6. INTERACTION of LIGHT and MATTER 6.1. Introduction

Total Page:16

File Type:pdf, Size:1020Kb

6. INTERACTION of LIGHT and MATTER 6.1. Introduction 6-1 6. INTERACTION OF LIGHT AND MATTER 6.1. Introduction One of the most important topics in time-dependent quantum mechanics is the description of spectroscopy, which refers to the study of matter through its interaction with electromagnetic radiation. Classically, light–matter interactions are a result of an oscillating electromagnetic field resonantly interacting with charged particles in the matter, most often bound electrons. We observe these processes either through changes to the light induced by the matter, such as absorption or emission of new light fields, or by light-induced changes to the matter, such as ionization and photochemistry. By studying such processes as a function of the control variables for the light field (amplitude, frequency, polarization, phase, etc.), we can deduce properties of the samples. The term “spectroscopy” comes from the Latin “spectron” for spirit or ghost and the Greek “” for to see. These roots are telling because in molecular spectroscopy you use light to interrogate matter, but you actually never see the molecules, only their influence on the light. Different types of spectroscopy give you different perspectives. This indirect contact with the microscopic targets means that the interpretation of spectroscopy requires a model, whether it is stated or not. Modeling and laboratory practice of spectroscopy are dependent on one another, and spectroscopy is only as useful as its ability to distinguish different models. This makes an accurate theoretical description of the underlying physical process governing the interaction of light and matter important. Quantum mechanically, we will treat spectroscopy as a perturbation induced by the light which acts to couple quantum states of the charged particles in the matter, as we have discussed earlier. Our starting point is to write a Hamiltonian for the light–matter interaction, which in the most general sense would be of the form HH M HLLM H (6.1) Although the Hamiltonian for the matter may be time-dependent, we will treat the Hamiltonian for the matter H M as time-independent, whereas the electromagnetic field H L and its interaction with the matter H LM are time-dependent. A quantum mechanical treatment of the light would describe the light in terms of photons for different modes of electromagnetic radiation, which we will describe later. We begin with a semiclassical treatment of the problem, which describes the matter quantum mechanically and the light field classically. We assume that a light field described by a time-dependent vector potential acts on the matter, but the matter does not influence the light. (Strictly, energy conservation requires that any change in energy of the matter be matched with an equal and opposite change in the light field.) For the moment, we are just interested in the effect 6-2 that the light has on the matter. In that case, we can really ignore H L , and we have a Hamiltonian for the system that is HHMLM H t (6.2) HVt0 which we can solve in the interaction picture. We will derive an explicit expression for the Hamiltonian HLM in the Electric Dipole Approximation. Here, we will derive a Hamiltonian for the light–matter interaction, starting with the force experienced by a charged particle in an electromagnetic field, developing a classical Hamiltonian for this interaction, and then substituting quantum operators for the matter: p i ˆ (6.3) x xˆ In order to get the classical Hamiltonian, we need to work through two steps: (1) describe electromagnetic fields, specifically in terms of a vector potential, and (2) describe how the electromagnetic field interacts with charged particles. 6.2. Classical Light–Matter Interactions Classical plane electromagnetic waves As a starting point, it is helpful to first summarize the classical description of electromagnetic fields. A derivation of the plane wave solutions to the electric and magnetic fields and vector potential is described in the appendix in Section 6.6. Also, it is helpful to review this material in Jackson1 or Cohen-Tannoudji et al.2 Maxwell’s equations describe electric and magnetic fieldsEB, ; however, to construct a Hamiltonian, we must use the time-dependent interaction potential (rather than a field). To construct the potential representation of E and B , you need a vector potential Art, and a scalar potential rt, . For electrostatics we normally think of the field being related to the electrostatic potential through E , but for a field that varies in time and in space, the electrodynamic potential must be expressed in terms of both A and . In general, an electromagnetic wave written in terms of the electric and magnetic fields requires six variables (the x, y, and z components of E and B). This is an over determined problem; Maxwell’s equations constrain these. The potential representation has four variables ( Ax ,,AAyz, and ), but these are still not uniquely determined. We choose a constraint—a representation or 1 Jackson, J. D. Classical Electrodynamics (John Wiley and Sons, New York, 1975). 2 Cohen-Tannoudji, C., Diu, B. & Lalöe, F. Quantum Mechanics (Wiley-Interscience, Paris, 1977), Appendix III. 6-3 gauge—that allows us to uniquely describe the wave. Choosing a gauge such that 0 (Coulomb gauge) leads to a unique description of E and B : 1 2 Art , 2 Art,0 (6.4) ct22 A 0 (6.5) This wave equation for the vector potential gives a plane wave solution for charge free space and suitable boundary conditions: ikr t * ikr t Art, A00ˆˆee A (6.6) This describes the wave oscillating in time at an angular frequency and propagating in space in the direction along the wave vector k , with a spatial period 2 k . Writing the relationship between k, , and in a medium with index of refraction n in terms of their values in free space n0 2 n knk0 (6.7) c 0 The wave has an amplitude A0 , which is directed along the polarization unit vector ˆ . Since A 0 , we see that k ˆ 0 or k ˆ . From the vector potential we can obtain E and B A E t (6.8) ikr t ikr t iA0 ˆ ee BA ikr t ikr t (6.9) ikˆ A0 e e If we define a unit vector along the magnetic field polarization as bkˆˆˆˆ kk , we see that the wave vector, the electric field polarization and magnetic field polarization are mutually orthogonal kbˆˆˆ . Also, by comparing eqs. (6.6) and (6.8) we see that the vector potential oscillates as cos(t), whereas the electric and magnetic fields oscillate as sin(t). If we define 1 EiA (6.10) 2 00 1 B ikA (6.11) 2 00 6-4 then, Ert ,sin E0 ˆ kr t (6.12) ˆ B rt,sin Bb0 k r t (6.13) Note, EB00 / k c. We will want to express the amplitude of the field in a manner that is experimentally accessible. The intensity I, the energy flux through a unit area, is most easily measured. It is the time-averaged value of the Poynting vector 2 SEB 0c (6.14) 1 I ScE 2 (W/m2) (6.15) 2 00 An alternative representation of the amplitude that is useful for describing quantum light fields is the energy density I 1 UE 2 (J/m3) (6.16) c 2 00 Classical Hamiltonian for radiation field interacting with charged particle Now, we obtain a classical Hamiltonian that describes charged particles interacting with a radiation field in terms of the vector potential. Start with Lorentz force3 on a particle with charge q: FqEvB (6.17) Here v is the velocity of the particle. Writing this for one direction (x) in terms of the Cartesian components of E , v , and B , we have: FqEvBvBx xyzzy (6.18) In Lagrangian mechanics, this force can be expressed in terms of the total potential energy U as UdU Fx (6.19) x dt vx Using the relationships that describe E and B in terms of A and (eqs. (6.10) and (6.11), inserting into eq. (6.18), and working it into the form of eq. (6.19), we can show that Uq qvA (6.20) 3 See Schatz and Ratner, pp. 82–83. 6-5 This is derived elsewhere4 and is readily confirmed by replacing it into eq. (6.19). Now we can write a Lagrangian in terms of the kinetic and potential energy of the particle L TU (6.21) 1 LmvqvAq2 (6.22) 2 The classical Hamiltonian is related to the Lagrangian as HpvL (6.23) 1 2 p vmvqvAq2 L Recognizing p mv qA (6.24) v 1 we write vpqAm (6.25) Now substituting eq. (6.25) into eq. (6.23), we have 112 q Hmm ppqA2m pqA pqAA q (6.26) 1 2 HpqArtqrt,, (6.27) 2m This is the classical Hamiltonian for a particle in an electromagnetic field. In the Coulomb gauge 0 , the last term is dropped. We can write a Hamiltonian for a single particle in a bound potential V0 in the absence of an external field as p2 HVr (6.28) 002m and in the presence of the EM field, 1 2 HpqArtVr, 0 (6.29) 2m 2 q q 2 Expanding we obtain HH0 pAAp Art, (6.30) 22mm Generally the last term which goes as the square of A is small compared to the cross term, which is proportional to first power of A. This term should be considered for extremely high field strength, which is non-perturbative and significantly distorts the potential binding molecules together, i.e., 4 Cohen-Tannoudji et al. App. III, p. 1492. 6-6 when it is similar in magnitude to V0.
Recommended publications
  • Magnetism, Angular Momentum, and Spin
    Chapter 19 Magnetism, Angular Momentum, and Spin P. J. Grandinetti Chem. 4300 P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin In 1820 Hans Christian Ørsted discovered that electric current produces a magnetic field that deflects compass needle from magnetic north, establishing first direct connection between fields of electricity and magnetism. P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Biot-Savart Law Jean-Baptiste Biot and Félix Savart worked out that magnetic field, B⃗, produced at distance r away from section of wire of length dl carrying steady current I is 휇 I d⃗l × ⃗r dB⃗ = 0 Biot-Savart law 4휋 r3 Direction of magnetic field vector is given by “right-hand” rule: if you point thumb of your right hand along direction of current then your fingers will curl in direction of magnetic field. current P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Microscopic Origins of Magnetism Shortly after Biot and Savart, Ampére suggested that magnetism in matter arises from a multitude of ring currents circulating at atomic and molecular scale. André-Marie Ampére 1775 - 1836 P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Magnetic dipole moment from current loop Current flowing in flat loop of wire with area A will generate magnetic field magnetic which, at distance much larger than radius, r, appears identical to field dipole produced by point magnetic dipole with strength of radius 휇 = | ⃗휇| = I ⋅ A current Example What is magnetic dipole moment induced by e* in circular orbit of radius r with linear velocity v? * 휋 Solution: For e with linear velocity of v the time for one orbit is torbit = 2 r_v.
    [Show full text]
  • Oscillator Strength ( F ): Quantum Mechanical Model
    Oscillator strength ( f ): quantum mechanical model • For an electronic transition to occur an oscillating dipole must be induced by interaction of the molecules electric field with electromagnetic radiation. 0 • In fact both ε and k can be related to the transition dipole moment (µµµge ) • If two equal and opposite electrical charges (e) are separated by a vectorial distance (r), a dipole moment (µµµ ) of magnitude equal to er is created. µµµ = e r (e = electron charge, r = extent of charge displacement) • The magnitude of charge separation, as the electron density is redistributed in an electronically excited state, is determined by the polarizability (αααα) of the electron cloud which is defined by the transition dipole moment (µµµge ) α = µµµge / E (E = electrical force) µµµge = e r • The magnitude of the oscillator strength ( f ) for an electronic transition is proportional to the square of the transition dipole moment produced by the action of electromagnetic radiation on an electric dipole. 2 2 f ∝ µµµge = ( e r) fobs = fmax ( fe fv fs ) 2 f ∝ µµµge fobs = observed oscillator strength f ∝ ΛΏΦ ∆̅ !2#( fmax = ideal oscillator strength ( ∼1) f = orbital configuration factor ͯͥ e f ∝ ͤ͟ ̅ ͦ Γ fv = vibrational configuration factor fs = spin configuration factor • There are two major contributions to the electronic factor fe : Poor overlap: weak mixing of electronic wavefunctions, e.g. <nπ*>, due to poor spatial overlap of orbitals involved in the electronic transition, e.g. HOMO→LUMO. Symmetry forbidden: even if significant spatial overlap of orbitals exists, the resonant photon needs to induce a large transition dipole moment.
    [Show full text]
  • Spontaneous Rotational Symmetry Breaking in a Kramers Two- Level System
    Spontaneous Rotational Symmetry Breaking in a Kramers Two- Level System Mário G. Silveirinha* (1) University of Lisbon–Instituto Superior Técnico and Instituto de Telecomunicações, Avenida Rovisco Pais, 1, 1049-001 Lisboa, Portugal, [email protected] Abstract Here, I develop a model for a two-level system that respects the time-reversal symmetry of the atom Hamiltonian and the Kramers theorem. The two-level system is formed by two Kramers pairs of excited and ground states. It is shown that due to the spin-orbit interaction it is in general impossible to find a basis of atomic states for which the crossed transition dipole moment vanishes. The parametric electric polarizability of the Kramers two-level system for a definite ground-state is generically nonreciprocal. I apply the developed formalism to study Casimir-Polder forces and torques when the two-level system is placed nearby either a reciprocal or a nonreciprocal substrate. In particular, I investigate the stable equilibrium orientation of the two-level system when both the atom and the reciprocal substrate have symmetry of revolution about some axis. Surprisingly, it is found that when chiral-type dipole transitions are dominant the stable ground state is not the one in which the symmetry axes of the atom and substrate are aligned. The reason is that the rotational symmetry may be spontaneously broken by the quantum vacuum fluctuations, so that the ground state has less symmetry than the system itself. * To whom correspondence should be addressed: E-mail: [email protected] -1- I. Introduction At the microscopic level, physical systems are generically ruled by time-reversal invariant Hamiltonians [1].
    [Show full text]
  • PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES and TRANSITION DIPOLE MOMENT. OVERVIEW of SELECTION RULES
    ____________________________________________________________________________________________________ Subject Chemistry Paper No and Title 8 and Physical Spectroscopy Module No and Title 5 and Transition probabilities and transition dipole moment, Overview of selection rules Module Tag CHE_P8_M5 CHEMISTRY PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES) ____________________________________________________________________________________________________ TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Transition Moment Integral 4. Overview of Selection Rules 5. Summary CHEMISTRY PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES) ____________________________________________________________________________________________________ 1. Learning Outcomes After studying this module, • you shall be able to understand the basis of selection rules in spectroscopy • Get an idea about how they are deduced. 2. Introduction The intensity of a transition is proportional to the difference in the populations of the initial and final levels, the transition probabilities given by Einstein’s coefficients of induced absorption and emission and to the energy density of the incident radiation. We now examine the Einstein’s coefficients in some detail. 3. Transition Dipole Moment Detailed algebra involving the time-dependent perturbation theory allows us to derive a theoretical expression for the Einstein coefficient of induced absorption ! 2 3 M ij 8π ! 2 B M ij = 2 = 2 ij 6ε 0" 3h (4πε 0 ) where the radiation density is expressed in units of Hz. ! The quantity M ij is known as the transition moment integral, having the same unit as dipole moment, i.e. C m. Apparently, if this quantity is zero for a particular transition, the transition probability will be zero, or, in other words, the transition is forbidden.
    [Show full text]
  • Chapter 14 Radiating Dipoles in Quantum Mechanics
    Chapter 14 Radiating Dipoles in Quantum Mechanics P. J. Grandinetti Chem. 4300 P. J. Grandinetti Chapter 14: Radiating Dipoles in Quantum Mechanics P. J. Grandinetti Chapter 14: Radiating Dipoles in Quantum Mechanics Electric dipole moment vector operator Electric dipole moment vector operator for collection of charges is ∑N ⃗̂휇 ⃗̂ = qkr k=1 Single charged quantum particle bound in some potential well, e.g., a negatively charged electron bound to a positively charged nucleus, would be [ ] ⃗̂휇 ⃗̂ ̂⃗ ̂⃗ ̂⃗ = *qer = *qe xex + yey + zez Expectation value for electric dipole moment vector in Ψ(⃗r; t/ state is ( ) ê ⃗휇 ë < ⃗; ⃗̂휇 ⃗; 휏 < ⃗; ⃗̂ ⃗; 휏 .t/ = Ê Ψ .r t/ Ψ(r t/d = Ê Ψ .r t/ *qer Ψ(r t/d V V Here, d휏 = dx dy dz P. J. Grandinetti Chapter 14: Radiating Dipoles in Quantum Mechanics Time dependence of electric dipole moment Energy Eigenstate Starting with ( ) ê ⃗휇 ë < ⃗; ⃗̂ ⃗; 휏 .t/ = Ê Ψ .r t/ *qer Ψ(r t/d V For a system in eigenstate of Hamiltonian, where wave function has the form, ` ⃗; ⃗ *iEnt_ Ψn.r t/ = n.r/e Electric dipole moment expectation value is ( ) ` ` ê ⃗휇 ë < ⃗ iEnt_ ⃗̂ ⃗ *iEnt_ 휏 .t/ = Ê n .r/e *qer n.r/e d V Time dependent exponential terms cancel out leaving us with ( ) ê ⃗휇 ë < ⃗ ⃗̂ ⃗ 휏 .t/ = Ê n .r/ *qer n.r/d No time dependence!! V No bound charged quantum particle in energy eigenstate can radiate away energy as light or at least it appears that way – Good news for Rutherford’s atomic model.
    [Show full text]
  • Decoupling Light and Matter: Permanent Dipole Moment Induced Collapse of Rabi Oscillations
    Decoupling light and matter: permanent dipole moment induced collapse of Rabi oscillations Denis G. Baranov,1, 2, ∗ Mihail I. Petrov,3 and Alexander E. Krasnok3, 4 1Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden 2Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny 141700, Russia 3ITMO University, St. Petersburg 197101, Russia 4Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, USA (Dated: June 29, 2018) Rabi oscillations is a key phenomenon among the variety of quantum optical effects that manifests itself in the periodic oscillations of a two-level system between the ground and excited states when interacting with electromagnetic field. Commonly, the rate of these oscillations scales proportionally with the magnitude of the electric field probed by the two-level system. Here, we investigate the interaction of light with a two-level quantum emitter possessing permanent dipole moments. The semi-classical approach to this problem predicts slowing down and even full suppression of Rabi oscillations due to asymmetry in diagonal components of the dipole moment operator of the two- level system. We consider behavior of the system in the fully quantized picture and establish the analytical condition of Rabi oscillations collapse. These results for the first time emphasize the behavior of two-level systems with permanent dipole moments in the few photon regime, and suggest observation of novel quantum optical effects. I. INTRODUCTION ment modifies multi-photon absorption rates. Emission spectrum features of quantum systems possessing perma- Theory of a two-level system (TLS) interacting with nent dipole moments were studied in Refs.
    [Show full text]
  • Lecture 13 Page 1 Note That Polarizability of Classical Conductive Sphere of Radius a Is
    Lectures 13 - 14 Hydrogen atom in electric field. Quadratic Stark effect. Atomic polarizability. Emission and Absorption of Electromagnetic Radiation by Atoms Transition probabilities and selection rules. Lifetimes of atomic states. Hydrogen atom in electric field. Quadratic Stark effect. We consider a hydrogen atom in the ground state in the uniform electric field The Hamiltonian of the system is [using CGS units] orienting the quantization axis (z) along the electric field. Since d is odd operator under the parity transformation r → -r even function product Therefore, need second-order correction to the energy We will use the approximation Note that we included 100 term to make use of the completeness relation since it is zero anyway. Lecture 13 Page 1 Note that polarizability of classical conductive sphere of radius a is Lecture 13 Page 2 Emission and Absorption of Electromagnetic Radiation by Atoms (follows W. Demtr öder, chapter 7) During the past few lectures, we have discussed stationary atomic states that are described by a stationary wave function and by the corresponding quantum numbers. We also discussed the atoms can undergo transitions between different states with energies E i and E , when a photon with energy k (1) is emitted or absorbed. We know from the experiments, however, that the absorption or emission spectrum of an atom does not contain all possible frequencies ω according to the formula above . Therefore, t here must be “selection rules” that select the possible radiative transitions from all combinations of E i and E k. These selection rules strongly affect the lifetimes of the atomic excited states.
    [Show full text]
  • Chapter 15 the Tools of Time-Dependent Perturbation Theory Can Be Applied to Transitions Among Electronic, Vibrational, and Rotational States of Molecules
    Chapter 15 The tools of time-dependent perturbation theory can be applied to transitions among electronic, vibrational, and rotational states of molecules. I. Rotational Transitions Within the approximation that the electronic, vibrational, and rotational states of a molecule can be treated as independent, the total molecular wavefunction of the "initial" state is a product F i = y ei c vi f ri of an electronic function y ei, a vibrational function c vi, and a rotational function f ri. A similar product expression holds for the "final" wavefunction F f. In microwave spectroscopy, the energy of the radiation lies in the range of fractions of a cm-1 through several cm-1; such energies are adequate to excite rotational motions of molecules but are not high enough to excite any but the weakest vibrations (e.g., those of weakly bound Van der Waals complexes). In rotational transitions, the electronic and vibrational states are thus left unchanged by the excitation process; hence y ei = y ef and c vi = c vf. Applying the first-order electric dipole transition rate expressions Ri,f = 2 p g(wf,i) |a f,i|2 obtained in Chapter 14 to this case requires that the E1 approximation Ri,f = (2p/h2) g(wf,i) | E0 · <F f | m | F i> |2 be examined in further detail. Specifically, the electric dipole matrix elements <F f | m | F i> with m = S j e rj + S a Za e Ra must be analyzed for F i and F f being of the product form shown above. The integrations over the electronic coordinates contained in <F f | m | F i>, as well as the integrations over vibrational degrees of freedom yield "expectation values" of the electric dipole moment operator because the electronic and vibrational components of F i and F f are identical: <y ei | m | y ei> = m (R) is the dipole moment of the initial electronic state (which is a function of the internal geometrical degrees of freedom of the molecule, denoted R); and <c vi | m(R) | c vi> = mave is the vibrationally averaged dipole moment for the particular vibrational state labeled c vi.
    [Show full text]
  • Electric Dipole Moment and Therefore Can Be Excited by Either a Photon Or an Electron
    Chem 253, UC, Berkeley Fermi Surface E 2k 2 F E(k) x 2m K KF a2 r 2 2 r 0.4a Chem 253, UC, Berkeley With periodic boundary conditions: ik L eikx Lx e y y eikz Lz 1 2nx kx Lx 2n k y 2 2 y 2D k space: Ly Area per k point: L L 2nz x y kz Lz 2 2 2 8 3 3D k space: Area per k point: Lx Ly Lz V V A region of k space of volume will contain: allowed 8 3 8 3 k values. ( ) V 1 Chem 253, UC, Berkeley For divalent elements: free –electron model a2 r 2 r 0.56a Chem 253, UC, Berkeley 2 Chem 253, UC, Berkeley For nearly free electron: 1. Interaction of electron with periodic potential opens gap at zone boundary 2. Almost always Fermi surface will intersect zone Boundaries perpendicularly. 3. The total volume enclosed by the Fermi surface depends only on total electron concentration, not on interaction Chem 253, UC, Berkeley Alkali Metal Na, Cs: spherical Fermi surface a2 r 2 2 r 0.4a Alk. Earth metal: Be, Mg:: nearly spherical Fermi surface a2 r 2 r 0.56a 2D case 3 Chem 253, UC, Berkeley Chem 253, UC, Berkeley 4 Chem 253, UC, Berkeley Chem 253, UC, Berkeley 5 Chem 253, UC, Berkeley Chem 253, UC, Berkeley 6 Chem 253, UC, Berkeley Chem 253, UC, Berkeley 7 Chem 253, UC, Berkeley Brillouin Zone of Diamond and Zincblende Structure (FCC Lattice) Sign Convention Zone Edge or surface : Latin alphabets Interior of Zone: Greek alphabets Center of Zone or origin: Chem 253, UC, Berkeley Band Structure of 3D Free Electron in FCC in reduced zone scheme Notation: <=>[100] direction X<=>BZ edge along [100] direction <=>[111] direction E(k)=( 2/2m)
    [Show full text]
  • Ultracold Rare-Earth Magnetic Atoms with an Electric Dipole Moment
    Ultracold rare-earth magnetic atoms with an electric dipole moment Maxence Lepers1,2, Hui Li1, Jean-Fran¸cois Wyart1,3, Goulven Qu´em´ener1 and Olivier Dulieu1 1Laboratoire Aim´eCotton, CNRS, Universit´eParis-Sud, ENS Paris-Saclay, Universit´eParis-Saclay, 91405 Orsay, France 2Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, Universit´ede Bourgogne Franche-Comt´e, 21078 Dijon, France∗ and 3LERMA, Observatoire de Paris-Meudon, PSL Research University, Sorbonne Universit´es, UPMC Univ. Paris 6, CNRS UMR8112, 92195 Meudon, France (Dated: March 13, 2018) We propose a new method to produce an electric and magnetic dipolar gas of ultracold dysprosium − atoms. The pair of nearly degenerate energy levels of opposite parity, at 17513.33 cm 1 with − electronic angular momentum J = 10, and at 17514.50 cm 1 with J = 9, can be mixed with an external electric field, thus inducing an electric dipole moment in the laboratory frame. For field amplitudes relevant to current-day experiments, we predict a magnetic dipole moment up to 13 Bohr magnetons, and an electric dipole moment up to 0.22 Debye, which is similar to the values obtained for alkali-metal diatomics. When a magnetic field is present, we show that the electric dipole moment is strongly dependent on the angle between the fields. The lifetime of the field- mixed levels is found in the millisecond range, thus allowing for suitable experimental detection and manipulation. Introduction. In a classical neutral charge distribu- with an electric and a magnetic dipole moment, which up tion, a dipole moment appears with a separation be- to now consist of paramagnetic polar diatomics [23–32].
    [Show full text]
  • CHAPTER 12 Molecular Spectroscopy 1: Rotational and Vibrational Spectra
    CHAPTER 12 Molecular Spectroscopy 1: Rotational and Vibrational Spectra I. General Features of Spectroscopy. A. Overview. 1. Bohr frequency rule: hc Ephoton = hν = = hcν˜ = Eupper −Elower λ 1 Also remember ν˜ = (usually in cm-1) λ € 2. Types of spectroscopy (three broad types): -emission € -absorption -scattering Rayleigh Stokes Anti-Stokes CHAPTER 12 1 3. The electromagnetic spectrum: Region λ Processes gamma <10 pm nuclear state changes x-ray 10 pm – 10 nm inner shell e- transition UV 10 nm – 400 nm electronic trans in valence shell VIS 400 – 750 nm electronic trans in valence shell IR 750 nm – 1 mm Vibrational state changes microwave 1 mm – 10 cm Rotational state changes radio 10 cm – 10 km NMR - spin state changes 4. Classical picture of light absorption – since light is oscillating electric and magnetic field, interaction with matter depends on interaction with fluctuating dipole moments, either permanent or temporary. Discuss vibrational, rotational, electronic 5. Quantum picture: Einstein identified three contributions to transitions between states: a. stimulated absorption b. stimulated emission c. spontaneous emission Stimulated absorption transition probability w is proportional to the energy density ρ of radiation through a proportionality constant B w=B ρ The total rate of absorption W depends on how many molecules N in the light path, so: W = w N = N B ρ CHAPTER 12 2 Now what is B? Consider plane-polarized light (along z-axis), can cause transition if the Q.M. transition dipole moment is non-zero. µ = ψ *µˆ ψdτ ij ∫ j z i Where µˆ z = z-component of electric dipole operator of atom or molecule Example: H-atom € € - e r + µˆ z = −er Coefficient of absorption B (intrinsic ability to absorb light) 2 µij B = 6ε 2€ Einstein B-coefficient of stimulated absorption o if 0, transition i j is allowed µ ij ≠ → µ = 0 forbidden € ij € 6.
    [Show full text]
  • Coherent Optical Spectroscopy of a Single Semi- Conductor Quantum Dot
    COHERENT OPTICAL SPECTROSCOPY OF A SINGLE SEMI- CONDUCTOR QUANTUM DOT by Xiaodong Xu A dissertation submitted in partial ful¯llment of the requirements for the degree of Doctor of Philosophy (Physics) in The University of Michigan 2008 Doctoral Commitee: Professor Duncan G. Steel, Chair Professor Roberto D. Merlin Professor Theodore B. Norris Professor Georg A. Raithel Associate Professor Luming Duan Xiaodong Xu °c 2008 All Rights Reserved ACKNOWLEDGEMENTS 6 years ago when I joined the group, Elaine gave me a lab tour. I saw Jun and Yanwen sitting in the dark and taking data. At that time there was a big chiller in the time domain lab and making huge noise. Frankly, I was a bit scared since I had never been in a real lab before graduate school. I was wondering whether I could do well in such a lab as an experimental physicist. Now it is 6 years later and I am so happy to say that I made it. During the entire graduate school, there are so many people I would like to thank. The ¯rst and the most important person I would like to thank is my advisor Professor Duncan Steel. I am so lucky to have Duncan as my advisor. He is such a smart scientist with great personality. His working ethics and conscientious attitudes inspired me a lot in research. He always tries to create the best education and research support for me. One of the greatest things is that he tried to develop my weakness, exploit my strength, and carefully shape me to be a good physicist.
    [Show full text]