Linking Endophytic Fungi to Medicinal Plants Therapeutic Activity. a Case Study on Asteraceae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chamaemelum Nobile (L.) All., Flos
27 January 2011 EMA/HMPC/560733/2010 Committee on Herbal Medicinal Products (HMPC) List of references supporting the assessment of Chamaemelum nobile (L.) All., flos Draft The Agency acknowledges that copies of the underlying works used to produce this monograph were provided for research only with exclusion of any commercial purpose. Abramson W, Basch E, Cheung L, Dacey C, Giese N, Hashmi S, Santos A, Seamon E, Ulbricht C, Varghese M, Weissner W, Woods J. Chamomile (Matricaria recutita, Chamaemelum nobile). In: Ulbricht C, Basch E editors. Natural Standard Professional Database, Foods, Herbs & Supplements. Natural Standard Inc. 2010. Available at: http://www.naturalstandard.com/naturalstandard/monographs/monoframeset.asp?monograph=/mono graphs/herbssupplements/aux1- chamomile.asp&patientVersion=/monographs/herbssupplements/patient-chamomile.asp Accessed 01/07/2010. Abou-Zied EN, Rizk AM. Phytochemical investigation of Anthemis nobilis growing in Egypt. Qual Plant Mater Veg 1973, 22:141-144. Antonelli A, Fabbri C. Study on Roman chamomile (Chamaemelum nobile L. All.) oil. JEOR 1998, 10:571-574. Augustin B, Javorka S, Giovannini R, Rom P. Magyar gyógynövények [Hungarian Herbal Drugs] I. Általános és leíró rész (I. General and describing part) Földművelésügyi Minisztérium, Budapest, 1948, 299-300. [Hungarian] Bail S, Buchbauer G, Jirovetz L, Denkova Z, Slavchev A, Stoyanova A, Schmidt E, Geissler M. Antimicrobial Activities of Roman Chamomile Oil From France and Its Main Compounds. JEOR 2009, 21:283-286. Balbaa SI, Zaki AY, El-Zalabani SM. The volatile oil of Anthemis nobilis L. growing in Egypt. Egypt J Pharmaceut Sci 1975, 16:161-173. Bandoniene D, Pukalskas A, Venskutonis PR, Gruzdiene D. Preliminary screening of antioxidant activity of some plant extracts in rapeseed oil. -
Asexual Neotyphodium Endophytes in a Native Grass Reduce Competitive Abilities
Ecology Letters, (2004) 7: 304–313 doi: 10.1111/j.1461-0248.2004.00578.x REPORT Asexual Neotyphodium endophytes in a native grass reduce competitive abilities Abstract Stanley H. Faeth,1* Marjo L. Asexual, vertically transmitted endophytes are well known for increasing competitive Helander2 and Kari T. Saikkonen2 abilities of agronomic grasses, but little is known about endophyte–host interactions in 1School of Life Sciences, Arizona native grasses. We tested whether the asexual Neotyphodium endophyte enhances State University, Tempe, AZ competitive abilities in a native grass, Arizona fescue, in a field experiment pairing 85287-4501, USA naturally infected (E+) and uninfected (E)) plants, and in a greenhouse experiment 2 Section of Ecology, pairing E+ and E) (experimentally removed) plants, under varying levels of soil water and Department of Biology, nutrients. In the field experiment, E) plants had greater vegetative, but not reproductive, University of Turku, FIN-20014 growth than E+ plants. In the greenhouse experiment, where plant genotype was strictly Turku, Finland ) *Correspondence: E-mail: controlled, E plants consistently outperformed their E+ counterparts in terms of root [email protected] and shoot biomass. Thus, Neotyphodium infection decreases host fitness via reduced competitive properties, at least in the short term. These findings contrast starkly with most endophyte studies involving introduced, agronomic grasses where infection increases competitive abilities, and the interaction is viewed as highly mutualistic. Keywords Competition, drought, endophytic fungi, Festuca arizonica, mutualism, native grasses, Neotyphodium, parasitism, symbiosis. Ecology Letters (2004) 7: 304–313 Breen 1994) and seed predators (e.g. Knoch et al. 1993), or INTRODUCTION via allelopathy (e.g. -
Environmental Weeds of Coastal Plains and Heathy Forests Bioregions of Victoria Heading in Band
Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band b Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Contents Introduction 1 Purpose of the list 1 Limitations 1 Relationship to statutory lists 1 Composition of the list and assessment of taxa 2 Categories of environmental weeds 5 Arrangement of the list 5 Column 1: Botanical Name 5 Column 2: Common Name 5 Column 3: Ranking Score 5 Column 4: Listed in the CALP Act 1994 5 Column 5: Victorian Alert Weed 5 Column 6: National Alert Weed 5 Column 7: Weed of National Significance 5 Statistics 5 Further information & feedback 6 Your involvement 6 Links 6 Weed identification texts 6 Citation 6 Acknowledgments 6 Bibliography 6 Census reference 6 Appendix 1 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed alphabetically within risk categories. 7 Appendix 2 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by botanical name. 19 Appendix 3 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by common name. 31 Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria i Published by the Victorian Government Department of Sustainability and Environment Melbourne, March2008 © The State of Victoria Department of Sustainability and Environment 2009 This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968. -
Helichrysum Cymosum (L.) D.Don (Asteraceae): Medicinal Uses, Chemistry, and Biological Activities
Online - 2455-3891 Vol 12, Issue 7, 2019 Print - 0974-2441 Review Article HELICHRYSUM CYMOSUM (L.) D.DON (ASTERACEAE): MEDICINAL USES, CHEMISTRY, AND BIOLOGICAL ACTIVITIES ALFRED MAROYI* Department of Botany, Medicinal Plants and Economic Development Research Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa. Email: [email protected] Received: 26 April 2019, Revised and Accepted: 24 May 2019 ABSTRACT Helichrysum cymosum is a valuable and well-known medicinal plant in tropical Africa. The current study critically reviewed the medicinal uses, phytochemistry and biological activities of H. cymosum. Information on medicinal uses, phytochemistry and biological activities of H. cymosum, was collected from multiple internet sources which included Scopus, Google Scholar, Elsevier, Science Direct, Web of Science, PubMed, SciFinder, and BMC. Additional information was gathered from pre-electronic sources such as journal articles, scientific reports, theses, books, and book chapters obtained from the University library. This study showed that H. cymosum is traditionally used as a purgative, ritual incense, and magical purposes and as herbal medicine for colds, cough, fever, headache, and wounds. Ethnopharmacological research revealed that H. cymosum extracts and compounds isolated from the species have antibacterial, antioxidant, antifungal, antiviral, anti-HIV, anti-inflammatory, antimalarial, and cytotoxicity activities. This research showed that H. cymosum is an integral part of indigenous pharmacopeia in tropical Africa, but there is lack of correlation between medicinal uses and existing pharmacological properties of the species. Therefore, future research should focus on evaluating the chemical and pharmacological properties of H. cymosum extracts and compounds isolated from the species. Keywords: Asteraceae, Ethnopharmacology, Helichrysum cymosum, Herbal medicine, Indigenous pharmacopeia, Tropical Africa. -
El Género Sclerocarpus (Asteraceae, Heliantheae) En México
Revista Mexicana de Biodiversidad 82: 51-61, 2011 El género Sclerocarpus (Asteraceae, Heliantheae) en México The genus Sclerocarpus (Asteraceae, Heliantheae) in Mexico José Luis Villaseñor* y Óscar Hinojosa-Espinosa Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México., Apartado postal 70-367, 04510 México, D. F., México. *Correspondencia: [email protected] Resumen. El género Sclerocarpus (Asteraceae, Heliantheae) está constituido por 8 especies, 7 de ellas presentes en el territorio mexicano. Este taxón se caracteriza por sus páleas, que al madurar se tornan gruesas, duras y encierran por completo a las cipselas formando estructuras llamadas esclerocarpos. Se presenta una sinopsis del género para México, una clave para la identificación de las especies y mapas de distribución de cada una de ellas. Palabras clave: Asteraceae, esclerocarpo, Heliantheae, México, Sclerocarpus. Abstract.The genus Sclerocarpus (Asteraceae, Heliantheae) comprises 8 pecies, 7 of them recorded in Mexico. It is characterized by its paleae, that become thick and hard when mature, and completely enclosing the cypselae, forming structures called sclerocarps. A synopsis of the genus in the country is provided, including distribution maps of the species and a key to their identification. Key words: Asteraceae, Heliantheae, Mexico, sclerocarp, Sclerocarpus. Introducción y Rhysolepis S.F. Blake (actualmente incluido en Viguiera Kunth). En estos taxones, las cipselas maduras también se encuentran envueltas por completo por sus páleas; sin El género Sclerocarpus Jacq. es un miembro de Helian- embargo, la envoltura paleácea es relativamente delgada, theae, la tribu más grande y diversa de la familia Asteraceae papirácea y de superficie rugosa o corrugada. En los 3 (Stuessy, 1977). -
Chamomile: a Herbal Medicine of the Past with a Bright Future (Review)
MOLECULAR MEDICINE REPORTS 3: 895-901, 2010 Chamomile: A herbal medicine of the past with a bright future (Review) JANMEJAI K. SRIVASTAVA1,2,4, ESWAR SHANKAR1,2 and SANJAY GUPTA1-3 Department of Urology and Nutrition, 1Case Western Reserve University; 2University Hospitals Case Medical Center; 3Case Comprehensive Cancer Center, Cleveland, OH 44106, USA Received August 4, 2010; Accepted August 30, 2010 DOI: 10.3892/mmr.2010.377 Abstract. Chamomile is one of the most ancient medicinal Contents herbs known to mankind. It is a member of the Asteraceae/ Compositae family and is represented by two common 1. Introduction varieties, German Chamomile (Chamomilla recutita) 2. Bioactive constituents of chamomile and Roman Chamomile (Chamaemelum nobile). The 3. Healthcare preparations with chamomile dried flowers of chamomile contain many terpenoids 4. Traditional uses of chamomile and flavonoids, which contribute to its medicinal properties. 5. Scientific evaluation of chamomile Chamomile preparations are commonly used for many 6. Contraindications and safety issues with chamomile human ailments, including hay fever, inflammation, muscle 7. Conclusions spasms, menstrual disorders, insomnia, ulcers, wounds, gastrointestinal disorders, rheumatic pain and hemorrhoids. Essential oils of chamomile are used extensively in cosmetics 1. Introduction and aromatherapy. Numerous preparations of chamomile have been developed, the most popular being in the form of The effect of plants on human health has been documented herbal tea, of which more than one million cups are consumed for thousands of years (1-3). Herbs have been integral to both every day. In this review, we describe the use of chamomile traditional and non-traditional forms of medicine dating back in traditional medicine with regard to evaluating its curative at least 5000 years (2,4-6). -
Roles of Fungal Endophytes and Viruses in Mediating Drought Stress Tolerance in Plants
INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 20–0504/2020/24–6–1497–1512 DOI: 10.17957/IJAB/15.1588 http://www.fspublishers.org Review Article Roles of Fungal Endophytes and Viruses in Mediating Drought Stress Tolerance in Plants Khondoker Mohammad Golam Dastogeer1,2*, Anindita Chakraborty3,4, Mohammad Saiful Alam Sarker5 and Mst Arjina Akter1 1Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh 2Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan 3Department of Genetic Engineering and Biotechnology, Shahjalal University of Science & Technology, Sylhet, Bangladesh 4WA State Agricultural Biotechnology Centre (SABC) Murdoch University, Perth, Western Australia 5Basic & Applied Research on Jute Project, Bangladesh Jute Research Institute (BJRI), Bangladesh *For correspondence: [email protected] Received 28 March 2020; Accepted 03 July 2020; Published 10 October 2020 Abstract Various biotic and abiotic stresses can hamper crop productivity and thus pose threats to global food security. Sustainable agricultural production demands for the use of safer and eco-friendly tools and inputs in farm production. In addition to plant growth-promoting bacteria and mycorrhizal fungi, endophytic fungi can also help plant mitigate or reduce the effect of stresses. Another less well-known is the use of viruses that provide benefit to plants facing growth challenges due to stress. Studies suggest that fungal endophyte and virus could be important candidate and economically and ecologically sustainable means for protecting plants from stress condition. To exploit their benefits, a thorough understanding of the interaction of host- beneficial microbes obtained by scientifically sound experiments with robust statistical analysis is crucial. -
Molecular Systematics of Genus Atractylodes (Compositae, Cardueae): Evidence from Internal Transcribed Spacer (ITS) and Trnl-F Sequences
Int. J. Mol. Sci. 2012, 13, 14623-14633; doi:10.3390/ijms131114623 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Molecular Systematics of Genus Atractylodes (Compositae, Cardueae): Evidence from Internal Transcribed Spacer (ITS) and trnL-F Sequences Hua-Sheng Peng 1,2, Qing-Jun Yuan 1, Qian-Quan Li 1 and Lu-Qi Huang 1,* 1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China; E-Mails: [email protected] (H.-S.P.); [email protected] (Q.-J.Y.); [email protected] (Q.-Q.L.) 2 Department of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230031, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-10-8404-4340. Received: 13 August 2012; in revised form: 26 October 2012 / Accepted: 30 October 2012 / Published: 9 November 2012 Abstract: To determine the evolutionary relationships among all members of the genus Atractylodes (Compositae, Cardueae), we conducted molecular phylogenetic analyses of one nuclear DNA (nrDNA) region (internal transcribed spacer, ITS) and one chloroplast DNA (cpDNA) region (intergenic spacer region of trnL-F). In ITS and ITS + trnL-F trees, all members of Atractylodes form a monophyletic clade. Atractylodes is a sister group of the Carlina and Atractylis branch. Atractylodes species were distributed among three clades: (1) A. carlinoides (located in the lowest base of the Atractylodes phylogenetic tree), (2) A. macrocephala, and (3) the A. lancea complex, including A. japonica, A. coreana, A. lancea, A. lancea subsp. luotianensis, and A. chinensis. The taxonomic controversy over the classification of species of Atractylodes is mainly concentrated in the A. -
Scientific Program
Aquatttiiic and Wetttllland Plllanttts::: Wettt & Wiiillld Jullly 26---31,,, 2003 Mobiiillle,,, Alllabama www...botttany2003...org SCIENTIFIC PROGRAM SATURDAY, JULY 26 7:00 PM – 10:00 PM Adam’s Mark, River Room MEETING: BSA Executive Committee Presiding: SCOTT D. RUSSELL, Department of Botany and Microbiology, 770 Van Vleet Oval, University of Oklahoma, Norman, OK 73019-0245. Tele: (405) 325-6234, E-mail: [email protected]. SUNDAY, JULY 27 8:30 AM – 4:00 PM Adam’s Mark, Dauphin MEETING: ASPT COUNCIL Presiding: LYNN G. CLARK, Department of Botany, Iowa State University, Ames, IA 50011-1020. Tele: (515) 294-8218, E-mail: [email protected]. 9:00 AM – 11:00 AM Adam’s Mark, Church MEETING: BSA Financial Advisory Committee Presiding: HARRY T. HORNER, Department of Botany, Iowa State University, Ames, IA 50011-1020. Tele: 515-294-8635, E-mail: [email protected]. 11:30 AM – 1:00 PM Adam’s Mark, Church MEETING: BSA New Committee Chair Meeting Presiding: LINDA E. GRAHAM, Department of Botany, 211 Birge Hall, University of Wisconsin, Madison, WI 53706. Tele: (608) 262-2640, Fax: (608) 262-7509, E-mail: [email protected]; and WILLIAM DAHL, Botanical Society of America, 4468-74 Castleman Avenue, St. Louis, MO 63166- 0299, Tele: (314) 577-9566, E-mail: [email protected]. 1:00 PM – 5:00 PM Adam’s Mark, De Tonti MEETING: BSA Council Presiding: SCOTT D. RUSSELL, Department of Botany and Microbiology, 770 Van Vleet Oval, University of Oklahoma, Norman, OK 73019-0245. Tele: (405) 325-6234, E-mail: [email protected]. BOTANY 2003 – Scientific Program 1 June 12, 2003 draft – please check final printed version, as rooms and times may change. -
Fungal Endophytes for Grass Based Bioremediation
Journal of Fungi Article Fungal Endophytes for Grass Based Bioremediation: An Endophytic Consortium Isolated from Agrostis stolonifera Stimulates the Growth of Festuca arundinacea in Lead Contaminated Soil Erika Soldi * , Catelyn Casey, Brian R. Murphy and Trevor R. Hodkinson School of Natural Sciences and Trinity Centre for Biodiversity Research, Trinity College Dublin, College Green, The University of Dublin, D02 PN40 Dublin 2, Ireland; [email protected] (C.C.); [email protected] (B.R.M.); [email protected] (T.R.H.) * Correspondence: [email protected] Received: 30 September 2020; Accepted: 25 October 2020; Published: 29 October 2020 Abstract: Bioremediation is an ecologically-friendly approach for the restoration of heavy metal-contaminated sites and can exploit environmental microorganisms such as bacteria and fungi. These microorganisms are capable of removing and/or deactivating pollutants from contaminated substrates through biological and chemical reactions. Moreover, they interact with the natural flora, protecting and stimulating plant growth in these harsh conditions. In this study, we isolated a group of endophytic fungi from Agrostis stolonifera grasses growing on toxic waste from an abandoned lead mine (up to 47,990 Pb mg/kg) and identified them using DNA sequencing (nrITS barcoding). The endophytes were then tested as a consortium of eight strains in a growth chamber experiment in association with the grass Festuca arundinacea at increasing concentrations of lead in the soil to investigate how they influenced several growth parameters. As a general trend, plants treated with endophytes performed better compared to the controls at each concentration of heavy metal, with significant improvements in growth recorded at the highest concentration of lead (800 galena mg/kg). -
Genetic Diversity and Evolution in Lactuca L. (Asteraceae)
Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis committee Promotor Prof. Dr M.E. Schranz Professor of Biosystematics Wageningen University Other members Prof. Dr P.C. Struik, Wageningen University Dr N. Kilian, Free University of Berlin, Germany Dr R. van Treuren, Wageningen University Dr M.J.W. Jeuken, Wageningen University This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 25 January 2016 at 1.30 p.m. in the Aula. Zhen Wei Genetic diversity and evolution in Lactuca L. (Asteraceae) - from phylogeny to molecular breeding, 210 pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summary in Dutch and English ISBN 978-94-6257-614-8 Contents Chapter 1 General introduction 7 Chapter 2 Phylogenetic relationships within Lactuca L. (Asteraceae), including African species, based on chloroplast DNA sequence comparisons* 31 Chapter 3 Phylogenetic analysis of Lactuca L. and closely related genera (Asteraceae), using complete chloroplast genomes and nuclear rDNA sequences 99 Chapter 4 A mixed model QTL analysis for salt tolerance in -
1 Check-List of Cladosporium Names Frank M. DUGAN, Konstanze
Check-list of Cladosporium names Frank M. DUGAN , Konstanze SCHUBERT & Uwe BRAUN Abstract: DUGAN , F.M., SCHUBERT , K. & BRAUN ; U. (2004): Check-list of Cladosporium names. Schlechtendalia 11 : 1–119. Names of species and subspecific taxa referred to the hyphomycetous genus Cladosporium are listed. Citations for original descriptions, types, synonyms, teleomorphs (if known), references of important redescriptions in literature, illustrations as well as notes are given. This list contains data of 772 taxa, i.e., valid, invalid and illegitime species, varieties and formae as well as herbarium names. Zusammenfassung: DUGAN , F.M., SCHUBERT , K. & BRAUN ; U. (2004): Checkliste der Cladosporium -Namen. Schlechtendalia 11 : 1–119. Namen von Arten und subspezifischen Taxa der Hyphomycetengattung Cladosporium werden aufgelistet. Bibliographische Angaben zur Erstbeschreibung, Typusangaben, Synonyme, die Teleomorphe (falls bekannt), wichtige Literaturhinweise und Abbildungen sowie Anmerkungen werden angegeben. Die vorliegende Liste enthält Namen von 772 Taxa, d. h. gültige, ungültige und illegitime Arten, Varietäten, Formen und auch Herbarnamen. Introduction: Cladosporium Link (LINK 1816) is one of the largest genera of hyphomycetes, comprising more than 772 names, but also one of the most heterogeneous ones, which is not very surprising since all early circumscriptions and delimitations from similar genera were rather vague and imprecise (FRIES 1832, 1849; SACCARDO 1886; LINDAU 1907, etc.). All kinds of superficially similar cladosporioid fungi, i.e., amero- to phragmosporous dematiaceous hyphomycetes with conidia formed in acropetal chains, were assigned to Cladosporium s. lat., ranging from saprobes to plant pathogens as well as human-pathogenic taxa. DE VRIES (1952) and ELLIS (1971, 1976) maintained broad concepts of Cladosporium . ARX (1983), MORGAN - JONES & JACOBSEN (1988), MCKEMY & MORGAN -JONES (1990), MORGAN -JONES & MCKEMY (1990) and DAVID (1997) discussed the heterogeneity of Cladosporium and contributed towards a more natural circumscription of this genus.