Generalized Squeezed States from Generalized Coherent States
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Squeezed and Entangled States of a Single Spin
SQUEEZED AND ENTANGLED STATES OF A SINGLE SPIN Barı¸s Oztop,¨ Alexander A. Klyachko and Alexander S. Shumovsky Faculty of Science, Bilkent University Bilkent, Ankara, 06800 Turkey e-mail: [email protected] (Received 23 December 2007; accepted 1 March 2007) Abstract We show correspondence between the notions of spin squeez- ing and spin entanglement. We propose a new measure of spin squeezing. We consider a number of physical examples. Concepts of Physics, Vol. IV, No. 3 (2007) 441 DOI: 10.2478/v10005-007-0020-0 Barı¸s Oztop,¨ Alexander A. Klyachko and Alexander S. Shumovsky It is well known that the concept of squeezed states [1] was orig- inated from the famous work by N.N. Bogoliubov [2] on the super- fluidity of liquid He4 and canonical transformations. Initially, it was developed for the Bose-fields. Later on, it has been extended on spin systems as well. The two main objectives of the present paper are on the one hand to show that the single spin s 1 can be prepared in a squeezed state and on the other hand to demonstrate≥ one-to-one correspondence between the notions of spin squeezing and entanglement. The results are illustrated by physical examples. Spin-coherent states | Historically, the notion of spin-coherent states had been introduced [3] before the notion of spin-squeezed states. In a sense, it just reflected the idea of Glauber [4] about creation of Bose-field coherent states from the vacuum by means of the displacement operator + α field = D(α) vac ;D(α) = exp(αa α∗a); (1) j i j i − where α C is an arbitrary complex parameter and a+; a are the Boson creation2 and annihilation operators. -
Wigner Function for SU(1,1)
Wigner function for SU(1,1) U. Seyfarth1, A. B. Klimov2, H. de Guise3, G. Leuchs1,4, and L. L. Sánchez-Soto1,5 1Max-Planck-Institut für die Physik des Lichts, Staudtstraße 2, 91058 Erlangen, Germany 2Departamento de Física, Universidad de Guadalajara, 44420 Guadalajara, Jalisco, Mexico 3Department of Physics, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada 4Institute for Applied Physics,Russian Academy of Sciences, 630950 Nizhny Novgorod, Russia 5Departamento de Óptica, Facultad de Física, Universidad Complutense, 28040 Madrid, Spain In spite of their potential usefulness, Wigner functions for systems with SU(1,1) symmetry have not been explored thus far. We address this problem from a physically-motivated perspective, with an eye towards applications in modern metrology. Starting from two independent modes, and after getting rid of the irrelevant degrees of freedom, we derive in a consistent way a Wigner distribution for SU(1,1). This distribution appears as the expectation value of the displaced parity operator, which suggests a direct way to experimentally sample it. We show how this formalism works in some relevant examples. Dedication: While this manuscript was under review, we learnt with great sadness of the untimely passing of our colleague and friend Jonathan Dowling. Through his outstanding scientific work, his kind attitude, and his inimitable humor, he leaves behind a rich legacy for all of us. Our work on SU(1,1) came as a result of long conversations during his frequent visits to Erlangen. We dedicate this paper to his memory. 1 Introduction Phase-space methods represent a self-standing alternative to the conventional Hilbert- space formalism of quantum theory. -
Arxiv:2010.08081V3 [Quant-Ph] 9 May 2021 Dipole fields [4]
Time-dependent quantum harmonic oscillator: a continuous route from adiabatic to sudden changes D. Mart´ınez-Tibaduiza∗ Instituto de F´ısica, Universidade Federal Fluminense, Avenida Litor^anea, 24210-346 Niteroi, RJ, Brazil L. Pires Institut de Science et d'Ing´enierieSupramol´eculaires, CNRS, Universit´ede Strasbourg, UMR 7006, F-67000 Strasbourg, France C. Farina Instituto de F´ısica, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil In this work, we provide an answer to the question: how sudden or adiabatic is a change in the frequency of a quantum harmonic oscillator (HO)? To do this, we investigate the behavior of a HO, initially in its fundamental state, by making a frequency transition that we can control how fast it occurs. The resulting state of the system is shown to be a vacuum squeezed state in two bases related by Bogoliubov transformations. We characterize the time evolution of the squeezing parameter in both bases and discuss its relation with adiabaticity by changing the transition rate from sudden to adiabatic. Finally, we obtain an analytical approximate expression that relates squeezing to the transition rate as well as the initial and final frequencies. Our results shed some light on subtleties and common inaccuracies in the literature related to the interpretation of the adiabatic theorem for this system. I. INTRODUCTION models to the dynamical Casimir effect [32{39] and spin states [40{42], relevant in optical clocks [43]. The main The harmonic oscillator (HO) is undoubtedly one of property of these states is to reduce the value of one of the most important systems in physics since it can be the quadrature variances (the variance of the orthogonal used to model a great variety of physical situations both quadrature is increased accordingly) in relation to coher- in classical and quantum contexts. -
`Nonclassical' States in Quantum Optics: a `Squeezed' Review of the First 75 Years
Home Search Collections Journals About Contact us My IOPscience `Nonclassical' states in quantum optics: a `squeezed' review of the first 75 years This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Opt. B: Quantum Semiclass. Opt. 4 R1 (http://iopscience.iop.org/1464-4266/4/1/201) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 132.206.92.227 The article was downloaded on 27/08/2013 at 15:04 Please note that terms and conditions apply. INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF OPTICS B: QUANTUM AND SEMICLASSICAL OPTICS J. Opt. B: Quantum Semiclass. Opt. 4 (2002) R1–R33 PII: S1464-4266(02)31042-5 REVIEW ARTICLE ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years V V Dodonov1 Departamento de F´ısica, Universidade Federal de Sao˜ Carlos, Via Washington Luiz km 235, 13565-905 Sao˜ Carlos, SP, Brazil E-mail: [email protected] Received 21 November 2001 Published 8 January 2002 Online at stacks.iop.org/JOptB/4/R1 Abstract Seventy five years ago, three remarkable papers by Schrodinger,¨ Kennard and Darwin were published. They were devoted to the evolution of Gaussian wave packets for an oscillator, a free particle and a particle moving in uniform constant electric and magnetic fields. From the contemporary point of view, these packets can be considered as prototypes of the coherent and squeezed states, which are, in a sense, the cornerstones of modern quantum optics. Moreover, these states are frequently used in many other areas, from solid state physics to cosmology. -
Redalyc.Harmonic Oscillator Position Eigenstates Via Application of An
Revista Mexicana de Física ISSN: 0035-001X [email protected] Sociedad Mexicana de Física A.C. México Soto-Eguibar, Francisco; Moya-Cessa, Héctor Manuel Harmonic oscillator position eigenstates via application of an operator on the vacuum Revista Mexicana de Física, vol. 59, núm. 2, julio-diciembre, 2013, pp. 122-127 Sociedad Mexicana de Física A.C. Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=57048159005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative EDUCATION Revista Mexicana de F´ısica E 59 (2013) 122–127 JULY–DECEMBER 2013 Harmonic oscillator position eigenstates via application of an operator on the vacuum Francisco Soto-Eguibar and Hector´ Manuel Moya-Cessa Instituto Nacional de Astrof´ısica, Optica´ y Electronica,´ Luis Enrique Erro 1, Santa Mar´ıa Tonantzintla, San Andres´ Cholula, Puebla, 72840 Mexico.´ Received 21 August 2013; accepted 17 October 2013 Harmonic oscillator squeezed states are states of minimum uncertainty, but unlike coherent states, in which the uncertainty in position and momentum are equal, squeezed states have the uncertainty reduced, either in position or in momentum, while still minimizing the uncertainty principle. It seems that this property of squeezed states would allow to obtain the position eigenstates as a limiting case, by doing null the uncertainty in position and infinite in momentum. However, there are two equivalent ways to define squeezed states, that lead to different expressions for the limiting states. -
Qualification Exam: Quantum Mechanics
Qualification Exam: Quantum Mechanics Name: , QEID#43228029: July, 2019 Qualification Exam QEID#43228029 2 1 Undergraduate level Problem 1. 1983-Fall-QM-U-1 ID:QM-U-2 Consider two spin 1=2 particles interacting with one another and with an external uniform magnetic field B~ directed along the z-axis. The Hamiltonian is given by ~ ~ ~ ~ ~ H = −AS1 · S2 − µB(g1S1 + g2S2) · B where µB is the Bohr magneton, g1 and g2 are the g-factors, and A is a constant. 1. In the large field limit, what are the eigenvectors and eigenvalues of H in the "spin-space" { i.e. in the basis of eigenstates of S1z and S2z? 2. In the limit when jB~ j ! 0, what are the eigenvectors and eigenvalues of H in the same basis? 3. In the Intermediate regime, what are the eigenvectors and eigenvalues of H in the spin space? Show that you obtain the results of the previous two parts in the appropriate limits. Problem 2. 1983-Fall-QM-U-2 ID:QM-U-20 1. Show that, for an arbitrary normalized function j i, h jHj i > E0, where E0 is the lowest eigenvalue of H. 2. A particle of mass m moves in a potential 1 kx2; x ≤ 0 V (x) = 2 (1) +1; x < 0 Find the trial state of the lowest energy among those parameterized by σ 2 − x (x) = Axe 2σ2 : What does the first part tell you about E0? (Give your answers in terms of k, m, and ! = pk=m). Problem 3. 1983-Fall-QM-U-3 ID:QM-U-44 Consider two identical particles of spin zero, each having a mass m, that are con- strained to rotate in a plane with separation r. -
Fp3 - 4:30 Quantum Mechanical System Symmetry*
Proceedings of 23rd Conference on Decision and Control Las Vegas, NV, December 1984 FP3 - 4:30 QUANTUM MECHANICAL SYSTEM SYMMETRY* + . ++ +++ T. J. Tarn, M. Razewinkel and C. K. Ong + Department of Systems Science and Mathematics, Box 1040, Washington University, St. Louis, Missouri 63130, USA. ++ Stichting Mathematisch Centrum, Kruislaan 413, 1098 S J Amsterdam, The Netherlands. +++M/A-COM Development Corporation, M/A-COM Research Center, 1350 Piccard Drive, Suite 310, Rockville. Maryland 20850, USA. Abstract Cll/i(X, t) ifi at :: H(x,t) , ( 1) The connection of quantum nondemolition observables with the symmetry operators of the Schrodinger where t/J is the wave function of the system and x an equation, is shown. The connection facilitates the appropriate set of dynamical coordinates. construction of quantum nondemolition observables and thus of quantum nondemolition filters for a given Definition 1. The symmetry algebra of the Hamiltonian system. An interpretation of this connection is H of a quantum system is generated by those operators given, and it has been found that the Hamiltonian that commute with H and possess together with H a description under which minimal wave pockets remain common dense invariant domain V. minimal is a special case of our investigation. With the above definition, if [H,X1J:: 0 and [H,X2J = 1. Introduction O, then [H,[X1 ,x 2 JJ:: 0 also on D. Clearly all constants of the motion belong to the symmetry algebra In developing the theory of quantum nondemolition of the Hamiltonian. observables, it has been assumed that the output observable is given. The question of whether or not the given output observable is a quantum nondemolition Denote the Schrodinger operator by filter has been answered in [1,2]. -
Magnon-Squeezing As a Niche of Quantum Magnonics
Magnon-squeezing as a niche of quantum magnonics Akashdeep Kamra,1, 2, a) Wolfgang Belzig,3 and Arne Brataas1 1)Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway 2)Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, USA 3)Department of Physics, University of Konstanz, D-78457 Konstanz, Germany The spin excitations of ordered magnets - magnons - mediate transport in magnetic insulators. Their bosonic nature makes them qualitatively distinct from electrons. These features include quantum properties tradition- ally realized with photons. In this perspective, we present an intuitive discussion of one such phenomenon. Equilibrium magnon-squeezing manifests unique advantageous with magnons as compared to photons, in- cluding properties such as entanglement. Building upon the recent progress in the fields of spintronics and quantum optics, we outline challenges and opportunities in this emerging field of quantum magnonics. The spin excitations of ordered magnets, broadly called We find it convenient to introduce the equilibrium \magnons", carry spin information1{8 and offer a viable magnon-squeezing physics first and later place it in the path towards low-dissipation, unconventional comput- context of the more mature and widely known nonequi- ing paradigms. Their bosonic nature enables realizing librium squeezing phenomenon28,29,31,32. Magnons in a and exploiting phenomena not admitted by electrons9{15. ferromagnet admit single-mode squeezing mediated by The field of \magnonics" has made rapid progress to- the relatively weak spin-nonconserving interactions16,17, wards fundamental physics as well as potential applica- thereby providing an apt start of the discussion. -
Operators and States
Operators and States University Press Scholarship Online Oxford Scholarship Online Methods in Theoretical Quantum Optics Stephen Barnett and Paul Radmore Print publication date: 2002 Print ISBN-13: 9780198563617 Published to Oxford Scholarship Online: January 2010 DOI: 10.1093/acprof:oso/9780198563617.001.0001 Operators and States STEPHEN M. BARNETT PAUL M. RADMORE DOI:10.1093/acprof:oso/9780198563617.003.0003 Abstract and Keywords This chapter is concerned with providing the necessary rules governing the manipulation of the operators and the properties of the states to enable us top model and describe some physical systems. Atom and field operators for spin, angular momentum, the harmonic oscillator or single mode field and for continuous fields are introduced. Techniques are derived for treating functions of operators and ordering theorems for manipulating these. Important states of the electromagnetic field and their properties are presented. These include the number states, thermal states, coherent states and squeezed states. The coherent and squeezed states are generated by the actions of the Glauber displacement operator and the squeezing operator. Angular momentum coherent states are described and applied to the coherent evolution of a two-state atom and to the action of a beam- splitter. Page 1 of 63 PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter -
Nonlinear Supersymmetry As a Hidden Symmetry
Nonlinear supersymmetry as a hidden symmetry Mikhail S. Plyushchay Departamento de F´ısica, Universidad de Santiago de Chile, Casilla 307, Santiago, Chile E-mail: [email protected] Abstract Nonlinear supersymmetry is characterized by supercharges to be higher order in bosonic momenta of a system, and thus has a nature of a hidden symmetry. We review some aspects of nonlinear supersymmetry and related to it exotic supersymmetry and nonlinear superconformal symmetry. Examples of reflectionless, finite-gap and perfectly invisible -symmetric zero-gap systems, as well as rational deformations of the quantum harmonicPT oscillator and conformal mechanics, are considered, in which such symmetries are realized. 1 Introduction Hidden symmetries are associated with nonlinear in momenta integrals of motion. They mix the coordinate and momenta variables in the phase space of a system, and generate a nonlinear, W -type algebras [1]. The best known examples of hidden symmetries are provided by the Laplace-Runge-Lenz vector integral in the Kepler-Coulomb problem, and the Fradkin-Jauch-Hill tensor in isotropic harmonic oscillator systems. Hidden symmetries arXiv:1811.11942v3 [hep-th] 22 Aug 2019 also appear in anisotropic oscillator with conmensurable frequencies, where they underlie the closed nature of classical trajectories and specific degeneration of the quantum energy levels. Hidden symmetry is responsible for complete integrability of geodesic motion of a test particle in the background of the vacuum solution to the Einstein’s equation repre- sented by the Kerr metric of the rotating black hole and its generalizations in the form of the Kerr-NUT-(A)dS solutions of the Einstein-Maxwell equations [2]. -
The Physics of Quantum Mechanics Solutions to Problems That Are Not on Problem Sets
1 The Physics of Quantum Mechanics Solutions to problems that are not on problem sets 2.10 Let ψ(x) be a properly normalised wavefunction and Q an operator on wavefunctions. Let q be the spectrum of Q and u (x) be the corresponding correctly normalised eigenfunctions. { r} { r } Write down an expression for the probability that a measurement of Q will yield the value qr. Show ∞ ∗ ˆ 1 that r P (qr ψ)=1. Show further that the expectation of Q is Q −∞ ψ Qψ dx. Soln: | ≡ 2 ∗ Pi = dxui (x)ψ(x) where Qui(x)= qiui(x). 1= dx ψ 2 = dx a∗u∗ a u = a∗a dxu∗u = a 2 = P | | i i j j i j i j | i| i i j ij i i Similarly dx ψ∗Qψ = dx a∗u∗ Q a u = a∗a dxu∗Qu i i j j i j i j i j ij = a∗a q dxu∗u = a 2q = P q i j j i j | i| i i i ij i i which is by definition the expectation value of Q. 2.22 Show that for any three operators A, B and C, the Jacobi identity holds: [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0. (2.1) Soln: We expand the inner commutator and then use the rule for expanding the commutator of a product: [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = [A, BC] [A,CB] + [B,CA] [B, AC] + [C,AB] [C,BA] − − − = [A, B]C + B[A, C] [A, C]B C[A, B] + [B, C]A + C[B, A] [B, A]C − − − A[B, C] + [C, A]B + A[C,B] [C,B]A B[C, A] − − − = 2 ([A, B]C C[A, B] [A, C]B + B[A, C] + [B, C]A A[B, C]) − − − =2 ABC BAC CAB + CBA ACB + CAB + BAC BCA + BCA − − − − CBA ABC + ACB =0 − − 3.9∗ By expressing the annihilation operator A of the harmonic oscillator in the momentum rep- resentation, obtain p 0 . -
Quantum Theoretical Chemistry (NWI-MOL112)
Quantum theoretical chemistry (NWI-MOL112) Prof. dr. ir. Gerrit C. Groenenboom Theoretical Chemistry, Institute for Molecules and Materials Radboud University Nijmegen http://www.theochem.ru.nl May 19, 2021 Contents Preface 3 1 A single particle in one dimension 4 1.1 Particle moving in one dimension: classical mechanics . .4 1.2 Hamilton's classical equations of motion . .4 1.3 Postulates of quantum mechanics . .5 1.4 Wave functions . .5 1.5 Hilbert space . .6 1.5.1 Linear space or vector space . .6 1.5.2 Linear independence, dimension, and basis sets . .7 1.5.3 Scalar products, orthonormal basis sets . .7 1.5.4 Finite dimensional Hilbert spaces . .9 1.5.5 Infinite dimensional Hilbert spaces . 10 1.6 Observables and Hermitian operators . 10 1.6.1 Hermitian operators . 11 1.7 Measurements of observables . 12 1.8 Time-dependent Schr¨odingerequation . 12 2 Spectral decomposition of Hermitian operators 14 2.1 The expectation value of an Hermitian operator is real . 14 2.2 The eigenvalues of Hermitian operators are real . 14 2.3 Eigenvectors of Hermitian operators with different eigenvalues are orthogonal . 15 2.4 Continuum spectrum . 16 2.5 Commuting Hermitian operators . 16 2.6 Noncommuting operators . 17 2.6.1 Ladder operators . 17 2.7 Time development of an observable . 18 2.8 Commutators and first derivative operators . 18 2.9 Dirac delta functions . 18 2.10 Dirac notation . 19 2.11 Spectral decomposition of Hermitian operators . 21 2.12 Linear variation theory . 22 3 Diatomic molecule in one dimension 25 3.1 Quantum mechanical treatment .