Decoupling Light and Matter: Permanent Dipole Moment Induced Collapse of Rabi Oscillations

Total Page:16

File Type:pdf, Size:1020Kb

Decoupling Light and Matter: Permanent Dipole Moment Induced Collapse of Rabi Oscillations Decoupling light and matter: permanent dipole moment induced collapse of Rabi oscillations Denis G. Baranov,1, 2, ∗ Mihail I. Petrov,3 and Alexander E. Krasnok3, 4 1Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden 2Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny 141700, Russia 3ITMO University, St. Petersburg 197101, Russia 4Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, USA (Dated: June 29, 2018) Rabi oscillations is a key phenomenon among the variety of quantum optical effects that manifests itself in the periodic oscillations of a two-level system between the ground and excited states when interacting with electromagnetic field. Commonly, the rate of these oscillations scales proportionally with the magnitude of the electric field probed by the two-level system. Here, we investigate the interaction of light with a two-level quantum emitter possessing permanent dipole moments. The semi-classical approach to this problem predicts slowing down and even full suppression of Rabi oscillations due to asymmetry in diagonal components of the dipole moment operator of the two- level system. We consider behavior of the system in the fully quantized picture and establish the analytical condition of Rabi oscillations collapse. These results for the first time emphasize the behavior of two-level systems with permanent dipole moments in the few photon regime, and suggest observation of novel quantum optical effects. I. INTRODUCTION ment modifies multi-photon absorption rates. Emission spectrum features of quantum systems possessing perma- Theory of a two-level system (TLS) interacting with nent dipole moments were studied in Refs. [17, 27], where electromagnetic field is of prime importance for a wide it was shown that such a system can radiate at Rabi fre- spectrum of applied problems, including laser science quency and serve as an emitter in the THz range. More [1, 2], fluorescent spectroscopy [3], nano-imaging [4{6], recently, it was demonstrated that a two-level system design of single photon sources [7{10] and efficient light with permanent dipoles can be inversely populated in the emitting devices [8, 11]. It also plays the central role in steady state if acted by two monochromatic fields [28]. the quantum information theory in the context of coher- Here, we investigate in more details the Rabi oscilla- ent qubits control [12{15]. Due to its very general formal- tions of a TLS with PDM. One of the main effects in such ism, it is equally applicable to the wide range of differ- systems is that PDM enables multi-photon Rabi oscilla- ent electronic systems: electric and magnetic atomic and tions and strongly affects the Rabi frequency for single molecular transitions, quantum dots and quantum wells, photon process. Since the pioneering paper of Meth et. superconducting Josephson junctions, defect centers in al. [22], it was shown that the Rabi oscillations in prin- nanocrystals and others. ciple may be suppressed by tuning the magnitude of the In the theoretical description of light-matter interac- emitter PDM. However, the treatment of this problem tion, it is often assumed that dynamics of the system has been mostly limited to the semiclassical approach. is governed by the non-diagonal matrix element of the dipole moment operator. However, certain systems pos- sess non-zero permanent dipole moments (PDM). An ex- ample of such system is a polar molecule, an atom polar- d ized by static electric field [16] or an asymmetric quan- ee tum dot [17]. Magnetic dipole atomic transitions, e.g., TLS deg in rare-earth ions of Eu3+ [18{20] may also have non- dgg zero permanent magnetic dipoles, in contrast to the case arXiv:1611.06897v1 [physics.optics] 21 Nov 2016 of electric dipole transitions, where diagonal elements of the electric dipole moment operator are always zero for dif = <i|qr|f> atomic eigenstates [21], what follows from the parity of EM field the wave function. Quantum systems with electric PDM have been widely investigated in the context of multi-photon processes [22{ FIG. 1. A schematic of the system under study. A two- 26]. It was shown that presence of permanent dipole mo- level system modeling a quantum emitter interacts with elec- tromagnetic field of a cavity resulting in Rabi oscillations of the two-level system population inversion. Inset on the right shows the internal structure of the two-level system with per- ∗ [email protected] manent dipole moments. 2 In this work, we address the fully quantum picture of (b) (a) Ωp = 0.1 ω0 Ωp = ω0 interaction of light with a permanent dipole TLS. By 1.0 1.0 means of numerical simulations and theoretical analysis, 0.5 0.5 we find new eigenstates of the PDM TLS{single mode cavity Hamiltonian and observe the collapse of Rabi os- 0.0 0.0 Inversion cillations in the few photon regime. Our findings demon- Inversion - 0.5 - 0.5 strate previously unexplored regime of light-matter in- - 1.0 - 1.0 teraction and provide novel tools for coherent control of 0 510 15 20 0 510 15 20 quantum emitters possessing PDM. ΩRt ΩRt (c) 0.5 - 0.90 Ωp = 0 - 0.95 II. SEMICLASSICAL DESCRIPTION 0.4 - 1.00 Inversion - 1.05 Ωp = 2ΩR We start from a brief overview of the semiclassical de- 0.3 - 1.10 0 2 4 6 8 10 scription of the dynamics of a TLS with PDM in the pres- Ωp = 4ΩR Ω t ence of light field. The system under study is schemat- 0.2 R Ω = 6Ω ically depicted in Fig. 1. It consists of a generalized Rabi frequency p R TLS interacting with electromagnetic field. The TLS can 0.1 make transition between the ground jgi and excited jei Ωp = 10ΩR collapse states, respectively, separated by the energy ¯h!0. 0.0 To begin with, we consider the simplest scenario of 0.0 0.1 0.2 0.3 0.4 0.5 a TLS driven by a classical monochromatic electromag- μegE0 netic wave E (t) = E0 cos (!0t). In what follows we will use the notation E (t) for description of the field com- FIG. 2. (a, b) Population inversion of a TLS with non-zero ponent interacting with the TLS, implying the electric permanent dipoles (solid) and an equivalent TLS without per- field. However, this formalism is equally applicable to manent dipoles (dashed) in a monochromatic electric field at different values of Ωp. Significant delay becomes visible in any other TLS interacting with either electric or mag- the permanent dipoles TLS dynamics. (c) Modified Rabi fre- netic oscillating field and therefore this does not limit the quency of the TLS with permanent dipole moments for differ- ubiquity of our results. Despite simplicity of this model, ent Ωp=ΩR as a function of applied electric field E0. Dashed it captures important signatures in the dynamics of a line shows unchanged Rabi frequency of a TLS without per- TLS with PDM. The Hamiltonian of the system has the manent dipoles. Inset: temporal dynamics of the population standard form H^ = H^TLS + H^int, where the TLS part is inversion at the collapse point corresponding to the first zero y H^ =h! ¯ 0σ^ σ^ and the interaction part is H^int = −E (t) d^. of the first order Bessel function J1,Ωp ≈ 3:8!0. The dipole moment operator d^ has the form y y y TLS in the interaction representation: d^ = dgeσ^ + degσ^ + dggσ^σ^ + deeσ^ σ;^ (1) Ω ∗ p Hereσ ^ = jgi hej is the lowering operator, d = d is c_g(t) = iΩR cos(!t) exp −i !0t − sin(!t) ce(t); eg ge ! the transition dipole moment, and d and d are the ee gg permanent dipole moments which are equal to zero in Ωp c_e(t) = iΩR cos(!t) exp i !0t − sin(!t) cg(t): the common Jaynes-Cummings model [2]. Without loss ! of generality we will assume the that deg along with dee (3) and dgg are all real-valued. Here we have introduced the quantity ¯hΩp = With the use of expression (1) for the dipole moment E0 (dee − dgg), which will be referred to as the perma- operator we write the Hamiltonian in the symmetric nent coupling constant. It shows the strength of asym- form: metry between the dipole moment elements in ground and excited states. ^ ¯h!0 y ¯h!0 y y Figures 2(a),(b) show the TLS population inversion H = − σ^σ^ + σ^ σ^ − ¯hΩR cos (!0t)σ ^ σ^ 2 2 2 2 (2) W (t) = jce (t)j − jcg (t)j as a function of time obtained y y −dggE0 cos (!0t)σ ^σ^ − deeE0 cos (!0t)σ ^ σ^ from the numerical solution of Eq. 3 for different ratios Ωp=!0. For comparison we also plot the population inver- where ¯hΩR = E0deg is the Rabi frequency. In the ab- sion of a pure non-diagonal system with dee − dgg = 0. sence of permanent dipoles, the population inversion of The Rabi frequency is fixed at value ΩR = 0:01!0. The the TLS oscillates in time with frequency ΩR. TLS is assumed to be initially in the ground state jgi. It Representing the TLS wave function in the general is seen that, in the regime of weak permanent coupling, form jΨ(t)i = ce (t) jei + cg (t) jgi and substituting into Ωp !0, the TLS dynamics is unaffected by permanent the Schroedinger equation, we arrive at the following dipoles [Fig. 2(a)]. However, in the strong permanent equations of motion describing temporal evolution of the coupling regime, Ωp ∼ !0, the effect of permanent dipoles 3 on the dynamics of the TLS becomes clearly visible, Fig.
Recommended publications
  • Squeezed and Entangled States of a Single Spin
    SQUEEZED AND ENTANGLED STATES OF A SINGLE SPIN Barı¸s Oztop,¨ Alexander A. Klyachko and Alexander S. Shumovsky Faculty of Science, Bilkent University Bilkent, Ankara, 06800 Turkey e-mail: [email protected] (Received 23 December 2007; accepted 1 March 2007) Abstract We show correspondence between the notions of spin squeez- ing and spin entanglement. We propose a new measure of spin squeezing. We consider a number of physical examples. Concepts of Physics, Vol. IV, No. 3 (2007) 441 DOI: 10.2478/v10005-007-0020-0 Barı¸s Oztop,¨ Alexander A. Klyachko and Alexander S. Shumovsky It is well known that the concept of squeezed states [1] was orig- inated from the famous work by N.N. Bogoliubov [2] on the super- fluidity of liquid He4 and canonical transformations. Initially, it was developed for the Bose-fields. Later on, it has been extended on spin systems as well. The two main objectives of the present paper are on the one hand to show that the single spin s 1 can be prepared in a squeezed state and on the other hand to demonstrate≥ one-to-one correspondence between the notions of spin squeezing and entanglement. The results are illustrated by physical examples. Spin-coherent states | Historically, the notion of spin-coherent states had been introduced [3] before the notion of spin-squeezed states. In a sense, it just reflected the idea of Glauber [4] about creation of Bose-field coherent states from the vacuum by means of the displacement operator + α field = D(α) vac ;D(α) = exp(αa α∗a); (1) j i j i − where α C is an arbitrary complex parameter and a+; a are the Boson creation2 and annihilation operators.
    [Show full text]
  • Magnetism, Angular Momentum, and Spin
    Chapter 19 Magnetism, Angular Momentum, and Spin P. J. Grandinetti Chem. 4300 P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin In 1820 Hans Christian Ørsted discovered that electric current produces a magnetic field that deflects compass needle from magnetic north, establishing first direct connection between fields of electricity and magnetism. P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Biot-Savart Law Jean-Baptiste Biot and Félix Savart worked out that magnetic field, B⃗, produced at distance r away from section of wire of length dl carrying steady current I is 휇 I d⃗l × ⃗r dB⃗ = 0 Biot-Savart law 4휋 r3 Direction of magnetic field vector is given by “right-hand” rule: if you point thumb of your right hand along direction of current then your fingers will curl in direction of magnetic field. current P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Microscopic Origins of Magnetism Shortly after Biot and Savart, Ampére suggested that magnetism in matter arises from a multitude of ring currents circulating at atomic and molecular scale. André-Marie Ampére 1775 - 1836 P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Magnetic dipole moment from current loop Current flowing in flat loop of wire with area A will generate magnetic field magnetic which, at distance much larger than radius, r, appears identical to field dipole produced by point magnetic dipole with strength of radius 휇 = | ⃗휇| = I ⋅ A current Example What is magnetic dipole moment induced by e* in circular orbit of radius r with linear velocity v? * 휋 Solution: For e with linear velocity of v the time for one orbit is torbit = 2 r_v.
    [Show full text]
  • Oscillator Strength ( F ): Quantum Mechanical Model
    Oscillator strength ( f ): quantum mechanical model • For an electronic transition to occur an oscillating dipole must be induced by interaction of the molecules electric field with electromagnetic radiation. 0 • In fact both ε and k can be related to the transition dipole moment (µµµge ) • If two equal and opposite electrical charges (e) are separated by a vectorial distance (r), a dipole moment (µµµ ) of magnitude equal to er is created. µµµ = e r (e = electron charge, r = extent of charge displacement) • The magnitude of charge separation, as the electron density is redistributed in an electronically excited state, is determined by the polarizability (αααα) of the electron cloud which is defined by the transition dipole moment (µµµge ) α = µµµge / E (E = electrical force) µµµge = e r • The magnitude of the oscillator strength ( f ) for an electronic transition is proportional to the square of the transition dipole moment produced by the action of electromagnetic radiation on an electric dipole. 2 2 f ∝ µµµge = ( e r) fobs = fmax ( fe fv fs ) 2 f ∝ µµµge fobs = observed oscillator strength f ∝ ΛΏΦ ∆̅ !2#( fmax = ideal oscillator strength ( ∼1) f = orbital configuration factor ͯͥ e f ∝ ͤ͟ ̅ ͦ Γ fv = vibrational configuration factor fs = spin configuration factor • There are two major contributions to the electronic factor fe : Poor overlap: weak mixing of electronic wavefunctions, e.g. <nπ*>, due to poor spatial overlap of orbitals involved in the electronic transition, e.g. HOMO→LUMO. Symmetry forbidden: even if significant spatial overlap of orbitals exists, the resonant photon needs to induce a large transition dipole moment.
    [Show full text]
  • Spontaneous Rotational Symmetry Breaking in a Kramers Two- Level System
    Spontaneous Rotational Symmetry Breaking in a Kramers Two- Level System Mário G. Silveirinha* (1) University of Lisbon–Instituto Superior Técnico and Instituto de Telecomunicações, Avenida Rovisco Pais, 1, 1049-001 Lisboa, Portugal, [email protected] Abstract Here, I develop a model for a two-level system that respects the time-reversal symmetry of the atom Hamiltonian and the Kramers theorem. The two-level system is formed by two Kramers pairs of excited and ground states. It is shown that due to the spin-orbit interaction it is in general impossible to find a basis of atomic states for which the crossed transition dipole moment vanishes. The parametric electric polarizability of the Kramers two-level system for a definite ground-state is generically nonreciprocal. I apply the developed formalism to study Casimir-Polder forces and torques when the two-level system is placed nearby either a reciprocal or a nonreciprocal substrate. In particular, I investigate the stable equilibrium orientation of the two-level system when both the atom and the reciprocal substrate have symmetry of revolution about some axis. Surprisingly, it is found that when chiral-type dipole transitions are dominant the stable ground state is not the one in which the symmetry axes of the atom and substrate are aligned. The reason is that the rotational symmetry may be spontaneously broken by the quantum vacuum fluctuations, so that the ground state has less symmetry than the system itself. * To whom correspondence should be addressed: E-mail: [email protected] -1- I. Introduction At the microscopic level, physical systems are generically ruled by time-reversal invariant Hamiltonians [1].
    [Show full text]
  • PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES and TRANSITION DIPOLE MOMENT. OVERVIEW of SELECTION RULES
    ____________________________________________________________________________________________________ Subject Chemistry Paper No and Title 8 and Physical Spectroscopy Module No and Title 5 and Transition probabilities and transition dipole moment, Overview of selection rules Module Tag CHE_P8_M5 CHEMISTRY PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES) ____________________________________________________________________________________________________ TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Transition Moment Integral 4. Overview of Selection Rules 5. Summary CHEMISTRY PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES) ____________________________________________________________________________________________________ 1. Learning Outcomes After studying this module, • you shall be able to understand the basis of selection rules in spectroscopy • Get an idea about how they are deduced. 2. Introduction The intensity of a transition is proportional to the difference in the populations of the initial and final levels, the transition probabilities given by Einstein’s coefficients of induced absorption and emission and to the energy density of the incident radiation. We now examine the Einstein’s coefficients in some detail. 3. Transition Dipole Moment Detailed algebra involving the time-dependent perturbation theory allows us to derive a theoretical expression for the Einstein coefficient of induced absorption ! 2 3 M ij 8π ! 2 B M ij = 2 = 2 ij 6ε 0" 3h (4πε 0 ) where the radiation density is expressed in units of Hz. ! The quantity M ij is known as the transition moment integral, having the same unit as dipole moment, i.e. C m. Apparently, if this quantity is zero for a particular transition, the transition probability will be zero, or, in other words, the transition is forbidden.
    [Show full text]
  • Operators and States
    Operators and States University Press Scholarship Online Oxford Scholarship Online Methods in Theoretical Quantum Optics Stephen Barnett and Paul Radmore Print publication date: 2002 Print ISBN-13: 9780198563617 Published to Oxford Scholarship Online: January 2010 DOI: 10.1093/acprof:oso/9780198563617.001.0001 Operators and States STEPHEN M. BARNETT PAUL M. RADMORE DOI:10.1093/acprof:oso/9780198563617.003.0003 Abstract and Keywords This chapter is concerned with providing the necessary rules governing the manipulation of the operators and the properties of the states to enable us top model and describe some physical systems. Atom and field operators for spin, angular momentum, the harmonic oscillator or single mode field and for continuous fields are introduced. Techniques are derived for treating functions of operators and ordering theorems for manipulating these. Important states of the electromagnetic field and their properties are presented. These include the number states, thermal states, coherent states and squeezed states. The coherent and squeezed states are generated by the actions of the Glauber displacement operator and the squeezing operator. Angular momentum coherent states are described and applied to the coherent evolution of a two-state atom and to the action of a beam- splitter. Page 1 of 63 PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter
    [Show full text]
  • Arxiv:Quant-Ph/0002070V1 24 Feb 2000
    Generalised Coherent States and the Diagonal Representation for Operators N. Mukunda∗ † Dipartimento di Scienze Fisiche, Universita di Napoli “Federico II” Mostra d’Oltremare, Pad. 19–80125, Napoli, Italy and Dipartimento di Fisica dell Universita di Bologna Viale C.Berti Pichat, 8 I–40127, Bologna, Italy Arvind‡ Department of Physics, Guru Nanak Dev University, Amritsar 143005, India S. Chaturvedi§ School of Physics, University of Hyderabad, Hyderabad 500 046, India R.Simon∗∗ The Institute of Mathematical Sciences, C. I. T. Campus, Chennai 600 113, India (October 29, 2018) We consider the problem of existence of the diagonal representation for operators in the space of a family of generalized coherent states associated with an unitary irreducible representation of a (compact) Lie group. We show that necessary and sufficient conditions for the possibility of such a representation can be obtained by combining Clebsch-Gordan theory and the reciprocity theorems associated with induced unitary group representation. Applications to several examples involving SU(2), SU(3), and the Heisenberg-Weyl group are presented, showing that there are simple examples of generalized coherent states which do not meet these conditions. Our results are relevant for phase-space description of quantum mechanics and quantum state reconstruction problems. I. INTRODUCTION There is a long history of attempts to express the basic structure of quantum mechanics, both kinematics and dynamics, in the c-number phase space language of classical mechanics. The first major step in this direction was taken by Wigner [1] very early in the development of quantum mechanics, during a study of quantum corrections to classical statistical mechanics.
    [Show full text]
  • Chapter 14 Radiating Dipoles in Quantum Mechanics
    Chapter 14 Radiating Dipoles in Quantum Mechanics P. J. Grandinetti Chem. 4300 P. J. Grandinetti Chapter 14: Radiating Dipoles in Quantum Mechanics P. J. Grandinetti Chapter 14: Radiating Dipoles in Quantum Mechanics Electric dipole moment vector operator Electric dipole moment vector operator for collection of charges is ∑N ⃗̂휇 ⃗̂ = qkr k=1 Single charged quantum particle bound in some potential well, e.g., a negatively charged electron bound to a positively charged nucleus, would be [ ] ⃗̂휇 ⃗̂ ̂⃗ ̂⃗ ̂⃗ = *qer = *qe xex + yey + zez Expectation value for electric dipole moment vector in Ψ(⃗r; t/ state is ( ) ê ⃗휇 ë < ⃗; ⃗̂휇 ⃗; 휏 < ⃗; ⃗̂ ⃗; 휏 .t/ = Ê Ψ .r t/ Ψ(r t/d = Ê Ψ .r t/ *qer Ψ(r t/d V V Here, d휏 = dx dy dz P. J. Grandinetti Chapter 14: Radiating Dipoles in Quantum Mechanics Time dependence of electric dipole moment Energy Eigenstate Starting with ( ) ê ⃗휇 ë < ⃗; ⃗̂ ⃗; 휏 .t/ = Ê Ψ .r t/ *qer Ψ(r t/d V For a system in eigenstate of Hamiltonian, where wave function has the form, ` ⃗; ⃗ *iEnt_ Ψn.r t/ = n.r/e Electric dipole moment expectation value is ( ) ` ` ê ⃗휇 ë < ⃗ iEnt_ ⃗̂ ⃗ *iEnt_ 휏 .t/ = Ê n .r/e *qer n.r/e d V Time dependent exponential terms cancel out leaving us with ( ) ê ⃗휇 ë < ⃗ ⃗̂ ⃗ 휏 .t/ = Ê n .r/ *qer n.r/d No time dependence!! V No bound charged quantum particle in energy eigenstate can radiate away energy as light or at least it appears that way – Good news for Rutherford’s atomic model.
    [Show full text]
  • A Point and Local Position Operator Bernice Black Durand Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1971 A point and local position operator Bernice Black Durand Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Elementary Particles and Fields and String Theory Commons Recommended Citation Durand, Bernice Black, "A point and local position operator " (1971). Retrospective Theses and Dissertations. 4876. https://lib.dr.iastate.edu/rtd/4876 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 71-26,850 DURAND, Bernice Black, 1942- A POINT AND LOCAL POSITION OPERATOR. Iowa State University, Ph.D., 1971 Physics, elementary particles University Microfilms, A XEROX Company, Ann Arbor, Michigan A point and local position operator by Bernice Black Durand A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: High Energy Physics Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1971 PLEASE NOTE: Some pages have
    [Show full text]
  • Phase-Space Formulation of Quantum Mechanics and Quantum State
    formulation of quantum mechanics and quantum state reconstruction for View metadata,Phase-space citation and similar papers at core.ac.uk brought to you by CORE ysical systems with Lie-group symmetries ph provided by CERN Document Server ? ? C. Brif and A. Mann Department of Physics, Technion { Israel Institute of Technology, Haifa 32000, Israel We present a detailed discussion of a general theory of phase-space distributions, intro duced recently by the authors [J. Phys. A 31, L9 1998]. This theory provides a uni ed phase-space for- mulation of quantum mechanics for physical systems p ossessing Lie-group symmetries. The concept of generalized coherent states and the metho d of harmonic analysis are used to construct explicitly a family of phase-space functions which are p ostulated to satisfy the Stratonovich-Weyl corresp on- dence with a generalized traciality condition. The symb ol calculus for the phase-space functions is given by means of the generalized twisted pro duct. The phase-space formalism is used to study the problem of the reconstruction of quantum states. In particular, we consider the reconstruction metho d based on measurements of displaced pro jectors, which comprises a numb er of recently pro- p osed quantum-optical schemes and is also related to the standard metho ds of signal pro cessing. A general group-theoretic description of this metho d is develop ed using the technique of harmonic expansions on the phase space. 03.65.Bz, 03.65.Fd I. INTRODUCTION P function [?,?] is asso ciated with the normal order- ing and the Husimi Q function [?] with the antinormal y ordering of a and a .
    [Show full text]
  • Lecture 13 Page 1 Note That Polarizability of Classical Conductive Sphere of Radius a Is
    Lectures 13 - 14 Hydrogen atom in electric field. Quadratic Stark effect. Atomic polarizability. Emission and Absorption of Electromagnetic Radiation by Atoms Transition probabilities and selection rules. Lifetimes of atomic states. Hydrogen atom in electric field. Quadratic Stark effect. We consider a hydrogen atom in the ground state in the uniform electric field The Hamiltonian of the system is [using CGS units] orienting the quantization axis (z) along the electric field. Since d is odd operator under the parity transformation r → -r even function product Therefore, need second-order correction to the energy We will use the approximation Note that we included 100 term to make use of the completeness relation since it is zero anyway. Lecture 13 Page 1 Note that polarizability of classical conductive sphere of radius a is Lecture 13 Page 2 Emission and Absorption of Electromagnetic Radiation by Atoms (follows W. Demtr öder, chapter 7) During the past few lectures, we have discussed stationary atomic states that are described by a stationary wave function and by the corresponding quantum numbers. We also discussed the atoms can undergo transitions between different states with energies E i and E , when a photon with energy k (1) is emitted or absorbed. We know from the experiments, however, that the absorption or emission spectrum of an atom does not contain all possible frequencies ω according to the formula above . Therefore, t here must be “selection rules” that select the possible radiative transitions from all combinations of E i and E k. These selection rules strongly affect the lifetimes of the atomic excited states.
    [Show full text]
  • Correspondence Rules in SU (3)
    Lakehead University Knowledge Commons,http://knowledgecommons.lakeheadu.ca Electronic Theses and Dissertations Electronic Theses and Dissertations from 2009 2018 Correspondence rules in SU (3) Nunes Martins, Alex Clesio http://knowledgecommons.lakeheadu.ca/handle/2453/4322 Downloaded from Lakehead University, KnowledgeCommons Correspondence Rules in SU(3) by Alex Clésio Nunes Martins A thesis presented in conformity with the requirements for the degree of Masters of Physics Department of Physics Lakehead University Canada c Alex Clésio Nunes Martins 2018 Abstract In this thesis, I present a path to the correspondence rules for the generators of the su(3) symmetry and compare my results with the SU(2) correspondence rules. Using these rules, I obtain analytical expressions for the Moyal bracket between the Wigner symbol of a Hamiltonian H^ , where this Hamiltonian is written linearly or quadratically in terms of the generators, and the Wigner symbol of a general operator B^. I show that for the semiclassical limit, where the SU(3) representation label λ tends to infinity, this Moyal bracket reduces to a Poisson bracket, which is the leading term of the expansion (in terms of the semiclassical parameter ), plus correction terms. Finally, I present the analytical form of the second order correction term of the expansion of the Moyal bracket. 1 Acknowledgements Firstly, I would like to thank my wife, Michelle Goertzen Martins. Her continuous support, patience, advice, courage, love and kindness were essential for the completion of this thesis. Specially in those moments when I thought I would not be able to keep moving forward, she was my pillar of strength and reminded me that taking rests, enjoying family, reconnecting to my roots by playing and watching the beautiful game, learning new things, trying a different approach and checking for minus signs in my calculations would help me to see clearly every single step of this arduous but incredible journey.
    [Show full text]