Spontaneous Rotational Symmetry Breaking in a Kramers Two- Level System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1703.07468V1 [Cond-Mat.Str-El] 21 Mar 2017 Generating Spin Ice and Its Emergent Magnetic Monopoles Tion Metal fluoride Pyrochlores
Single-ion properties of the Seff = 1/2 XY antiferromagnetic pyrochlores, 0 0 2+ 2+ NaA Co2F7 (A = Ca , Sr ) K.A. Ross,1, 2 J.M. Brown,1 R.J. Cava,3 J.W. Krizan,3 S. E. Nagler,4 J.A. Rodriguez-Rivera,5, 6 and M. B. Stone4 1Colorado State University, Fort Collins, Colorado, 80523, USA 2Quantum Materials Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada∗ 3Princeton University, Princeton, New Jersey 08544, USA 4Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 5NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA 6Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA (Dated: March 23, 2017) The antiferromagnetic pyrochlore material NaCaCo2F7 is a thermal spin liquid over a broad 2+ temperature range (≈ 140 K down to TF = 2:4K), in which magnetic correlations between Co dipole moments explore a continuous manifold of antiferromagnetic XY states.1 The thermal spin liquid is interrupted by spin freezing at a temperature that is ∼ 2 % of the mean field interaction strength, leading to short range static XY clusters with distinctive relaxation dynamics. Here we report the low energy inelastic neutron scattering response from the related compound NaSrCo2F7, confirming that it hosts the same static and dynamic spin correlations as NaCaCo2F7. We then present the single-ion levels of Co2+ in these materials as measured by inelastic neutron scattering. An intermediate spin orbit coupling model applied to an ensemble of trigonally distorted octahedral crystal fields accounts for the observed transitions. -
Magnetism, Angular Momentum, and Spin
Chapter 19 Magnetism, Angular Momentum, and Spin P. J. Grandinetti Chem. 4300 P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin In 1820 Hans Christian Ørsted discovered that electric current produces a magnetic field that deflects compass needle from magnetic north, establishing first direct connection between fields of electricity and magnetism. P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Biot-Savart Law Jean-Baptiste Biot and Félix Savart worked out that magnetic field, B⃗, produced at distance r away from section of wire of length dl carrying steady current I is 휇 I d⃗l × ⃗r dB⃗ = 0 Biot-Savart law 4휋 r3 Direction of magnetic field vector is given by “right-hand” rule: if you point thumb of your right hand along direction of current then your fingers will curl in direction of magnetic field. current P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Microscopic Origins of Magnetism Shortly after Biot and Savart, Ampére suggested that magnetism in matter arises from a multitude of ring currents circulating at atomic and molecular scale. André-Marie Ampére 1775 - 1836 P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Magnetic dipole moment from current loop Current flowing in flat loop of wire with area A will generate magnetic field magnetic which, at distance much larger than radius, r, appears identical to field dipole produced by point magnetic dipole with strength of radius 휇 = | ⃗휇| = I ⋅ A current Example What is magnetic dipole moment induced by e* in circular orbit of radius r with linear velocity v? * 휋 Solution: For e with linear velocity of v the time for one orbit is torbit = 2 r_v. -
Topological Insulators: Preliminaries1
PHYS598PTD A.J.Leggett 2013 Lecture 21 Topological insulators: preliminaries 1 Topological insulators: preliminaries1 At least as far as currently known, a good qualitative understanding of the properties of the class of materials now known as topological insulators (TI's) can be achieved on the basis of a picture of noninteracting electrons subject to a particular kind of band structure, which generally speaking involves nontrivial effects of the spin-orbit interaction (SOI). (As a result, the experimentally observed TI's generally contain heavy elements where the SOI is important). Thus, with the virtue of (considerable!) hindsight, the theory of TI's may be regarded as simply traditional undergraduate solid-state physics seen in a new light; the \new light" focuses particularly on states of the surface of the system, which have not traditionally received much attention. Let's start by reviewing some relevant elementary considerations. First, let's review some basic properties of a system which is confined to a 2-dimensional Hilbert space. Any such system is formally equivalent to a particle of spin 1=2 , and we will say that it is described by a \pseudospin" vector σ^, such that any pure state is an eigenstate of the operator n ·σ^ with eigenvalue ±1, where n is some unit vector: n · σ^j i = ±| i (1) We will usually choose to work in the basis of eigenstates ofσ ^z; depending on the context, these may be actual eigenstates of the true spin (intrinsic angular momentum) of the electron in question, but in the context of the theory of TI's are at least as as likely to correspond to different Bloch bands (cf. -
Oscillator Strength ( F ): Quantum Mechanical Model
Oscillator strength ( f ): quantum mechanical model • For an electronic transition to occur an oscillating dipole must be induced by interaction of the molecules electric field with electromagnetic radiation. 0 • In fact both ε and k can be related to the transition dipole moment (µµµge ) • If two equal and opposite electrical charges (e) are separated by a vectorial distance (r), a dipole moment (µµµ ) of magnitude equal to er is created. µµµ = e r (e = electron charge, r = extent of charge displacement) • The magnitude of charge separation, as the electron density is redistributed in an electronically excited state, is determined by the polarizability (αααα) of the electron cloud which is defined by the transition dipole moment (µµµge ) α = µµµge / E (E = electrical force) µµµge = e r • The magnitude of the oscillator strength ( f ) for an electronic transition is proportional to the square of the transition dipole moment produced by the action of electromagnetic radiation on an electric dipole. 2 2 f ∝ µµµge = ( e r) fobs = fmax ( fe fv fs ) 2 f ∝ µµµge fobs = observed oscillator strength f ∝ ΛΏΦ ∆̅ !2#( fmax = ideal oscillator strength ( ∼1) f = orbital configuration factor ͯͥ e f ∝ ͤ͟ ̅ ͦ Γ fv = vibrational configuration factor fs = spin configuration factor • There are two major contributions to the electronic factor fe : Poor overlap: weak mixing of electronic wavefunctions, e.g. <nπ*>, due to poor spatial overlap of orbitals involved in the electronic transition, e.g. HOMO→LUMO. Symmetry forbidden: even if significant spatial overlap of orbitals exists, the resonant photon needs to induce a large transition dipole moment. -
PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES and TRANSITION DIPOLE MOMENT. OVERVIEW of SELECTION RULES
____________________________________________________________________________________________________ Subject Chemistry Paper No and Title 8 and Physical Spectroscopy Module No and Title 5 and Transition probabilities and transition dipole moment, Overview of selection rules Module Tag CHE_P8_M5 CHEMISTRY PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES) ____________________________________________________________________________________________________ TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Transition Moment Integral 4. Overview of Selection Rules 5. Summary CHEMISTRY PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES) ____________________________________________________________________________________________________ 1. Learning Outcomes After studying this module, • you shall be able to understand the basis of selection rules in spectroscopy • Get an idea about how they are deduced. 2. Introduction The intensity of a transition is proportional to the difference in the populations of the initial and final levels, the transition probabilities given by Einstein’s coefficients of induced absorption and emission and to the energy density of the incident radiation. We now examine the Einstein’s coefficients in some detail. 3. Transition Dipole Moment Detailed algebra involving the time-dependent perturbation theory allows us to derive a theoretical expression for the Einstein coefficient of induced absorption ! 2 3 M ij 8π ! 2 B M ij = 2 = 2 ij 6ε 0" 3h (4πε 0 ) where the radiation density is expressed in units of Hz. ! The quantity M ij is known as the transition moment integral, having the same unit as dipole moment, i.e. C m. Apparently, if this quantity is zero for a particular transition, the transition probability will be zero, or, in other words, the transition is forbidden. -
Chapter 14 Radiating Dipoles in Quantum Mechanics
Chapter 14 Radiating Dipoles in Quantum Mechanics P. J. Grandinetti Chem. 4300 P. J. Grandinetti Chapter 14: Radiating Dipoles in Quantum Mechanics P. J. Grandinetti Chapter 14: Radiating Dipoles in Quantum Mechanics Electric dipole moment vector operator Electric dipole moment vector operator for collection of charges is ∑N ⃗̂휇 ⃗̂ = qkr k=1 Single charged quantum particle bound in some potential well, e.g., a negatively charged electron bound to a positively charged nucleus, would be [ ] ⃗̂휇 ⃗̂ ̂⃗ ̂⃗ ̂⃗ = *qer = *qe xex + yey + zez Expectation value for electric dipole moment vector in Ψ(⃗r; t/ state is ( ) ê ⃗휇 ë < ⃗; ⃗̂휇 ⃗; 휏 < ⃗; ⃗̂ ⃗; 휏 .t/ = Ê Ψ .r t/ Ψ(r t/d = Ê Ψ .r t/ *qer Ψ(r t/d V V Here, d휏 = dx dy dz P. J. Grandinetti Chapter 14: Radiating Dipoles in Quantum Mechanics Time dependence of electric dipole moment Energy Eigenstate Starting with ( ) ê ⃗휇 ë < ⃗; ⃗̂ ⃗; 휏 .t/ = Ê Ψ .r t/ *qer Ψ(r t/d V For a system in eigenstate of Hamiltonian, where wave function has the form, ` ⃗; ⃗ *iEnt_ Ψn.r t/ = n.r/e Electric dipole moment expectation value is ( ) ` ` ê ⃗휇 ë < ⃗ iEnt_ ⃗̂ ⃗ *iEnt_ 휏 .t/ = Ê n .r/e *qer n.r/e d V Time dependent exponential terms cancel out leaving us with ( ) ê ⃗휇 ë < ⃗ ⃗̂ ⃗ 휏 .t/ = Ê n .r/ *qer n.r/d No time dependence!! V No bound charged quantum particle in energy eigenstate can radiate away energy as light or at least it appears that way – Good news for Rutherford’s atomic model. -
C Copyright 2017 Joshua James Goings
c Copyright 2017 Joshua James Goings Breaking symmetry in time-dependent electronic structure theory to describe spectroscopic properties of non-collinear and chiral molecules. Joshua James Goings A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2017 Reading Committee: Xiaosong Li, Chair David Masiello Stefan Stoll Program Authorized to Offer Degree: Chemistry University of Washington Abstract Breaking symmetry in time-dependent electronic structure theory to describe spectroscopic properties of non-collinear and chiral molecules. Joshua James Goings Chair of the Supervisory Committee: Professor Xiaosong Li Department of Chemistry Time-dependent electronic structure theory has the power to predict and probe the ways electron dynamics leads to useful phenomena and spectroscopic data. Here we report several advances and extensions of broken-symmetry time-dependent electronic structure theory in order to capture the flexibility required to describe non-equilibrium spin dynamics, as well as electron dynamics for chiroptical properties and vibrational effects. In the first half, we begin by discussing the generalization of self-consistent field methods to the so-called two-component structure in order to capture non-collinear spin states. This means that individual electrons are allowed to take a superposition of spin-1=2 projection states, instead of being constrained to either spin-up or spin-down. The system is no longer a spin eigenfunction, and is known a a spin-symmetry broken wave function. This flexibility to break spin symmetry may lead to variational instabilities in the approximate wave function, and we discuss how these may be overcome. -
Decoupling Light and Matter: Permanent Dipole Moment Induced Collapse of Rabi Oscillations
Decoupling light and matter: permanent dipole moment induced collapse of Rabi oscillations Denis G. Baranov,1, 2, ∗ Mihail I. Petrov,3 and Alexander E. Krasnok3, 4 1Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden 2Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny 141700, Russia 3ITMO University, St. Petersburg 197101, Russia 4Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, USA (Dated: June 29, 2018) Rabi oscillations is a key phenomenon among the variety of quantum optical effects that manifests itself in the periodic oscillations of a two-level system between the ground and excited states when interacting with electromagnetic field. Commonly, the rate of these oscillations scales proportionally with the magnitude of the electric field probed by the two-level system. Here, we investigate the interaction of light with a two-level quantum emitter possessing permanent dipole moments. The semi-classical approach to this problem predicts slowing down and even full suppression of Rabi oscillations due to asymmetry in diagonal components of the dipole moment operator of the two- level system. We consider behavior of the system in the fully quantized picture and establish the analytical condition of Rabi oscillations collapse. These results for the first time emphasize the behavior of two-level systems with permanent dipole moments in the few photon regime, and suggest observation of novel quantum optical effects. I. INTRODUCTION ment modifies multi-photon absorption rates. Emission spectrum features of quantum systems possessing perma- Theory of a two-level system (TLS) interacting with nent dipole moments were studied in Refs. -
Lecture 13 Page 1 Note That Polarizability of Classical Conductive Sphere of Radius a Is
Lectures 13 - 14 Hydrogen atom in electric field. Quadratic Stark effect. Atomic polarizability. Emission and Absorption of Electromagnetic Radiation by Atoms Transition probabilities and selection rules. Lifetimes of atomic states. Hydrogen atom in electric field. Quadratic Stark effect. We consider a hydrogen atom in the ground state in the uniform electric field The Hamiltonian of the system is [using CGS units] orienting the quantization axis (z) along the electric field. Since d is odd operator under the parity transformation r → -r even function product Therefore, need second-order correction to the energy We will use the approximation Note that we included 100 term to make use of the completeness relation since it is zero anyway. Lecture 13 Page 1 Note that polarizability of classical conductive sphere of radius a is Lecture 13 Page 2 Emission and Absorption of Electromagnetic Radiation by Atoms (follows W. Demtr öder, chapter 7) During the past few lectures, we have discussed stationary atomic states that are described by a stationary wave function and by the corresponding quantum numbers. We also discussed the atoms can undergo transitions between different states with energies E i and E , when a photon with energy k (1) is emitted or absorbed. We know from the experiments, however, that the absorption or emission spectrum of an atom does not contain all possible frequencies ω according to the formula above . Therefore, t here must be “selection rules” that select the possible radiative transitions from all combinations of E i and E k. These selection rules strongly affect the lifetimes of the atomic excited states. -
A Quantum Liquid of Magnetic Octupoles on the Pyrochlore Lattice
A quantum liquid of magnetic octupoles on the pyrochlore lattice Romain Sibille1,*, Nicolas Gauthier2, Elsa Lhotel3, Victor Porée1, Vladimir Pomjakushin1, Russell A. Ewings4, Toby G. Perring4, Jacques Ollivier5, Andrew Wildes5, Clemens Ritter5, Thomas C. Hansen5, David A. Keen4, Gøran J. Nilsen4, Lukas Keller1, Sylvain Petit6,* & Tom Fennell1 1Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland. 2Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, California 94025, USA. 3Institut Néel, CNRS– Université Joseph Fourier, 38042 Grenoble, France. 4ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK. 5Institut Laue-Langevin, 71 avenue des Martyrs, 38000 Grenoble, France. 6LLB, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France. *email: [email protected] ; [email protected] Spin liquids are highly correlated yet disordered states formed by the entanglement of magnetic dipoles1. Theories typically define such states using gauge fields and deconfined quasiparticle excitations that emerge from a simple rule governing the local ground state of a frustrated magnet. For example, the ‘2-in-2-out’ ice rule for dipole moments on a tetrahedron can lead to a quantum spin ice in rare-earth pyrochlores – a state described by a lattice gauge theory of quantum electrodynamics2-4. However, f-electron ions often carry multipole degrees of freedom of higher rank than dipoles, leading to intriguing behaviours and ‘hidden’ orders5-6. Here we show that the correlated ground state of a Ce3+- based pyrochlore, Ce2Sn2O7, is a quantum liquid of magnetic octupoles. -
Chapter 15 the Tools of Time-Dependent Perturbation Theory Can Be Applied to Transitions Among Electronic, Vibrational, and Rotational States of Molecules
Chapter 15 The tools of time-dependent perturbation theory can be applied to transitions among electronic, vibrational, and rotational states of molecules. I. Rotational Transitions Within the approximation that the electronic, vibrational, and rotational states of a molecule can be treated as independent, the total molecular wavefunction of the "initial" state is a product F i = y ei c vi f ri of an electronic function y ei, a vibrational function c vi, and a rotational function f ri. A similar product expression holds for the "final" wavefunction F f. In microwave spectroscopy, the energy of the radiation lies in the range of fractions of a cm-1 through several cm-1; such energies are adequate to excite rotational motions of molecules but are not high enough to excite any but the weakest vibrations (e.g., those of weakly bound Van der Waals complexes). In rotational transitions, the electronic and vibrational states are thus left unchanged by the excitation process; hence y ei = y ef and c vi = c vf. Applying the first-order electric dipole transition rate expressions Ri,f = 2 p g(wf,i) |a f,i|2 obtained in Chapter 14 to this case requires that the E1 approximation Ri,f = (2p/h2) g(wf,i) | E0 · <F f | m | F i> |2 be examined in further detail. Specifically, the electric dipole matrix elements <F f | m | F i> with m = S j e rj + S a Za e Ra must be analyzed for F i and F f being of the product form shown above. The integrations over the electronic coordinates contained in <F f | m | F i>, as well as the integrations over vibrational degrees of freedom yield "expectation values" of the electric dipole moment operator because the electronic and vibrational components of F i and F f are identical: <y ei | m | y ei> = m (R) is the dipole moment of the initial electronic state (which is a function of the internal geometrical degrees of freedom of the molecule, denoted R); and <c vi | m(R) | c vi> = mave is the vibrationally averaged dipole moment for the particular vibrational state labeled c vi. -
Electric Dipole Moment and Therefore Can Be Excited by Either a Photon Or an Electron
Chem 253, UC, Berkeley Fermi Surface E 2k 2 F E(k) x 2m K KF a2 r 2 2 r 0.4a Chem 253, UC, Berkeley With periodic boundary conditions: ik L eikx Lx e y y eikz Lz 1 2nx kx Lx 2n k y 2 2 y 2D k space: Ly Area per k point: L L 2nz x y kz Lz 2 2 2 8 3 3D k space: Area per k point: Lx Ly Lz V V A region of k space of volume will contain: allowed 8 3 8 3 k values. ( ) V 1 Chem 253, UC, Berkeley For divalent elements: free –electron model a2 r 2 r 0.56a Chem 253, UC, Berkeley 2 Chem 253, UC, Berkeley For nearly free electron: 1. Interaction of electron with periodic potential opens gap at zone boundary 2. Almost always Fermi surface will intersect zone Boundaries perpendicularly. 3. The total volume enclosed by the Fermi surface depends only on total electron concentration, not on interaction Chem 253, UC, Berkeley Alkali Metal Na, Cs: spherical Fermi surface a2 r 2 2 r 0.4a Alk. Earth metal: Be, Mg:: nearly spherical Fermi surface a2 r 2 r 0.56a 2D case 3 Chem 253, UC, Berkeley Chem 253, UC, Berkeley 4 Chem 253, UC, Berkeley Chem 253, UC, Berkeley 5 Chem 253, UC, Berkeley Chem 253, UC, Berkeley 6 Chem 253, UC, Berkeley Chem 253, UC, Berkeley 7 Chem 253, UC, Berkeley Brillouin Zone of Diamond and Zincblende Structure (FCC Lattice) Sign Convention Zone Edge or surface : Latin alphabets Interior of Zone: Greek alphabets Center of Zone or origin: Chem 253, UC, Berkeley Band Structure of 3D Free Electron in FCC in reduced zone scheme Notation: <=>[100] direction X<=>BZ edge along [100] direction <=>[111] direction E(k)=( 2/2m)