Introduction to Quantum Optics: an Amateur's View Lecture Notes

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Quantum Optics: an Amateur's View Lecture Notes Introduction to Quantum Optics: an amateur's view Lecture notes M.I. Petrov, D.F. Kornovan, I.V. Toftul ITMO University, Department of Physics and Mathematics Autumn, 2019 Preface I am very grateful to Andrey Bogdanov who helped me to organize this course, and to Kristina Frizyuk for her enormous help in preparing this manuscript. 1 Contents Recommended literature 5 1 Atom-field interaction. Semiclassical theory 6 Homework . 10 2 Density matrix of two energy level system 12 2.1 Density matrix of a subsystem . 13 2.2 Density matrix of a mixed state . 14 2.3 Density matrix of a two-level system . 15 2.4 Bloch sphere . 16 2.5 Dissipations . 17 2.5.1 Spontaneous emission of TLS . 17 2.6 Dielectric constant of media . 18 2.7 Homework . 20 Homework . 20 3 Secondary quantization 21 3.1 Vector potential of the electromagnetic field . 21 3.2 Field in the box, harmonics expansion, and the energy of the electromag- netic field . 22 3.3 Field quantization . 24 3.4 Ladder operators. Fock state. Second quantization . 25 3.5 Fields' fluctuation . 26 3.6 Homework . 27 4 Coherent states 28 4.1 Eigenstates of anihilation operator . 28 4.2 Basic properties of coherent states . 29 Homework . 30 4.3 Classical field . 30 Homework . 31 4.4 Fluctuations . 31 4.5 Squeezed states or getting the maximum accuracy! . 34 Homework . 35 5 The coherence of light 37 5.1 Michelson stellar interferometer . 37 5.2 Quantum theory of photodetection . 40 6 Atom–field interaction. Quantum approach 42 6.1 Jaynes{Cummings model (RWA) . 42 Homework . 46 6.2 Collapse and revival . 46 6.3 Energy spectrum. Dispersion relation . 46 7 Spontaneous relaxation. Weisskopf-Wigner theory 51 2 8 Dipole radiation. Dyadic Green's function. The Purcell effect: classical approach 55 8.1 Dipole radiation and dyadic Green's function . 55 8.1.1 Derivation of the Green's function for Maxwell equations . 56 8.1.2 Near-, intermediate- and far-field parts of Green's function . 57 8.2 Spontaneous relaxation and local density-of-state (IN A MIXED UNITS) . 57 8.2.1 An expression for spontaneous decay . 57 8.2.2 Spontaneous decay and Green's dyadics . 59 8.3 The Purcell factor . 60 Homework . 61 9 Theory of relaxation of electromagnetic filed. Heisenberg{Langevin method 62 9.1 In previous series . 62 9.2 the Heisenberg{Langevin equation . 62 Homework . 64 9.3 Properties of the stochastic operator . 64 9.4 Equation of motion for the field correlation functions. Wiener{Khintchine theorem . 65 10 Atom in a damped cavity 68 10.1 The Purcell factor for a closed cavity . 68 10.2 Rigorous derivation of the atomic decay . 69 11 Casimir force and his close friends 72 11.1 Casimir force between two perfectly conducting plates . 74 11.1.1 Case D =3 ............................... 74 11.1.2 Case D = 1 and philosophy about divergent sums . 76 11.2 Casimir{Polder force . 77 11.3 Orders of forces . 79 11.4 The latest advances . 80 11.4.1 The dynamical Casimir effect . 80 11.4.2 Quantum levitation or repulsive Casimir{Lifshitz forces . 80 3 Notation is the energy of the system •E Eb(r; t), and Hb (r; t) are the calssical electric and magnetic field vectors • Eb(r; t), and Hb (r; t) are the quantum electric and magnetic field operators • Hcis the quantum hamiltonian of the system • By !0 we normally denote the atomic transition frequency, while the frequency of • the field we denote as !; TLS =def Two-Level System • 4 Recommended literature 1. Scully, M. O., & Zubairy, M. S. (1999). Quantum optics. 2. Novotny, L., & Hecht, B. (2012). Principles of nano-optics. Cambridge university press. 3. Mandel, L., & Wolf, E. (1995). Optical coherence and quantum optics. Cambridge university press. 4. Fox, M. (2006). Quantum optics: an introduction (Vol. 15). OUP Oxford. 5. Loudon, R., & von Foerster, T. (1974). The quantum theory of light. American Journal of Physics, 42(11), 1041-1042. 5 1 Atom-field interaction. Semiclassical theory We start with consideration of a basic problem in our course: the interaction of elec- tromagnetic field with quantum system. In the following we will refer to such system as an "atom". The word semiclassical in this context means that we treat electromagnetic field classical, but describe atom as a quantum system. We start with a two-level system (see Fig. 1) as a simplest but very rich example of light-matter interaction. E k ω L |a> |b r0 > r Figure 1: The energy system of two-level atom. We assume that the electron in the system is initially in the ground state, and at time moment t = 0 it is excited with a plane wave with polarization E and wavevector k = !=c. Let us find the probability of atom to be in the excited state at time moment t. In the suggested formulation the problem is a typical example from quantum mechanics course. One should start with writing down the Hamiltonian Hc0 of an electron in the system without electric field : 2 pb Hc0 = + Vb(r): (1.1) 2m Here pb is the momentum operator, and Vb is the potential energy of the electron. One can find the eigen states and energy levels of the atom: Hc0 = : (1.2) j i E j i In the following we will assume that there are two eigen states, which we define as a j i and b (ground state) with energies Ea and Eb correspondingly. Their difference gives j i the energy of atomic transition ~!0 = a b. The Hamiltonian of the system after introducing the electromagnetic field is asE follows:− E (p^ e A)2 Hc= − c + V^ (r) e': (1.3) 2m − NB: Potentials are not determined uniquely, and gauge transformation may take place: c c @χ A A + ~ χ, ' ' ~ ; (1.4) ! e r ! − e @t wehre χ(r; t) is a real-valued function of coordinate and time. Then the wave function should also be transformed. eiχ(r;t): (1.5) ! 6 Next, we write down a vector potential describing the incident plane wave: ikr−i!t ikr A = A0e = A0(t)e : (1.6) Assuming that characteristic scale of the system L is much smaller than the wavelength L λ (1.7) one can expanding A near r0 (the radius-vector of atom center) in Taylor series: ikr0 ikr0 A(r; t) A0(t)e (1 + ikρ) A0e : (1.8) ≈ ≈ So the vector potential does not change in space, but in time. By choosing the coor- dinate so that r0 = 0 one can simplify the system even further A A0(t): ≈ 2 ^ 1 e H = p^ A0(t) + V (r) + e': (1.9) 2m − c The standard choice it to use Coulomb gauge: div A = 0;' = 0: (1.10) After that, using p^ = i~ , we obtain − r 2 2 ^ ~ ie H = A0 + V (r): (1.11) −2m r − ~c Our goal is to find out the temporal evolution of the system. This is can be done by solving the Schr¨odingerequation: @ Hc = i ~ @t First of all, we simplify the Hamiltonian by introducing a new wave function e = e −i A0r y e c~ . This substitution and related unitary transformation Hc u Hcu will make | {z } ! ,!=u an momentum shift p^ e=cA p^. Indeed, if one recalls that − ! ( ig)( ig) eeigr = = ( ig) e eigr = 2 e eigr; (1.12) r − r − r − r r def e where g = A0(t), the Schr¨oedingerequation will give us c~ 2 @ ~ 2 @ e @g H^ = i~ + V e(r; t) = i~ ~r e: (1.13) @t ) −2mr @t − · @t | {z } H^0 Lets pay attention to the second term in right and side @g e @A (t) e = 0 = E(t): (1.14) @t ~c @t −~ Using that we can rewrite (1.13) as ^ @ e H0 e erE e = i~ : (1.15) − | {z } @t atom-field interaction 7 The second component in the lefthand side is the interaction term, which appeared after transformation of the Hamiltonian. By its form one can treat is as a dipole energy in the ^ def def electric field, and we will define H1 = d E, and d = er is the dipole moment. This, finally, leads us to a simplified form of− the· Schr¨odingerequation− (we omit the tilde sign here to avoid additional idle symbols): ~ ~ @ Hc0 + Hc1 = i : (1.16) ~ @t In order to solve this equation one can apply the expansion of over the eigenstates of non-perturbed system: j i ~E = Ca(t) a + Cb(t) b ; (1.17) j i j i where ^ ^ H0 a = a a ; H0 b = b b : (1.18) j i E j i j i E j i NB: Here we switch to "bra" and "ket" respresentation. We recall that a b = ~!0 is the transition frequency. We assume that the incident E − E ^ field has following time dependence E = E0 cos !t, so H1 = d E. Let us assume that initially the system is in the ground state in accordance with− the· formulation of the problem: E C (0) = 0; ~ = b a (1.19) t=0 j i ! Cb(0) = 1: Then one can rewrite the equation in the form: _ _ (EaCa a + EbCb b ) d E Ca a d E Cb b = i~Ca a + i~Cb b : (1.20) j i j i − · j i − · j i j i j i Projecting it over a and b one can get: j i j i 8 _ a (1.20) : EaCa Ca a d " a Cb a d " b = i~Ca; <>h j · − h j · j i − h j · j i (1.21) > _ : b (1.20) : EbCb Cb b d " b Ca b d " a = i~Cb: h j · − h j · j i − h j · j i In the dipole approximation the field E does not change in space, so we can write a d E a = a d a E; a d E b = a d b E: (1.22) h j · j i h j j i · h j · j i h j j i · This allows one to introduce dipole matrix elements: Z def ∗ dαβ = α d β = dV (r)er β(r) α; β = a; b: (1.23) h j j i α By symmetry considerations it follows dαα dαβ , since normally neighbouring j j j jα6=β states have opposite parity, and er is the odd function.
Recommended publications
  • Wigner Function for SU(1,1)
    Wigner function for SU(1,1) U. Seyfarth1, A. B. Klimov2, H. de Guise3, G. Leuchs1,4, and L. L. Sánchez-Soto1,5 1Max-Planck-Institut für die Physik des Lichts, Staudtstraße 2, 91058 Erlangen, Germany 2Departamento de Física, Universidad de Guadalajara, 44420 Guadalajara, Jalisco, Mexico 3Department of Physics, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada 4Institute for Applied Physics,Russian Academy of Sciences, 630950 Nizhny Novgorod, Russia 5Departamento de Óptica, Facultad de Física, Universidad Complutense, 28040 Madrid, Spain In spite of their potential usefulness, Wigner functions for systems with SU(1,1) symmetry have not been explored thus far. We address this problem from a physically-motivated perspective, with an eye towards applications in modern metrology. Starting from two independent modes, and after getting rid of the irrelevant degrees of freedom, we derive in a consistent way a Wigner distribution for SU(1,1). This distribution appears as the expectation value of the displaced parity operator, which suggests a direct way to experimentally sample it. We show how this formalism works in some relevant examples. Dedication: While this manuscript was under review, we learnt with great sadness of the untimely passing of our colleague and friend Jonathan Dowling. Through his outstanding scientific work, his kind attitude, and his inimitable humor, he leaves behind a rich legacy for all of us. Our work on SU(1,1) came as a result of long conversations during his frequent visits to Erlangen. We dedicate this paper to his memory. 1 Introduction Phase-space methods represent a self-standing alternative to the conventional Hilbert- space formalism of quantum theory.
    [Show full text]
  • Arxiv:2010.08081V3 [Quant-Ph] 9 May 2021 Dipole fields [4]
    Time-dependent quantum harmonic oscillator: a continuous route from adiabatic to sudden changes D. Mart´ınez-Tibaduiza∗ Instituto de F´ısica, Universidade Federal Fluminense, Avenida Litor^anea, 24210-346 Niteroi, RJ, Brazil L. Pires Institut de Science et d'Ing´enierieSupramol´eculaires, CNRS, Universit´ede Strasbourg, UMR 7006, F-67000 Strasbourg, France C. Farina Instituto de F´ısica, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil In this work, we provide an answer to the question: how sudden or adiabatic is a change in the frequency of a quantum harmonic oscillator (HO)? To do this, we investigate the behavior of a HO, initially in its fundamental state, by making a frequency transition that we can control how fast it occurs. The resulting state of the system is shown to be a vacuum squeezed state in two bases related by Bogoliubov transformations. We characterize the time evolution of the squeezing parameter in both bases and discuss its relation with adiabaticity by changing the transition rate from sudden to adiabatic. Finally, we obtain an analytical approximate expression that relates squeezing to the transition rate as well as the initial and final frequencies. Our results shed some light on subtleties and common inaccuracies in the literature related to the interpretation of the adiabatic theorem for this system. I. INTRODUCTION models to the dynamical Casimir effect [32{39] and spin states [40{42], relevant in optical clocks [43]. The main The harmonic oscillator (HO) is undoubtedly one of property of these states is to reduce the value of one of the most important systems in physics since it can be the quadrature variances (the variance of the orthogonal used to model a great variety of physical situations both quadrature is increased accordingly) in relation to coher- in classical and quantum contexts.
    [Show full text]
  • `Nonclassical' States in Quantum Optics: a `Squeezed' Review of the First 75 Years
    Home Search Collections Journals About Contact us My IOPscience `Nonclassical' states in quantum optics: a `squeezed' review of the first 75 years This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Opt. B: Quantum Semiclass. Opt. 4 R1 (http://iopscience.iop.org/1464-4266/4/1/201) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 132.206.92.227 The article was downloaded on 27/08/2013 at 15:04 Please note that terms and conditions apply. INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF OPTICS B: QUANTUM AND SEMICLASSICAL OPTICS J. Opt. B: Quantum Semiclass. Opt. 4 (2002) R1–R33 PII: S1464-4266(02)31042-5 REVIEW ARTICLE ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years V V Dodonov1 Departamento de F´ısica, Universidade Federal de Sao˜ Carlos, Via Washington Luiz km 235, 13565-905 Sao˜ Carlos, SP, Brazil E-mail: [email protected] Received 21 November 2001 Published 8 January 2002 Online at stacks.iop.org/JOptB/4/R1 Abstract Seventy five years ago, three remarkable papers by Schrodinger,¨ Kennard and Darwin were published. They were devoted to the evolution of Gaussian wave packets for an oscillator, a free particle and a particle moving in uniform constant electric and magnetic fields. From the contemporary point of view, these packets can be considered as prototypes of the coherent and squeezed states, which are, in a sense, the cornerstones of modern quantum optics. Moreover, these states are frequently used in many other areas, from solid state physics to cosmology.
    [Show full text]
  • Redalyc.Harmonic Oscillator Position Eigenstates Via Application of An
    Revista Mexicana de Física ISSN: 0035-001X [email protected] Sociedad Mexicana de Física A.C. México Soto-Eguibar, Francisco; Moya-Cessa, Héctor Manuel Harmonic oscillator position eigenstates via application of an operator on the vacuum Revista Mexicana de Física, vol. 59, núm. 2, julio-diciembre, 2013, pp. 122-127 Sociedad Mexicana de Física A.C. Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=57048159005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative EDUCATION Revista Mexicana de F´ısica E 59 (2013) 122–127 JULY–DECEMBER 2013 Harmonic oscillator position eigenstates via application of an operator on the vacuum Francisco Soto-Eguibar and Hector´ Manuel Moya-Cessa Instituto Nacional de Astrof´ısica, Optica´ y Electronica,´ Luis Enrique Erro 1, Santa Mar´ıa Tonantzintla, San Andres´ Cholula, Puebla, 72840 Mexico.´ Received 21 August 2013; accepted 17 October 2013 Harmonic oscillator squeezed states are states of minimum uncertainty, but unlike coherent states, in which the uncertainty in position and momentum are equal, squeezed states have the uncertainty reduced, either in position or in momentum, while still minimizing the uncertainty principle. It seems that this property of squeezed states would allow to obtain the position eigenstates as a limiting case, by doing null the uncertainty in position and infinite in momentum. However, there are two equivalent ways to define squeezed states, that lead to different expressions for the limiting states.
    [Show full text]
  • Fp3 - 4:30 Quantum Mechanical System Symmetry*
    Proceedings of 23rd Conference on Decision and Control Las Vegas, NV, December 1984 FP3 - 4:30 QUANTUM MECHANICAL SYSTEM SYMMETRY* + . ++ +++ T. J. Tarn, M. Razewinkel and C. K. Ong + Department of Systems Science and Mathematics, Box 1040, Washington University, St. Louis, Missouri 63130, USA. ++ Stichting Mathematisch Centrum, Kruislaan 413, 1098 S J Amsterdam, The Netherlands. +++M/A-COM Development Corporation, M/A-COM Research Center, 1350 Piccard Drive, Suite 310, Rockville. Maryland 20850, USA. Abstract Cll/i(X, t) ifi at :: H(x,t) , ( 1) The connection of quantum nondemolition observables with the symmetry operators of the Schrodinger where t/J is the wave function of the system and x an equation, is shown. The connection facilitates the appropriate set of dynamical coordinates. construction of quantum nondemolition observables and thus of quantum nondemolition filters for a given Definition 1. The symmetry algebra of the Hamiltonian system. An interpretation of this connection is H of a quantum system is generated by those operators given, and it has been found that the Hamiltonian that commute with H and possess together with H a description under which minimal wave pockets remain common dense invariant domain V. minimal is a special case of our investigation. With the above definition, if [H,X1J:: 0 and [H,X2J = 1. Introduction O, then [H,[X1 ,x 2 JJ:: 0 also on D. Clearly all constants of the motion belong to the symmetry algebra In developing the theory of quantum nondemolition of the Hamiltonian. observables, it has been assumed that the output observable is given. The question of whether or not the given output observable is a quantum nondemolition Denote the Schrodinger operator by filter has been answered in [1,2].
    [Show full text]
  • Magnon-Squeezing As a Niche of Quantum Magnonics
    Magnon-squeezing as a niche of quantum magnonics Akashdeep Kamra,1, 2, a) Wolfgang Belzig,3 and Arne Brataas1 1)Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway 2)Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, USA 3)Department of Physics, University of Konstanz, D-78457 Konstanz, Germany The spin excitations of ordered magnets - magnons - mediate transport in magnetic insulators. Their bosonic nature makes them qualitatively distinct from electrons. These features include quantum properties tradition- ally realized with photons. In this perspective, we present an intuitive discussion of one such phenomenon. Equilibrium magnon-squeezing manifests unique advantageous with magnons as compared to photons, in- cluding properties such as entanglement. Building upon the recent progress in the fields of spintronics and quantum optics, we outline challenges and opportunities in this emerging field of quantum magnonics. The spin excitations of ordered magnets, broadly called We find it convenient to introduce the equilibrium \magnons", carry spin information1{8 and offer a viable magnon-squeezing physics first and later place it in the path towards low-dissipation, unconventional comput- context of the more mature and widely known nonequi- ing paradigms. Their bosonic nature enables realizing librium squeezing phenomenon28,29,31,32. Magnons in a and exploiting phenomena not admitted by electrons9{15. ferromagnet admit single-mode squeezing mediated by The field of \magnonics" has made rapid progress to- the relatively weak spin-nonconserving interactions16,17, wards fundamental physics as well as potential applica- thereby providing an apt start of the discussion.
    [Show full text]
  • Squeeze Operators in Classical Scenarios
    Squeeze operators in classical scenarios Jorge A. Anaya-Contreras1, Arturo Z´u˜niga-Segundo1, Francisco Soto-Eguibar2, V´ıctor Arriz´on2, H´ector M. Moya-Cessa2 1Departamento de F´ısica, Escuela Superior de F´ısica y Matem´aticas, IPN Edificio 9 Unidad Profesional ‘Adolfo L´opez Mateos’, 07738 M´exico D.F., Mexico 2Instituto Nacional de Astrof´ısica Optica´ y Electr´onica Calle Luis Enrique Erro No. 1, Sta. Ma. Tonantzintla, Pue. CP 72840, Mexico Abstract We analyse the paraxial field propagation in the realm of classical optics, showing that it can be written as the action of the fractional Fourier transform, followed by the squeeze operator applied to the initial field. Secondly, we show that a wavelet transform may be viewed as the application of a displacement and squeeze operator onto the mother wavelet function. PACS numbers: arXiv:1901.05491v1 [physics.optics] 16 Jan 2019 1 I. INTRODUCTION In the late seventies, squeezed states were introduced [1, 2]. On the one hand, Yuen [3] defined them squeezing the vacuum and then displacing the resulting state. On the other hand, Caves [4] defined them by displacing the vacuum and then squeezing the produced coherent state. Squeezed states have been shown to produce ringing revivals (a fingerprint that a squeezed state is used) in the interaction between light and matter [5]. Applications of quantum techniques in classical optics have been the subject of many studies during the last years [6, 7]. Along the same line, one of the goals of this article is to show, that in a mathematical sense, the squeeze operator could have been introduced in the description of free light propagation, i.e.
    [Show full text]
  • Number-Coherent States 55
    Open Research Online The Open University’s repository of research publications and other research outputs Quantum optical states and Bose-Einstein condensation : a dynamical group approach Thesis How to cite: Feng, Yinqi (2001). Quantum optical states and Bose-Einstein condensation : a dynamical group approach. PhD thesis The Open University. For guidance on citations see FAQs. c 2001 The Author https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.0000d4a8 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Quantum Optical States and Bose-Einstein Condensation: A Dynamical Group Approach Yinqi Feng A thesis submitted for the degree of Doctor of Philosophy in the Faculty of Mathematics and Computing of The Open University May,2001 Contents Abstract vii Acknowledgements ix Introduction 1 I Quantum Optical States and Dynamical Groups 5 1 Displaced and Squeezed Number States 6 1.1 Conventional Coherent and Squeezed States ...... 6 1.1.1 Coherent States . ...... 8 1.1.2 Squeezed States . ........ 9 1.1.3 Group-theoretical Description . ..... 12 1.2 Photon Number States ....... ..... 19 1.2.1 Displaced Number States .. ..... 19 1.2.2 Squeezed Number States . 22 1.2.3 Displaced Squeezed Phase Number States (DSPN states) 24 1.3 Optimal Signal-to-Quantum Noise Ratio ............. 26 i 2 Kerr States and Squeezed Kerr States(q-boson Analogue) 32 2.1 Kerr States .
    [Show full text]
  • Cosmological Complexity in K-Essence
    Cosmological Complexity in K-essence a,b c d Ai-chen Li ,∗ Xin-Fei Li ,† Ding-fang Zeng ,‡ and Lei-Hua Liu a Institut de Ci`encies del Cosmos, Universitat de Barcelona, Mart´ıi Franqu`es 1, 08028 Barcelona, Spain b Departament de F´ısica Qu`antica i Astrof´ısica, Facultat de F´ısica, Universitat de Barcelona, Mart´ı i Franqu`es 1, 08028 Barcelona, Spain c School of Science, Guangxi University of Science and Technology, 545026 Liuzhou, China d Theoretical Physics Division, College of Applied Sciences, Beijing University of Technology, China and e Department of Physics, College of Physics, Mechanical and Electrical Engineering, Jishou University, 416000 Jishou, China We calculate the cosmological complexity under the framework of scalar curvature perturbations for a K-essence model with constant potential. In particular, the squeezed quantum states are de- fined by acting a two-mode squeezed operator which is characterized by squeezing parameters rk and φk on vacuum state. The evolution of these squeezing parameters are governed by the Schrodinger¨ equation, in which the Hamiltonian operator is derived from the cosmological perturbative action. With aid of the solutions of rk and φk, one can calculate the quantum circuit complexity between unsqueezed vacuum state and squeezed quantum states via the wave-function approach. One ad- vantage of K-essence is that it allows us to explore the effects of varied sound speeds on evolution of cosmological complexity. Besides, this model also provides a way for us to distinguish the different cosmological phases by extracting some basic informations, like the scrambling time and Lyapunov exponent etc, from the evolution of cosmological complexity.
    [Show full text]
  • Classical Analogue of a Class of Squeezed States
    IL NUOVO CIMENTOVOL. 112 B, N. 6 Giugno 1997 NOTE BREVI Classical analogue of a class of squeezed states 1 2 H. IOANNIDOU ( ) and D. SKALTSAS ( ) (1) Division of Applied Analysis, Department of Mathematics University of Patras - Patras, Greece (2) Department of Physics, University of Patras - Patras 26110, Greece (ricevuto il 15 Luglio 1996; approvato il 25 Marzo 1997) Summary. — The classical squeeze potential is a kinetic potential which generates an external force tending to remove a physical system from the state of equilibrium. The results of the classical model are compatible with those of quantum mechanics. PACS 03.65 – Quantum mechanics. PACS 02.90 – Other topics in mathematical methods in physics. PACS 42.50 – Quantum optics. It has been shown that the unitary squeeze operator (1) S(z) 4exp [ (za 12 2z * a 2 )O2] generates a potential of the form g(qp×1p×q)O2, which is added to the Hamiltonian operator of the harmonic oscillator, so that the prototype operator for the squeezed states derived by (1) is the quantum Hamiltonian [1, 2] 2 × ¯ ¯ ¯ (2) H 42ˇ2 N2m1mv2 q2 O22iˇg q 2 q N2. ¯q2 g ¯q ¯q h The law of correspondence leads us to consider as the classical analogue of the operator (2), the classical Hamiltonian function (3) H(q, P) 4P 2 O2m1mv 2 q 2 O21gqP . We note that the classical squeeze potential has the form U(q, P) 4qP. From the classical squeeze Hamiltonian we get the canonical system dq dP (4) 4POm1gq , 42mv2 q2gP dt dt which coincides exactly with the quantum system resulting from the Heisenberg equations of motion [2]; accordingly, the solution of the system (4) is the same as it has 933 934 H.
    [Show full text]
  • Geometrical Dynamics by the Schr¨Odinger Equation and Coherent
    Geometrical Dynamics by the Schrodinger¨ Equation and Coherent States Transform Fadhel Mohammed H. Almalki Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Department of Pure Mathematics June 2019 The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. i Abstract This thesis is concerned with a concept of geometrising time evolution of quantum systems. This concept is inspired by the fact that the Legendre transform expresses dynamics of a classical system through first-order Hamiltonian equations. We consider, in this thesis, coherent state transforms with a similar effect in quantum mechanics: they reduce certain quantum Hamiltonians to first-order partial differential operators. Therefore, the respective dynamics can be explicitly solved through a flow of points in extensions of the phase space. This, in particular, generalises the geometric dynamics of a harmonic oscillator in the Fock-Segal-Bargmann (FSB) space. We describe all Hamiltonians which are geometrised (in the above sense) by Gaussian and Airy beams and exhibit explicit solutions for such systems ii This work is dedicated to my mother, wife and my son and to the memory of my father iii Acknowledgements It has been a great fortunate to have Dr. Vladimir V. Kisil as a supervisor. I am deeply indebted to him for his excellent supervision, encouragements and giving so much of his valuable time through my PhD studies.
    [Show full text]
  • SU(1,1) and SU(2) Approaches to the Radial Oscillator: Generalized Coherent States and Squeezing of Variances
    SU(1,1) and SU(2) Approaches to the Radial Oscillator: Generalized Coherent States and Squeezing of Variances Oscar Rosas-Ortiz1, Sara Cruz y Cruz2, and Marco Enr´ıquez1,2 1 Physics Department, Cinvestav, AP 14-740, 07000 M´exicoDF, Mexico 2UPIITA, Instituto Polit´ecnicoNacional, Av. IPN 2580, C.P. 07340, M´exicoDF, Mexico Abstract It is shown that each one of the Lie algebras su(1; 1) and su(2) determine the spectrum of the radial oscillator. States that share the same orbital angular mo- mentum are used to construct the representation spaces of the non-compact Lie group SU(1; 1). In addition, three different forms of obtaining the representation spaces of the compact Lie group SU(2) are introduced, they are based on the ac- cidental degeneracies associated with the spherical symmetry of the system as well as on the selection rules that govern the transitions between different energy levels. In all cases the corresponding generalized coherent states are constructed and the conditions to squeeze the involved quadratures are analyzed. 1 Introduction It is well known that the Lie groups admitted by the mathematical models of physical phenomena determine the special functions that describe the corresponding quantum states [1{3]. Of special interest, the Lie groups SU(1; 1) and SU(2) play an important role arXiv:1603.03499v2 [quant-ph] 5 Jul 2016 in the study of exactly solvable models like the n-dimensional oscillator, Morse oscillator, Coulomb potential, angular momentum, qubits and qudits. 1 A remarkable example is given by the one-dimensional oscillator H = N + 2 , for 1 1 ± 2 − + + − which the operators J3 = 2 H and J± = 2 (a ) , with [a ; a ] = I and N = a a , satisfy the commutation relations of the Lie algebra su(1; 1) [2].
    [Show full text]