody Museum. Price $3. Volume II. Part 1. Brachiospongidae : A Memoir on a Group of Silurian Sponges. By Charles Emerson Beecher. Pp. 1-28, pis. 1-6, text figs. 1-4. 1889. To be obtained from the Peabody Museum. Price $1. Volume III. Part 1. American Mesozoic Mammalia. By George Gaylord Simp- son. Pp. i-xvi, 1-171, pis. 1-32, text figs. 1-62. 1929. To be obtained from the Yale University Press, New Haven, Conn. Price $5. Part 2. A Remarkable Ground Sloth. By Richard Swann Lull. Pp. i-x, 1-20, pis. 1-9, text figs. 1-3. 1929. To be obtained from the Yale University Press, New Haven, Conn. Price $1. Part 3. A Revision of the Ceratopsia or Horned Dinosaurs. By Richard Swann Lull. Pp. i-xii, 1-175, pis. I-XVII, text figs. 1-42. 1933. To be obtained from the Peabody Museum. Price $5 (bound in cloth), $4 (bound in paper). Part 4. The Merycoidodontidae, an Extinct Group of Ruminant Mammals. By Malcolm Rutherford Thorpe. In preparation.
    [Show full text]
  • A Battering Ram?
    A Battering Ram? All evidence suggests that Pachycephalosaur skulls were built to withstand extreme forces 9 inches of solid bone Bone organized in a radial arrangement- structural support Articulation btw back of skull and vertebrae oriented to transfer forces linearly Articulation btw back of skull and vertebral column built to withstand sideways forces Vertebral column has tongue and groove articulations Spinal column is an S-shaped shock absorber BUT There is no ‘locking’ mechanism on skull to keep battering heads aligned Some Pachycephalosaurs have imprinted blood vessels on dome These factors suggests that head- butting may not be likely Intraspecies Competition (typically male-male) Females are typically choosey Why? Because they have more to loose Common rule in biology: Females are expensive to lose, males are cheap (e.g. deer hunting) Females choose the male most likely to provide the most successful offspring Males compete with each other for access to female vs. female chooses the strongest male Choosey females // Strong males have more offspring => SEXUAL selection Many ways to do this... But: In general, maximize competition and minimize accidental deaths (= no fitness) http://www.youtube.com/watch?v=PontCXFgs0M http://www.metacafe.com/watch/1941236/giraffe_fight/ http://www.youtube.com/watch? http://www.youtube.com/watch?v=DYDx1y38vGw http://www.youtube.com/watch?v=ULRtdk-3Yh4 Air-filled horn cores vs. solid bone skull caps... Gotta have a cheezy animated slide. Homalocephale Pachycephalosaurus Prenocephale Tylocephale Stegoceras Head butting Pachycephalosaurs Bone structure was probably strong enough to withstand collision Convex nature would favor glancing blows Instead, dome and spines seem better suited for “flank butting” So..
    [Show full text]
  • A New Maastrichtian Species of the Centrosaurine Ceratopsid Pachyrhinosaurus from the North Slope of Alaska
    A new Maastrichtian species of the centrosaurine ceratopsid Pachyrhinosaurus from the North Slope of Alaska ANTHONY R. FIORILLO and RONALD S. TYKOSKI Fiorillo, A.R. and Tykoski, R.S. 2012. A new Maastrichtian species of the centrosaurine ceratopsid Pachyrhinosaurus from the North Slope of Alaska. Acta Palaeontologica Polonica 57 (3): 561–573. The Cretaceous rocks of the Prince Creek Formation contain the richest record of polar dinosaurs found anywhere in the world. Here we describe a new species of horned dinosaur, Pachyrhinosaurus perotorum that exhibits an apomorphic character in the frill, as well as a unique combination of other characters. Phylogenetic analysis of 16 taxa of ceratopsians failed to resolve relationships between P. perotorum and other Pachyrhinosaurus species (P. canadensis and P. lakustai). P. perotorum shares characters with each of the previously known species that are not present in the other, including very large nasal and supraorbital bosses that are nearly in contact and separated only by a narrow groove as in P. canadensis, and a rostral comb formed by the nasals and premaxillae as in P. lakustai. P. perotorum is the youngest centrosaurine known (70–69 Ma), and the locality that produced the taxon, the Kikak−Tegoseak Quarry, is close to the highest latitude for recovery of ceratopsid remains. Key words: Dinosauria, Centrosaurinae, Cretaceous, Prince Creek Formation, Kikak−Tegoseak Quarry, Arctic. Anthony R. Fiorillo [[email protected]] and Ronald S. Tykoski [[email protected]], Perot Museum of Nature and Science, 2201 N. Field Street, Dallas, TX 75202, USA. Received 4 April 2011, accepted 23 July 2011, available online 26 August 2011.
    [Show full text]
  • Horn Use in Triceratops (Dinosauria: Ceratopsidae): Testing Behavioral Hypotheses Using Scale Models
    Palaeontologia Electronica http://palaeo-electronica.org HORN USE IN TRICERATOPS (DINOSAURIA: CERATOPSIDAE): TESTING BEHAVIORAL HYPOTHESES USING SCALE MODELS Andrew A. Farke ABSTRACT Triceratops, a common chasmosaurine ceratopsid dinosaur from the Late Creta- ceous of North America, is known for its cranial ornamentation, including a single nasal horn and large, paired supraorbital horns. It is commonly surmised that Triceratops used its horns in intraspecific combat, but this hypothesis has not been rigorously tested. Scale models of Triceratops skulls were used to determine if it could physically lock horns as has been suggested. Three hypothetical horn locking positions were found, involving varying orientations of the combatants’ skulls. Based on these posi- tions, it was hypothesized that injuries caused by horns were especially likely in certain portions of the frill, jugals, and postorbital horncore tips. This corresponds to some pre- viously reported pathologies in chasmosaurine specimens. Uncertainties in this model- ing exercise center around variations in horn orientation, size, shape, and the possible existence of a keratinous supraorbital horncore sheath. Triceratops differs from modern horned mammals in its horn orientation, which suggests that if it engaged in intraspe- cific combat, its fighting style was quite different from these modern animals. During hypothetical horn locking in Triceratops, most of the force was directed against the medial and lateral surfaces of the horn cores. This has implications for future studies of ceratopsid cranial functional morphology, especially as related to horn architecture and the development of the frontal sinus complex. Andrew A. Farke. Department of Anatomical Sciences, Stony Brook University, Health Sciences Center, Stony Brook, New York, 11794-8081, USA.
    [Show full text]
  • Dinosaur Warriors
    Dinosaur Warriors Dinosaur Take a step back in time to explore all things dinosaur—from fossil hunters to baby dinosaurs! Read all the books in this series: Owen DROPCAP by Ruth Owen [Intentionally Left Blank] DROPCAP DROPCAPby Ruth Owen Consultant: Dougal Dixon, Paleontologist Member of the Society of Vertebrate Paleontology United Kingdom Credits Cover, © James Kuether; 4–5, © James Kuether; 6–7, © James Kuether; 8, © The Natural History Museum/Alamy; 9, © James Kuether; 10–11, © James Kuether; 10B, © Christophe Hendrickx; 12–13, © James Kuether; 14, © The Natural History Museum/Alamy; 15, © James Kuether; 16, © David A. Burnham; 17, © John Weinstein/Field Museum/Getty Images; 18, © James Kuether; 19, © Andrey Gudkov/Dreamstime; 20, © Gaston Design Inc./Robert Gaston/www.gastondesign. com; 21, © Stocktrek Images Inc/Alamy; 22T, © W. Scott McFill/Shutterstock; 22B, © James Kuether; 23T, © Edward Ionescu/Dreamstime; 23B, © benedek/Istock Photo. Publisher: Kenn Goin Senior Editor: Joyce Tavolacci Creative Director: Spencer Brinker Image Researcher: Ruth Owen Books Library of Congress Cataloging-in-Publication Data Names: Owen, Ruth, 1967– author. Title: Dinosaur warriors / by Ruth Owen. Description: New York, New York : Bearport Publishing, [2019] | Series: The dino-sphere | Includes bibliographical references and index. DROPCAP Identifiers: LCCN 2018049812 (print) | LCCN 2018053176 (ebook) | ISBN 9781642802566 (Ebook) | ISBN 9781642801873 (library) Subjects: LCSH: Dinosaurs—Juvenile literature. Classification: LCC QE861.5 (ebook) | LCC QE861.5 .O8456 2019 (print) | DDC 567.9—dc23 LC record available at https://lccn.loc.gov/2018049812 Copyright © 2019 Ruby Tuesday Books. Published in the United States by Bearport Publishing Company, Inc. All rights reserved. No part of this publication may be reproduced in whole or in part, stored in any retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher.
    [Show full text]
  • From the Late Inner Mongolia
    bulletin de l'institut royal des sciences naturelles de belgique sciences de la terre, 71-supp.: 5-28, 2001 bulletin van het koninklijk belgisch instituut voor natuurwetenschappen aardwetenschappen, 71-supp.: 5-28, 2001 A new Species of Protoceratops (Dinosauria, Neoceratopsia) from the Late Cretaceous of Inner Mongolia (P. R. China)1 Olivier LAMBERT, Pascal GODEFROIT, Hong LI, Chang-Young SHANG & Zhi-Ming DONG Lambert, O., Godefroit, P., Li, H., Shang, C.-Y, & Dong, Mots-clefs: Neoceratopsia, Protoceratops, Crétacé supérieur, Z.-M., 2001. - A new Species of Protoceratops (Dinosauria, Mongolie intérieure, phylogénie. Neoceratopsia) from the Late Cretaceous of Inner Mongolia (P. R. China). Bulletin de l'Institut royal des Sciences naturelles de Belgique, Introduction Sciences de la Terre, Supplement 71: 05-28, 4 pis., 13 fïgs., 2 tables; Bruxelles - Brussel, December 15, 2001. - ISSN 0374-6291. Protoceratops is probably the most emblematic dinosaur from the Gobi Desert. The first specimen was discovered Abstract in the Djadokhta Formation (Campanian) at the legendary Flaming Cliffs (Bayn Dzak, P. R. Mongolia) by the Third The basai neoceratopsian dinosaur Protoceratops hellenikorhinus nov. Central Asiatic Expédition of the AMNH on September sp. is described on the basis of material discovered by the Sino-Belgian 2, 1922 (Andrews, 1932). This skull (AMNH 6251) of a Expéditions in Inner Mongolia, in Campanian (Upper Cretaceous) deposits at Bayan Mandahu (Inner Mongolia, P.R. China). This new juvénile individual, lacking the front of the face and the species is characterised by its large size and by a series of cranial frill, was described as Protoceratops andrewsi Granger autapomorphies linked to the important development of the mandibu- & Gregory, 1923.
    [Show full text]
  • A Possible Ceratopsid Tooth from the Upper Cretaceous of Kyushu, Japan
    Bull. Natl. Mus. Nat. Sci., Ser. C, 42, pp. 29–34, December 22, 2016 A possible ceratopsid tooth from the Upper Cretaceous of Kyushu, Japan Makoto Manabe1, Takanobu Tsuihiji2, Yuka Miyake3 and Toshifumi Komatsu4 1 Department of Geology and Paleontology, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan 2 Department of Earth and Planetary Science, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan 3 Satsumasendai City Board of Education, 1457–10 Imuta, Kashima, Satsumasendai, Kagoshima 896–1392, Japan 4 Faculty of Advanced Science and Technology, Kumamoto University, 2–39–1 Kurokami, Chuo-ku, Kumamoto 860–8555, Japan Abstract A fragmentary tooth is reported from the Campanian section of the Upper Cretaceous Himenoura Group on Shimokoshikishima Island of Kyushu, Japan. The tooth specimen is identi- fied as the medial root of a ceratopsid dinosaur. If this identification is correct, it represents a rare example of the clade in Asia. Key words : Ceratopsidae, Dinosauria, Himenoura Group, Campanian, Kyushu, Japan Introduction North America until Xu et al. (2010) described Sinoceratops zhuchengensis from the Upper Cre- Ceratopsians were one of the most successful taceous of China, demonstrating the presence of clades of dinosaurs in North America and Asia this clade in Asia. However, remains of ceratop- during the Cretaceous Period (e.g., Dodson et al., sids are still very scarce in Asia with S. zhuchen- 2004; You and Dodson, 2004). Ceratopsians, gensis being the only definite Asian ceratopsid. especially ceratopsids, are characterized by In the present study, a fragmentary element derived and diversified characters especially in found from the Campanian section of the Hime- the skull such as the distinctive frill, horns and noura Group on Shimokoshikishima Island in beak (Dodson, 1996).
    [Show full text]
  • HISTORY of the CERATOPSIAN DINOSAUR TRICERATOPS in the Science Museum of Minnesota 1960 – Present by Bruce R
    HISTORY OF THE CERATOPSIAN DINOSAUR TRICERATOPS In The Science Museum of Minnesota 1960 – Present by Bruce R. Erickson MONOGRAPH VOLUME 12: PALEONTOLOGY Published by THE SCIENCE MUSEUM OF MINNESOTA SAINT PAUL, MINNESOTA 55102 HISTORY OF THE CERATOPSIAN DINOSAUR TRICERATOPS In The Science Museum of Minnesota 1960 – Present Bruce R. Erickson Fitzpatrick Chair of Paleontology MONOGRAPH VOLUME 12: PALEONTOLOGY The Science Museum of Minnesota 120 West Kellogg Blvd. Saint Paul, Minnesota 55102 USA. July 28, 2017 Frontispiece: First season at Triceratops quarry 1960. CONTENTS INTRODUCTION .............................................................5 COLLECTING TRICERATOPS 1960-1964 FIELD WORK ............................5 ABOUT THE MOUNTED SKELETON 1964-1965 ..................................18 ABOUT THE BRAIN OF TRICERATOPS. 19 EPILOGUE ..................................................................22 OTHER FINDS, NOTES, and VIEWS (Figs. 12-28) ..................................24 From the Triceratops Expeditions 1959-1964 ACKNOWLEDGMENTS .......................................................34 REFERENCES ...............................................................34 APPENDIX I ................................................................36 APPENDIX II ................................................................36 MONOGRAPH VOLUME 12: PALEONTOLOGY International Standard Book Number: 911338-92-6 SCIENCE MUSEUM OF MINNESOTA MONOGRAPH VOL. 12 HISTORY OF THE CERATOPSIAN DINOSAUR TRICERATOPS In The Science Museum of Minnesota 1960
    [Show full text]
  • Bone Histology of Protoceratops Andrewsi from the Late Cretaceous of Mongolia and Its Biological Implications
    Bone histology of Protoceratops andrewsi from the Late Cretaceous of Mongolia and its biological implications ŁUCJA FOSTOWICZ-FRELIK and JUSTYNA SŁOWIAK Fostowicz-Frelik, Ł. and Słowiak, J. 2018. Bone histology of Protoceratops andrewsi from the Late Cretaceous of Mon- golia and its biological implications. Acta Palaeontologica Polonica 63 (3): 503–517. Protoceratops andrewsi is one of the best known and abundant ornithischian dinosaurs from the Djadokhta Formation (Late Cretaceous, Mongolia) and a subject of many morphological studies. Here we present the first study of its bone tissue (from the long bones, frill, and rib), describing microstructure, extent of remodeling, and growth tempo changes in ontogeny. Several specimens representing juvenile, subadult, and adult age stages have been studied. In general, paleohistology of Protoceratops is quite uniform throughout ontogeny, showing basic fibrolamellar bone complex with prevalence of woven-fibered bone and scarce remodeling. In adults the parallel-fibered bone matrix forms distinct al- though irregular zonation in the cortex until dominating it. The bone displays noteworthy abundance of fossilized fibers (including Sharpey’s fibers), which apparently strengthen the tissue and enhance its elasticity. Growth tempo increased in the studied femora of Protoceratops at the subadult stage, which suggests changes in bone proportions (i.e., elongation of the hind limbs) in a similar manner as it was observed in a more basal Psittacosaurus. Key words: Dinosauria, Ornithischia, Ceratopsia, paleohistology, ontogeny, growth tempo, Cretaceous, Mongolia. Łucja Fostowicz-Frelik [[email protected]], Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warsaw, Poland; and Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Pale- ontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, People’s Republic of China.
    [Show full text]
  • Evolution of Ceratopsian Dental Microstructure David Kay
    Florida State University Libraries Honors Theses The Division of Undergraduate Studies 2014 Evolution of Ceratopsian Dental Microstructure David Kay Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES EVOLUTION OF CERATOPSIAN DENTAL MICROSTRUCTURE By David Kay A Thesis submitted to the Department of Biological Science in partial fulfillment of the requirements for graduation with Honors in the Major Degree Awarded: Summer, 2014 1 The members of the Defense Committee approve the thesis of David Kay defended on April 21st, 2014. ______________________________ Professor Gregory M. Erickson Thesis Director ______________________________ Professor William C. Parker Outside Committee Member ______________________________ Professor Scott J. Steppan Committee Member 2 Acknowledgements To be brutally honest, I almost didn’t write this section because I figured that as an undergraduate thesis that there didn’t need to be one; then I realized that by trivializing this I in effect trivialize all the time and guidance that people have given to me. First and foremost I need to thank Greg Erickson for all that he has done for me, including but not limited to: letting me into his reading group, letting me work in the lab, giving me spectacular advice on how to pursue a career in the paleo world, and being a top-notch mentor to a guy with a few screws loose. I would also like to thank Dr. Steppan, whose comments and advise are always amazing and make whatever I’m writing at least five times better. Dr.
    [Show full text]