UNIT 11 CHEMISTRY of D- Andf-BLOCK ELEMENTS

Total Page:16

File Type:pdf, Size:1020Kb

UNIT 11 CHEMISTRY of D- Andf-BLOCK ELEMENTS UNIT 11 CHEMISTRY OF d- ANDf-BLOCK ELEMENTS Structure 11.1 Introduction Objectives 11.2 Transition and Inner Transition Elements - An Introduction 11.3 IUPAC Nomenclature of 6d Transition Series Elements 11.4 .Electronic Configuration of d-Block and f-Block Elements Electronic Configurations of Transition Elements and Ions Electronic Configurations of Lanthanide and Actinide Elements 11.5 Periodic Trends in Properties Atomic Radii and Ioaic Rad~i Melting and Boiling Points Enthalpies of Ionization Oxidation States Colour of the Complexes Magnetic Properties Catalytic Properties Formation of Complexes Formation of Interstitial Compounds (Interstitial Solid Solutions) and Alloys (Substitutional Solid Solutions) 11.6 Summary 11.7 Terminal Questions 11.1 INTRODUCTION In last unit we have studies about the periodicity and representative elements. In this unit we will study the chemistry of d and f block elements. First we will study the IUPAC nomenclature of these elements then we will discuss the electronic configuration, periodicity, variation of size, melting and boiling points. We shall also study the ionization energy, electronegativity, electrode potential, oxidation sate of these elements in detail. Objectives After studying this unit, you should be able to: explain the IUPAC nomenclature of d and f block elements, describe the electronic configuration of d and f block elements, outline the general properties of these elements, and discuss the colour, magnetic complex formation catalytic properties. 1 1.2 TRANSITION AND INNER TRANSITION ELEMENTS - AN INTRODUCTION We already know that in the periodic table the elements are classified into four blocks; namely, s-block, p-block, d-block andfiblock, based on the name of atomic orbital that accepts the valence or differentiating electrons. In the elements of d-block orfiblock the valence electron enters the penultimate (inner to the outermost) (n-l)d orbitals or ante- penultimate (third to the outermost) (n-2lforbitals respectively. The d-block elements occupy position in between s-block andp-block elements and possess properties that are intermediate (or transitional) between elements of s- andp- block and are, therefore, called transition elem'ents. Thef-block elements are often Chemistry of Elements called as inner-transition elements because in these elements the differentiating electron enters thef -orbitals of an inner shell. The term transition is used here because they exhlbit transition element behaviour by exhibiting variable oxidation states, forming coloured ions and exhibiting paramagnetism. The lanthanides (also called lanthanoids or lanthanons) are placed along with lanthanum and actinides (also known as actinoids or actinons) along with actinium in the periodic table. Customarily, they are listed separately in two series at the bottom of the periodic table in order to avoid it being excessively wide. Presently most chemists consider as transition elements, only those elements that, either as free atoms (or neutral atoms) or in any of their common oxidation states, have partly filled d-orbitals. According to this definition, the elements zinc, cadmium and mercury are excluded from the list of transition elements, as they possess completely filled d- orbitals in their neutral atoms and in their common oxidation states (~'3. These large numbers of transition elements are further classified into four series of elements- first transition series, second transition series, third transition series and fourth transition series according to the filling of 3d, 4d, 5d and 6d atomic orbitals. The elements from scandium to copper constitute the first transition series while a group of nine elements from yttrium to silver constitute the second transition series. The third transition series begins with hafnium and goes up to gold. The fourth transition series (also called super heavy elements) starts with element having atomic number 104 and goes up to 1 12. These elements have been synthesized by artificial nuclear reactions and are very unstable with respect to a-decay or spontaneous fission with very short half- lives. Thef-block elements comprise two series of elements- the lanthanide series and the actinide series according to the filling of 4f and Sf orbitals, respectively. A group of fourteen elements following lanthanum in the periodic table are called lanthanides. Si~nilarly,the fourteen elements following actinium in the periodic table are termed as actinide elements. The elements following uranium have been produced artificially and are collectively called transuranium elements. -- - - - - - - - - - - - - - - - - - - 11.3 IUPAC NOMENCLATURE OF 6d TRANSITION SERIES ELEMENTS As we already know each element in the periodic table have been given definite names and their symbols are derived by either taking the first alphabet, or by taking first alphabet and one more alphabet from the name of the elements. But the 4d transition series elements are given special names and symbols according to TUPAC rules, which are given below: 1: The name of the element is directly derived from the atomic number of the element as per the following numerical roots: 0 1 2 3 4 5 6 7 8 9 nil un bi tri quad pent hex sept oct enn 2. These roots are written together in order of appearance of the digits in the atomic number and terminated by -iurn. If enn comes before nil, the last n of enn is elided. Similarly, the final i of bi and tri is omitted when it occurs before -ium. 3. Taking the first letter of the initial roots that make up the number derives the symbols of the elements. ~hus,the name of the elements with atomic numbi 104 will be unnilquadium and the symbol will be Unq. The name and symbol of elen :~tshaving atomic numbers 104-112 are given in Table 1 1.1. Table 11.1: IUPAC names and symbols of fourth transition series elements. Chemistry of d- and .f-Block Elements Atomic Name of Symbol Atomic Name of Symbol Number Element Number Element 104 Unnilquadium Unq 109 Unnilennium Une 105 Unnilpentium Unp 1 10 Ununnilium Uun 106 Unnilhexium Unh 111 Unununium Uuu 107 Unnilseptium Uns 112 Ununbium Uub 108 Unniloctium Uno It is pertinent to note that these IUPAC names are assigned to elements only temporarily till the claimls about their synthesis are confirmed after which they are assigned proper names and symbols. Elements with atomic numbers 109 have already been assigned proper names. Recently the element with atomic number 110 has been named as Darmstadtium (Ds), on 16Ihaugust, 2003 at 42"d General Assembly of IUPAC in Ottawa, Canada. SAQ 1 a) Why zinc, cadmium and mercury are not considered as transition elements? b) Write the rCTPAC name and symbol of unknown elements with atomic number 118, 120and 150. 11.4 ELECTRONIC CONFIGURATION OF I-BLOCK ANDfiBLOCK ELEMENTS In the preceding section we discussed the position of transition elements and the inner transition elements in the periodic table and the rules for naming of elements of fourth transition series. We shall now discuss the ground state electronic configurations of transition and inner transition elements and their ions. 11.4.1 Electronic Configurations of Transition Elements and Ions We already know that the electronic bon figuration of argon atom is id, 2s22p6,3~~3~'. In the atom of next element potassium the differentiating electron enters the 4s level. The 4s level becomes filled at the element calcium, which has the electronic configuration [A-]4s2.In the atoms of successive elements from scandium to zinc, differentiating electrons enter 3d level instead of 4p. The electronic configurations of the atoms of second and third series transition elements follow similar pattern. In atoms of 4d series of transition elements, after filling up of the 5s level at strontium [ICr]5s2 the differentiating electrons enter 4d level instead of 5p. Similarly, in atoms of 5d transition series elements the 6s level is filled at barium and the filling of 5d level begins at lanthanum which intempted by fourteen elements in which the electron enter 4f level (i.e. lanthanides), resumes at hafnium. The resulting electronic configurations of the atoms of transition elements are given in Table 1 1.2. The electronic configuration of the Chemistry of Elements ions can be obtained by removing first the outer ns electrons and then (n-l)d electron of the atom until the number of removed electrons become equal to the charge on the ion. For example, co3+will have electronic configuration as [Ar]3d6 and ~i~'as [Ar]3d, etc. Table 11.2: Electronic configurations of the free atoms of transition elements. it transition series Second transition series Element Free atom Element Free atom F [Ar]3d14s' Y [ICr]4d15s2 [Ar]3d24s' Zr [Kr]4d25s2 [Ar]3d34s' Nb [Kr]4# 5s' [Ar]3ds 4s' Mo [Kr]4ds 5s' [Ar]3ds 4s' b Tc [Kr]4d6 5s' [Ar]3d6 4s2 Ru [Kr]4d75s' [Ar]3d74s2 Rh [Kr]4d5s1 [~r]3d4s~ Pd [Kr14d'~5s' [Ar]3d1° 4s' Ag [Kr14d'~5s' [~r]3d"4s2 Cd [~r]4d'O52 Third transition series I ~ourthtransitionseries I Element Free atom Element Free atom La rxel5d1 6s2 Unq [Rn]5f4 6d7s2 Hf ,U~P [Rn]5f4 6d3 7s' Ta unh lRn15f 6# 7s' W Uns 687s2 Re Uno [Rn]5f4 6d6 7s' 0s Une [Rn]5f4 6d7 7s' Ir Unn [Rn]5f4 627s' Pt Uuu [Rn]5f 6d7s2 Au Uub lRn15f 6dI0 7s' Now you may be wondering as to why the ns level is filled first before the (n-l)d or the (n-22flevels and then later why (n-l)d or (n-22flevels are filled prior to np level. It is the radial dependence of the d-orbitals that is responsible for this order of filling of electrons in these elements. The stability of an electron in various atomic orbitals can be evaluated by comparison of radial probability functions 4n22 T 2 . The plot of radial distribution functions for 3d and 4s electrons is shown in Fig.
Recommended publications
  • 5 Heavy Metals As Endocrine-Disrupting Chemicals
    5 Heavy Metals as Endocrine-Disrupting Chemicals Cheryl A. Dyer, PHD CONTENTS 1 Introduction 2 Arsenic 3 Cadmium 4 Lead 5 Mercury 6 Uranium 7 Conclusions 1. INTRODUCTION Heavy metals are present in our environment as they formed during the earth’s birth. Their increased dispersal is a function of their usefulness during our growing dependence on industrial modification and manipulation of our environment (1,2). There is no consensus chemical definition of a heavy metal. Within the periodic table, they comprise a block of all the metals in Groups 3–16 that are in periods 4 and greater. These elements acquired the name heavy metals because they all have high densities, >5 g/cm3 (2). Their role as putative endocrine-disrupting chemicals is due to their chemistry and not their density. Their popular use in our industrial world is due to their physical, chemical, or in the case of uranium, radioactive properties. Because of the reactivity of heavy metals, small or trace amounts of elements such as iron, copper, manganese, and zinc are important in biologic processes, but at higher concentrations they often are toxic. Previous studies have demonstrated that some organic molecules, predominantly those containing phenolic or ring structures, may exhibit estrogenic mimicry through actions on the estrogen receptor. These xenoestrogens typically are non-steroidal organic chemicals released into the environment through agricultural spraying, indus- trial activities, urban waste and/or consumer products that include organochlorine pesticides, polychlorinated biphenyls, bisphenol A, phthalates, alkylphenols, and parabens (1). This definition of xenoestrogens needs to be extended, as recent investi- gations have yielded the paradoxical observation that heavy metals mimic the biologic From: Endocrine-Disrupting Chemicals: From Basic Research to Clinical Practice Edited by: A.
    [Show full text]
  • Lanthanides & Actinides Notes
    - 1 - LANTHANIDES & ACTINIDES NOTES General Background Mnemonics Lanthanides Lanthanide Chemistry Presents No Problems Since Everyone Goes To Doctor Heyes' Excruciatingly Thorough Yearly Lectures La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Actinides Although Theorists Prefer Unusual New Proofs Able Chemists Believe Careful Experiments Find More New Laws Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Principal Characteristics of the Rare Earth Elements 1. Occur together in nature, in minerals, e.g. monazite (a mixed rare earth phosphate). 2. Very similar chemical properties. Found combined with non-metals largely in the 3+ oxidation state, with little tendency to variable valence. 3. Small difference in solubility / complex formation etc. of M3+ are due to size effects. Traversing the series r(M3+) steadily decreases – the lanthanide contraction. Difficult to separate and differentiate, e.g. in 1911 James performed 15000 recrystallisations to get pure Tm(BrO3)3! f-Orbitals The Effective Electron Potential: • Large angular momentum for an f-orbital (l = 3). • Large centrifugal potential tends to keep the electron away from the nucleus. o Aufbau order. • Increased Z increases Coulombic attraction to a larger extent for smaller n due to a proportionately greater change in Zeff. o Reasserts Hydrogenic order. This can be viewed empirically as due to differing penetration effects. Radial Wavefunctions Pn,l2 for 4f, 5d, 6s in Ce 4f orbitals (and the atoms in general) steadily contract across the lanthanide series. Effective electron potential for the excited states of Ba {[Xe] 6s 4f} & La {[Xe] 6s 5d 4f} show a sudden change in the broadness & depth of the 4f "inner well".
    [Show full text]
  • The Periodic Electronegativity Table
    The Periodic Electronegativity Table Jan C. A. Boeyens Unit for Advanced Study, University of Pretoria, South Africa Reprint requests to J. C. A. Boeyens. E-mail: [email protected] Z. Naturforsch. 2008, 63b, 199 – 209; received October 16, 2007 The origins and development of the electronegativity concept as an empirical construct are briefly examined, emphasizing the confusion that exists over the appropriate units in which to express this quantity. It is shown how to relate the most reliable of the empirical scales to the theoretical definition of electronegativity in terms of the quantum potential and ionization radius of the atomic valence state. The theory reflects not only the periodicity of the empirical scales, but also accounts for the related thermochemical data and serves as a basis for the calculation of interatomic interaction within molecules. The intuitive theory that relates electronegativity to the average of ionization energy and electron affinity is elucidated for the first time and used to estimate the electron affinities of those elements for which no experimental measurement is possible. Key words: Valence State, Quantum Potential, Ionization Radius Introduction electronegative elements used to be distinguished tra- ditionally [1]. Electronegativity, apart from being the most useful This theoretical notion, in one form or the other, has theoretical concept that guides the practising chemist, survived into the present, where, as will be shown, it is also the most bothersome to quantify from first prin- provides a precise definition of electronegativity. Elec- ciples. In historical context the concept developed in a tronegativity scales that fail to reflect the periodicity of natural way from the early distinction between antag- the L-M curve will be considered inappropriate.
    [Show full text]
  • An Alternate Graphical Representation of Periodic Table of Chemical Elements Mohd Abubakr1, Microsoft India (R&D) Pvt
    An Alternate Graphical Representation of Periodic table of Chemical Elements Mohd Abubakr1, Microsoft India (R&D) Pvt. Ltd, Hyderabad, India. [email protected] Abstract Periodic table of chemical elements symbolizes an elegant graphical representation of symmetry at atomic level and provides an overview on arrangement of electrons. It started merely as tabular representation of chemical elements, later got strengthened with quantum mechanical description of atomic structure and recent studies have revealed that periodic table can be formulated using SO(4,2) SU(2) group. IUPAC, the governing body in Chemistry, doesn‟t approve any periodic table as a standard periodic table. The only specific recommendation provided by IUPAC is that the periodic table should follow the 1 to 18 group numbering. In this technical paper, we describe a new graphical representation of periodic table, referred as „Circular form of Periodic table‟. The advantages of circular form of periodic table over other representations are discussed along with a brief discussion on history of periodic tables. 1. Introduction The profoundness of inherent symmetry in nature can be seen at different depths of atomic scales. Periodic table symbolizes one such elegant symmetry existing within the atomic structure of chemical elements. This so called „symmetry‟ within the atomic structures has been widely studied from different prospects and over the last hundreds years more than 700 different graphical representations of Periodic tables have emerged [1]. Each graphical representation of chemical elements attempted to portray certain symmetries in form of columns, rows, spirals, dimensions etc. Out of all the graphical representations, the rectangular form of periodic table (also referred as Long form of periodic table or Modern periodic table) has gained wide acceptance.
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Actinide Ground-State Properties-Theoretical Predictions
    Actinide Ground-State Properties Theoretical predictions John M. Wills and Olle Eriksson electron-electron correlations—the electronic energy of the ground state of or nearly fifty years, the actinides interactions among the 5f electrons and solids, molecules, and atoms as a func- defied the efforts of solid-state between them and other electrons—are tional of electron density. The DFT Ftheorists to understand their expected to affect the bonding. prescription has had such a profound properties. These metals are among Low-symmetry crystal structures, impact on basic research in both the most complex of the long-lived relativistic effects, and electron- chemistry and solid-state physics that elements, and in the solid state, they electron correlations are very difficult Walter Kohn, its main inventor, was display some of the most unusual to treat in traditional electronic- one of the recipients of the 1998 behaviors of any series in the periodic structure calculations of metals and, Nobel Prize in Chemistry. table. Very low melting temperatures, until the last decade, were outside the In general, it is not possible to apply large anisotropic thermal-expansion realm of computational ability. And DFT without some approximation. coefficients, very low symmetry crystal yet, it is essential to treat these effects But many man-years of intense research structures, many solid-to-solid phase properly in order to understand the have yielded reliable approximate transitions—the list is daunting. Where physics of the actinides. Electron- expressions for the total energy in does one begin to put together an electron correlations are important in which all terms, except for a single- understanding of these elements? determining the degree to which 5f particle kinetic-energy term, can be In the last 10 years, together with electrons are localized at lattice sites.
    [Show full text]
  • Chapter 7 Electron Configuration and the Periodic Table
    Chapter 7 Electron Configuration and the Periodic Table Copyright McGraw-Hill 2009 1 7.1 Development of the Periodic Table • 1864 - John Newlands - Law of Octaves- every 8th element had similar properties when arranged by atomic masses (not true past Ca) • 1869 - Dmitri Mendeleev & Lothar Meyer - independently proposed idea of periodicity (recurrence of properties) Copyright McGraw-Hill 2009 2 • Mendeleev – Grouped elements (66) according to properties – Predicted properties for elements not yet discovered – Though a good model, Mendeleev could not explain inconsistencies, for instance, all elements were not in order according to atomic mass Copyright McGraw-Hill 2009 3 • 1913 - Henry Moseley explained the discrepancy – Discovered correlation between number of protons (atomic number) and frequency of X rays generated – Today, elements are arranged in order of increasing atomic number Copyright McGraw-Hill 2009 4 Periodic Table by Dates of Discovery Copyright McGraw-Hill 2009 5 Essential Elements in the Human Body Copyright McGraw-Hill 2009 6 The Modern Periodic Table Copyright McGraw-Hill 2009 7 7.2 The Modern Periodic Table • Classification of Elements – Main group elements - “representative elements” Group 1A- 7A – Noble gases - Group 8A all have ns2np6 configuration(exception-He) – Transition elements - 1B, 3B - 8B “d- block” – Lanthanides/actinides - “f-block” Copyright McGraw-Hill 2009 8 Periodic Table Colored Coded By Main Classifications Copyright McGraw-Hill 2009 9 Copyright McGraw-Hill 2009 10 • Predicting properties – Valence
    [Show full text]
  • The Periodic Law
    Name Date Class CHAPTER 5 REVIEW The Periodic Law SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. c In the modern periodic table, elements are ordered (a) according to decreasing atomic mass. (b) according to Mendeleev’s original design. (c) according to increasing atomic number. (d) based on when they were discovered. 2. d Mendeleev noticed that certain similarities in the chemical properties of elements appeared at regular intervals when the elements were arranged in order of increasing (a) density. (c) atomic number. (b) reactivity. (d) atomic mass. 3. b The modern periodic law states that (a) no two electrons with the same spin can be found in the same place in an atom. (b) the physical and chemical properties of an element are functions of its atomic number. (c) electrons exhibit properties of both particles and waves. (d) the chemical properties of elements can be grouped according to periodicity, but physical properties cannot. 4. c The discovery of the noble gases changed Mendeleev’s periodic table by adding a new (a) period. (c) group. (b) series. (d) level. 5. d The most distinctive property of the noble gases is that they are (a) metallic. (c) metalloid. (b) radioactive. (d) largely unreactive. 6. c Lithium, the first element in Group 1, has an atomic number of 3. The second element in this group has an atomic number of (a) 4. (c) 11. (b) 10. (d) 18. 7. An isotope of fluorine has a mass number of 19 and an atomic number of 9. 9 a.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • Chemistry of S-Block Elements
    Chemistry of S-Block Elements Mrs.Vaishali Mahajan PERIODIC CLASSIFICATION OF ELEMENTS 1) Main Group Elements : These are the elements in group 1,2,13 to 17 2) Noble or inert gas elements: Group 18 elements 3) Transition elements : Elements in Group 3 to 12 4) Inner transition elements : Lanthanides and Actinides Elements BLOCKS IN PERIDIC TABLE 1) S-block Elements : Elements of group 1 & group 2 2) P-block Elements : Elements of Group 13 to 17 3) d- block Elements : These elements placed between s & p block elements. 4) f-block Elements : This block is placed at the bottom of the periodic table. ATOMIC RADIUS The bonding atomic radius is defined as one- half of the distance between covalently bonded nuclei. SIZE Bonding atomic radius tends to… …decrease from left to right across a row due to increasing Zeff. …increase from top to bottom of a column due to increasing value of n IONIZATION ENERGY • = amount energy required to remove a valence electron from an atom in gas phase • 1st ionization energy = energy required to remove the most loosely held valence electron (e- farthest from nucleus) •Cs valence electron lot farther away from nucleus than Li •electrostatic attraction much weaker so easier to steal electron away from Cs •THEREFORE, Li has a higher Ionization energy then Cs ELECTRONEGATIVITY ability of atom to attract electrons in bond noble gases tend not to form bonds, so don’t have electronegativity values Unit = Pauling Fluorine: most electronegative element = 4.0 Paulings Decreased Electronegativity Decreased Ionization
    [Show full text]
  • Chapter 7 Periodic Properties of the Elements Learning Outcomes
    Chapter 7 Periodic Properties of the Elements Learning Outcomes: Explain the meaning of effective nuclear charge, Zeff, and how Zeff depends on nuclear charge and electron configuration. Predict the trends in atomic radii, ionic radii, ionization energy, and electron affinity by using the periodic table. Explain how the radius of an atom changes upon losing electrons to form a cation or gaining electrons to form an anion. Write the electron configurations of ions. Explain how the ionization energy changes as we remove successive electrons, and the jump in ionization energy that occurs when the ionization corresponds to removing a core electron. Explain how irregularities in the periodic trends for electron affinity can be related to electron configuration. Explain the differences in chemical and physical properties of metals and nonmetals, including the basicity of metal oxides and the acidity of nonmetal oxides. Correlate atomic properties, such as ionization energy, with electron configuration, and explain how these relate to the chemical reactivity and physical properties of the alkali and alkaline earth metals (groups 1A and 2A). Write balanced equations for the reactions of the group 1A and 2A metals with water, oxygen, hydrogen, and the halogens. List and explain the unique characteristics of hydrogen. Correlate the atomic properties (such as ionization energy, electron configuration, and electron affinity) of group 6A, 7A, and 8A elements with their chemical reactivity and physical properties. Development of Periodic Table •Dmitri Mendeleev and Lothar Meyer (~1869) independently came to the same conclusion about how elements should be grouped in the periodic table. •Henry Moseley (1913) developed the concept of atomic numbers (the number of protons in the nucleus of an atom) 1 Predictions and the Periodic Table Mendeleev, for instance, predicted the discovery of germanium (which he called eka-silicon) as an element with an atomic weight between that of zinc and arsenic, but with chemical properties similar to those of silicon.
    [Show full text]
  • Atomic Radius
    Atomic Radius What is Atomic radius? Atomic radius is generally stated as being the total distance from an atom’s nucleus to the outermost orbital of electron. In simpler terms, it can be defined as something similar to the radius of a circle, where the center of the circle is the nucleus and the outer edge of the circle is the outermost orbital of electron. As you begin to move across or down the periodic table, trends emerge that help explain how atomic radii changes The effective charge (Zeff) of an atom is the net positive charge felt by valance electron. Zeff greatly affect the atomic size of atom.As Zeff decreases the size of the atom increases Because there is more screening of the electron from the nucleus - Type of Atomic Radius - (based on types of bonds) 1.Covalent Radius 2.Ionic Radius 3.Metallic Radius 1 Covalent radius When a covalent bond is present between two atoms, the covalent radius can be determined. When two atoms of the same element are covalently bonded, the radius of each atom will be half the distance between the two nuclei because they equally attract the electrons. The distance between two nuclei will give the diameter of an atom, but you want the radius which is half the diameter. Ionic radius The ionic radius is the radius of an atom forming ionic bond or an ion. The radius of each atom in an ionic bond will be different than that in a covalent bond. This is an important concept. The reason for the variability in radius is due to the fact that the atoms in an ionic bond are of greatly different size.
    [Show full text]