Catalogues Par Titres-Textes Janvier 2009
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001
Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001. Preface This bibliography attempts to list all substantial autobiographies, biographies, festschrifts and obituaries of prominent oceanographers, marine biologists, fisheries scientists, and other scientists who worked in the marine environment published in journals and books after 1922, the publication date of Herdman’s Founders of Oceanography. The bibliography does not include newspaper obituaries, government documents, or citations to brief entries in general biographical sources. Items are listed alphabetically by author, and then chronologically by date of publication under a legend that includes the full name of the individual, his/her date of birth in European style(day, month in roman numeral, year), followed by his/her place of birth, then his date of death and place of death. Entries are in author-editor style following the Chicago Manual of Style (Chicago and London: University of Chicago Press, 14th ed., 1993). Citations are annotated to list the language if it is not obvious from the text. Annotations will also indicate if the citation includes a list of the scientist’s papers, if there is a relationship between the author of the citation and the scientist, or if the citation is written for a particular audience. This bibliography of biographies of scientists of the sea is based on Jacqueline Carpine-Lancre’s bibliography of biographies first published annually beginning with issue 4 of the History of Oceanography Newsletter (September 1992). It was supplemented by a bibliography maintained by Eric L. Mills and citations in the biographical files of the Archives of the Scripps Institution of Oceanography, UCSD. -
Evidence of Shock Metamorphism Effects in Allochthonous Breccia Deposits from the Colônia Crater, São Paulo, Brazil
International Journal of Geosciences, 2013, 4, 274-282 http://dx.doi.org/10.4236/ijg.2013.41A025 Published Online January 2013 (http://www.scirp.org/journal/ijg) Evidence of Shock Metamorphism Effects in Allochthonous Breccia Deposits from the Colônia Crater, São Paulo, Brazil Victor F. Velázquez1, Claudio Riccomini2, José M. Azevedo Sobrinho3, Mikhaela A. J. S. Pletsch1, Alethéa E. Martins Sallun3, William Sallun Filho3, Jorge Hachiro2 1Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, Brasil 2Instituto de Geociências, Universidade de São Paulo, São Paulo, Brasil 3Instituto Geológico, Secretaria do Meio Ambiente, São Paulo, Brasil Email: [email protected] Received October 16, 2012; revised November 17, 2012; accepted December 19, 2012 ABSTRACT The 3.6 km-diameter Colônia impact crater, centred at 23˚52'03"S and 46˚42'27"W, lies 40 km to the south-west of the São Paulo city. The structure was formed on the crystalline basement rocks and displays a bowl-shaped with steeper slope near the top that decreases gently toward the centre of the crater. Over recent years were drilled two boreholes inside the crater, which reached a maximum depth of 142 m and 197 m. Geological profile suggests four different lithological associations: 1) unshocked crystalline basement rocks (197 - 140 m); 2) fractured/brecciated basement rocks (140 - 110 m); 3) polymictic allochthonous breccia deposits (110 - 40 m); and 4) post-impact deposits (40 - 0 m). Petrographic characterisation of the polymictic allochthonous breccia reveals a series of distinctive shock-metamorphic features, including, among others, planar deformation features in quartz, feldspar and mica, ballen silica, granular tex- ture in zircon and melt-bearing impact rocks. -
City of Graham Refuse Collection Zone
6 7 2 B 3 0 0 0 9 9 9 A 9 7 1 9 8 0 R 9 9 9 9 0 0 6 0 5 9 9 9 H 9 0 2 Z D 9 9 9 9 9 9 0 T 9 9 9 A 0 B C D E F G H I J N 9 0 9 0 T 9 1 1312 0 2199 2099 I 0 9 L 9 I 1 6 M 2 9 2 2 0 9 0 T 7 9 S 0 B 0 6 9 2 0 7 2 7 8 F E 7 A 3 7 9 L O L D L 1 1 D P 0 V 9 2 3 0 D 5 4 S UE S 2 A 7 7 9 T 2 O C 2 2 K 0 0 1 R 9 T H L A S G 3 1 7 E S N L L H 7 A N 0 A E S O D O T 6 R T 0 F E T 9 V E O 9 8 O I A 1 L P R E 4 M E S C L G S T 1 0 O R M 9 9 O O T A R C S O 9 0 6 IL G A P 9 0 A 0 9 F 7 S 2 M TT 2 IN W 0 L S R I V L U 0 0 H S 0 4 G D V 9 1 H T S 0 A A 9 W 9 N R 4 T 0 9 Y 9 1 L T I S 9 G W N S R S J O A V V 0 M N A 8 9 I A 9 R 9 5 V L L Y V V 0 T 9 ST M A S IEW R A N A E D T T 9 N 1 3 N I 0 1 N 9 E N 7 3 R E A H 6 D A 0 R 0 1 A O 9 9 S O R H 7 1 L 2 1 T 8 3 F 0 T L 2 9 H A U A M X M N R R 4 S R 9 G 5 I 0 1 3 O 0 A 1 S E 1 1 L L V D T S N N Y R I M 0 A T 1 D 4 I 0 O 0 I 7 E A 0 1 X W V 7 T P N 0 0 1 R PA E 9 M 8 R R K O G 0 9 E D 0 C 9 T E X R M 1 T W S Y 1 1 6 9 8 A T L I L S 7 H ST L 9 E ING O W L T T 9 K L 2 1 9 M 9 D 8 E R 9 8 9 A E H P 3 S E S A H 7 2 T 0 1 0 I 9 9 2 0 0 9 O 9 Y E W 5 9 N S C N T 1 L 3 L D R 0 0 U 1 H N A E E N R I 9 T R B 9 9 0 R NCY C M O T 6 OD L I S R H C W V 2 E R U A A O A L A D V Q T D W 1 A T 0 1 4 6 E 9 I 0 0 DR RY R I A N Y R 0 U O 1 D 0 D 2 0 0 E P E A 0 D T U 1 M B U S S A 2 6 S L 1 L T O 1 0 0 2 C 2 0 H B 1 H G S S D A 1 A 6 9 8 L L E 4 0 D 9 6 2 V C L 0 0 T 1 M E 2 12 C 6 1 9 I 2 0 7 3 1 E O S 6 E V 0 9 5 7 L S 30 8 0 A I 1 L 5 7 9 P 9 9 0 S 9 0 S N R N V 0 S D 3 T 5 L 9 E 0 T R 9 H O 0 0 E T T 1 C 9 D 1 1 13 O BIR NE -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei -
Graphical Evidence for the Solar Coronal Structure During the Maunder Minimum: Comparative Study of the Total Eclipse Drawings in 1706 and 1715
J. Space Weather Space Clim. 2021, 11,1 Ó H. Hayakawa et al., Published by EDP Sciences 2021 https://doi.org/10.1051/swsc/2020035 Available online at: www.swsc-journal.org Topical Issue - Space climate: The past and future of solar activity RESEARCH ARTICLE OPEN ACCESS Graphical evidence for the solar coronal structure during the Maunder minimum: comparative study of the total eclipse drawings in 1706 and 1715 Hisashi Hayakawa1,2,3,4,*, Mike Lockwood5,*, Matthew J. Owens5, Mitsuru Sôma6, Bruno P. Besser7, and Lidia van Driel – Gesztelyi8,9,10 1 Institute for Space-Earth Environmental Research, Nagoya University, 4648601 Nagoya, Japan 2 Institute for Advanced Researches, Nagoya University, 4648601 Nagoya, Japan 3 Science and Technology Facilities Council, RAL Space, Rutherford Appleton Laboratory, Harwell Campus, OX11 0QX Didcot, UK 4 Nishina Centre, Riken, 3510198 Wako, Japan 5 Department of Meteorology, University of Reading, RG6 6BB Reading, UK 6 National Astronomical Observatory of Japan, 1818588 Mitaka, Japan 7 Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria 8 Mullard Space Science Laboratory, University College London, RH5 6NT Dorking, UK 9 LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, 92195 Meudon, France 10 Konkoly Observatory, Hungarian Academy of Sciences, 1121 Budapest, Hungary Received 18 October 2019 / Accepted 29 June 2020 Abstract – We discuss the significant implications of three eye-witness drawings of the total solar eclipse on 1706 May 12 in comparison with two on 1715 May 3, for our understanding of space climate change. These events took place just after what has been termed the “deep Maunder Minimum” but fall within the “extended Maunder Minimum” being in an interval when the sunspot numbers start to recover. -
Modeling and Mapping of the Structural Deformation of Large Impact Craters on the Moon and Mercury
MODELING AND MAPPING OF THE STRUCTURAL DEFORMATION OF LARGE IMPACT CRATERS ON THE MOON AND MERCURY by JEFFREY A. BALCERSKI Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Earth, Environmental, and Planetary Sciences CASE WESTERN RESERVE UNIVERSITY August, 2015 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Jeffrey A. Balcerski candidate for the degree of Doctor of Philosophy Committee Chair Steven A. Hauck, II James A. Van Orman Ralph P. Harvey Xiong Yu June 1, 2015 *we also certify that written approval has been obtained for any proprietary material contained therein ~ i ~ Dedicated to Marie, for her love, strength, and faith ~ ii ~ Table of Contents 1. Introduction ............................................................................................................1 2. Tilted Crater Floors as Records of Mercury’s Surface Deformation .....................4 2.1 Introduction ..............................................................................................5 2.2 Craters and Global Tilt Meters ................................................................8 2.3 Measurement Process...............................................................................12 2.3.1 Visual Pre-selection of Candidate Craters ................................13 2.3.2 Inspection and Inclusion/Exclusion of Altimetric Profiles .......14 2.3.3 Trend Fitting of Crater Floor Topography ................................16 2.4 Northern -
World Heritage Papers 7 ; Cultural Landscapes: the Challenges Of
Ferrara 7-couv 12/01/04 17:38 Page 1 7 World Heritage papers7 World Heritage papers Cultural Landscapes: Cultural Landscapes: the Challenges of Conservation of Challenges the Landscapes: Cultural the Challenges of Conservation World Heritage 2002 Shared Legacy, Common Responsibility Associated Workshops 11-12 November 2002 Ferrara - Italy For more information contact: paper; printed on chlorine free Cover paper interior printed on recycled RectoVerso Design by UNESCO World Heritage Centre papers 7, place de Fontenoy 75352 Paris 07 SP France Tel : 33 (0)1 45 68 15 71 Fax : 33 (0)1 45 68 55 70 E-mail : [email protected] orld Heritage W http://whc.unesco.org/venice2002 photo:Cover Delta © Studio B&G Po Ferrara 7 12/01/04 17:34 Page 1 Cultural Landscapes: the Challenges of Conservation World Heritage 2002 Shared Legacy, Common Responsibility Associated Workshops 11-12 November 2002 Ferrara - Italy Hosted by the Province of Ferrara and the City of Ferrara Organized by the University of Ferrara and UNESCO’s World Heritage Centre in collaboration with ICCROM, ICOMOS and IUCN With the support of the Nordic World Heritage Foundation (NWHF) and the Dutch Ministry of Education, Culture and Sciences (OCenW) Ferrara 7 12/01/04 17:34 Page 2 Disclaimer The authors are responsible for the choice and presentation of the facts contained in this publication and for the opinions therein, which are not necessarily those of UNESCO and do not commit the Organization. The designation employed and the presentation of the material throughout this publication do not imply the expression of any opinion whatsoever on the part of UNESCO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation
Icarus 292 (2017) 54–73 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation ∗ David M.H. Baker a,b, , James W. Head a, Roger J. Phillips c, Gregory A. Neumann b, Carver J. Bierson d, David E. Smith e, Maria T. Zuber e a Department of Geological Sciences, Brown University, Providence, RI 02912, USA b NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA c Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130, USA d Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064, USA e Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, MA 02139, USA a r t i c l e i n f o a b s t r a c t Article history: High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide Received 14 September 2016 the opportunity to analyze the detailed gravity and crustal structure of impact features in the morpho- Revised 1 March 2017 logical transition from complex craters to peak-ring basins on the Moon. We calculate average radial Accepted 21 March 2017 profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest Available online 22 March 2017 complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. -
The Colnia Structure, So Paulo, Brazil
Meteoritics & Planetary Science 46, Nr 11, 1630–1639 (2011) doi: 10.1111/j.1945-5100.2011.01252.x The Coloˆnia structure, Sa˜o Paulo, Brazil Claudio RICCOMINI1, Alvaro P. CRO´ STA2*, Renato L. PRADO3, Marie-Pierre LEDRU4, Bruno J. TURCQ5, Lucy G. SANT’ANNA6, Jose´ A. FERRARI7, and W. Uwe REIMOLD8 1Institute of Geosciences, University of Sa˜o Paulo, Rua do Lago 562, 05508-080 Sa˜o Paulo, SP, Brazil 2Institute of Geosciences, University of Campinas, R. Pandia´ Calo´ geras 51, Cidade Universita´ ria Zeferino Vaz, 13081-970 Campinas, SP, Brazil 3Institute of Astronomy, Geophysics and Atmospheric Sciences, University of Sa˜o Paulo, Rua do Mata˜o 1226, 05508-090 Sa˜o Paulo, SP, Brazil 4ISEM ⁄ Pale´ oenvironnements, CNRS UMR 5554, Universite´ de Montpellier 2, Place Euge` ne Bataillon, 34095 Montpellier Cedex 5, France 5IRD, Centre de Recherche d’Ile de France, 32 Avenue Henry Varagnat, 93143 Bondy Cedex, France 6School of Arts, Sciences and Humanities, University of Sa˜o Paulo, Av. Arlindo Be´ ttio 1000, 03828-000 Sa˜o Paulo, SP, Brazil 7Instituto Geolo´ gico do Estado de Sa˜o Paulo, Secretaria Estadual do Meio Ambiente, Av. Miguel Stefano 3900, 04301-903 Sa˜o Paulo, SP, Brazil 8Museum fu¨ r Naturkunde, Leibniz-Institiute for Evolution and Biodiversity Research, Humboldt University Berlin, Invalidenstrasse 43, D-10115 Berlin, Germany *Corresponding author. E-mail: [email protected] (Received 14 December 2010; revision accepted 09 August 2011) Abstract–The near-circular Coloˆnia structure, located in the southern suburbs of the mega- city of Sa˜o Paulo, Brazil, has attracted the attention of geoscientists for several decades due to its anomalous character and the complete absence of any plausible endogenous geologic explanation for its formation. -
Carnegie Institution Carnegie
C68099_CVR.qxd:CVR 3/29/11 7:58 Page 1 2009-2010 CARNEGIE INSTITUTION FOR 2009-2010 SCIENCE YEAR BOOK 1530 P Street, N.W. Washington DC 20005 Phone: 202.387.6400 Carnegie Institution Fax: 202.387.8092 www.CarnegieScience.edu FOR SCIENCE CARNEGIE INSTITUTION FOR SCIENCE INSTITUTION FOR CARNEGIE YEAR BOOK The paper used in the manufacturing this year book contains 30% post-consumer recycled fiber. By using recycled fiber in place of virgin fiber, the Carnegie Institution preserved 41 trees, saved 126 pounds of waterborne waste, saved 18,504 gallons of water and prevented 4031 pounds of greenhouse gasses. The energy used to print the report was produced by wind power. Designed by Tina Taylor, T2 Design Printed by Monroe Litho ISSN 0069-066X C68099_CVR.qxd:CVR 3/29/11 7:58 Page 2 Department of Embryology 3520 San Martin Dr. / Baltimore, MD 21218 410.246.3001 Geophysical Laboratory 5251 Broad Branch Rd., N.W. / Washington, DC 20015-1305 202.478.8900 Department of Global Ecology 260 Panama St. / Stanford, CA 94305-4101 650.462.1047 The Carnegie Observatories 813 Santa Barbara St. / Pasadena, CA 91101-1292 626.577.1122 Las Campanas Observatory Casilla 601 / La Serena, Chile Department of Plant Biology 260 Panama St. / Stanford, CA 94305-4101 650.325.1521 Department of Terrestrial Magnetism 5241 Broad Branch Rd., N.W. / Washington, DC 20015-1305 202.478.8820 Office of Administration 1530 P St., N.W. / Washington, DC 20005-1910 202.387.6400 www.CarnegieScience.edu 2 009-2010 YEAR BOOK The President’s Report July 1, 2009 - June 30, 2010 CARNEGIE INSTITUTION FOR SCIENCE Former Presidents Former Trustees Daniel C. -
Impact Melt Rocks in the "Cretaceous
Large Meteorite Impacts (2003) alpha_t-z.pdf Contents — T through Z Locations and Compositions of Mare Ponds in South Pole-Aitken Basin on the Moon and Its Implication to the Impact Tectonics T. Takata and S. Hori ............................................................................................................................. 4058 New Laboratory Results on Field Sections at the Impact Crater of Araguainha (MT, GO, Brazil). Area of Proximal and Distal Impact Ejecta, Including Microspherules Dated from the End of Permian J. M. Théry, A. Crosta, E. Veto Akos, E. Bilal, K. Gal-Solymos, and E. Dransart................................. 4096 Techniques of Shock Wave Experiments and Determination of Hugoniot Data of Solids K. Thoma................................................................................................................................................ 4134 Differential Stress-controlled Deformation of Quartz During and After Hypervelocity Impact — Microstructural Evidence from the Charlevoix Impact Structure, Quebéc, Canada C. A. Trepmann and J. G. Spray............................................................................................................. 4026 Mjølnir Marine Crater Resulting from Oblique Impact: Compelling Evidence F. Tsikalas and J. I. Faleide................................................................................................................... 4005 A New Mid- to Late-Maastrichtian Impact in the Raton Basin 100m Below the K/T Boundary P. Turner, S. C. Sherlock, P. Clarke, and -
Mount Rainier and Its Glaciers Mount Rainier National Park
UNITED STATES DEPARTMENT OF THE INTERIOR HUBERT WORK, SECRETARY NATIONAL PARK SERVICE STEPHEN T. MATHER. DIRECTOR MOUNT RAINIER AND ITS GLACIERS MOUNT RAINIER NATIONAL PARK UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON 1928 OTHER PUBLICATIONS ON MOUNT RAINIER NATIONAL PARK SOLD BY THE SUPERINTENDENT OF DOCUMENTS. Remittances for these publications should be by money order, payable to the Superintendent of Documents, Government Printing Office, Washington, D. C, or in cash. Checks and postage stamps can not be accepted. Features of the Flora of Mount Rainier National Park, by J. B. Flett. 1922. 48 pages, including 40 illustrations. 25 cents. Contains descriptions of the flowering trees and shrubs in the park. Forests of Mount Rainier National Park, by G. F. Allen. 1922. 32 pages, including 27 illustrations. 20 cents. Contains descriptions of the forest cover and the principal species. Panoramic view of Mount Rainier National Park, 20 by 19 inclies, scale 1 mile to the inch. 25 cents. ADDITIONAL COPIES 01' THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 15 CENTS PER COPY MOUNT RAINIER AND ITS GLACIERS.1 By F. E. MATTIIES, United States Geological Survey. INTRODUCTION. The impression still prevails in many quarters that true glaciers, such as are found in the Swiss Alps, do not exist within the confines of the United States, and that to behold one of these rare scenic features one must go to Switzerland, or else to the less accessible Canadian Rockies or the inhospitable Alaskan coast. As a matter of fact, permanent bodies of snow and ice, large enough to deserve the name of glaciers, occur on many of our western mountain chains, notably in the Rocky Mountains, where a national reservation— Glacier National Park—is named for its ice fields; in the Sierra Nevada of California, and farther north, in the Cascade Range.