Instruments, Methods, and Missions for the Investigation of Extraterrestrial Microorganisms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Timeline of Significant Events in the Development of North American Mammalogy
SpecialSpecial PublicationsPublications MuseumMuseum ofof TexasTexas TechTech UniversityUniversity NumberNumber xx66 21 Novemberxx XXXX 20102017 A Timeline of SignificantTitle Events in the Development of North American Mammalogy Molecular Biology Structural Biology Biochemistry Microbiology Genomics Bioinformatics and Computational Biology Computer Science Statistics Physical Chemistry Information Technology Mathematics David J. Schmidly, Robert D. Bradley, Lisa C. Bradley, and Richard D. Stevens Front cover: This figure depicts a chronological presentation of some of the significant events, technological breakthroughs, and iconic personalities in the history of North American mammalogy. Red lines and arrows depict the chronological flow (i.e., top row – read left to right, middle row – read right to left, and third row – read left to right). See text and tables for expanded interpretation of the importance of each person or event. Top row: The first three panels (from left) are associated with the time period entitled “The Emergence Phase (16th‒18th Centuries)” – Mark Catesby’s 1748 map of Carolina, Florida, and the Bahama Islands, Thomas Jefferson, and Charles Willson Peale; the next two panels represent “The Discovery Phase (19th Century)” – Spencer Fullerton Baird and C. Hart Merriam. Middle row: The first two panels (from right) represent “The Natural History Phase (1901‒1960)” – Joseph Grinnell and E. Raymond Hall; the next three panels (from right) depict “The Theoretical and Technological Phase (1961‒2000)” – illustration of Robert H. MacArthur and Edward O. Wilson’s theory of island biogeography, karyogram depicting g-banded chromosomes, and photograph of electrophoretic mobility of proteins from an allozyme analysis. Bottom row: These four panels (from left) represent the “Big Data Phase (2001‒present)” – chromatogram illustrating a DNA sequence, bioinformatics and computational biology, phylogenetic tree of mammals, and storage banks for a supercomputer. -
Karl Jordan: a Life in Systematics
AN ABSTRACT OF THE DISSERTATION OF Kristin Renee Johnson for the degree of Doctor of Philosophy in History of SciencePresented on July 21, 2003. Title: Karl Jordan: A Life in Systematics Abstract approved: Paul Lawrence Farber Karl Jordan (1861-1959) was an extraordinarily productive entomologist who influenced the development of systematics, entomology, and naturalists' theoretical framework as well as their practice. He has been a figure in existing accounts of the naturalist tradition between 1890 and 1940 that have defended the relative contribution of naturalists to the modem evolutionary synthesis. These accounts, while useful, have primarily examined the natural history of the period in view of how it led to developments in the 193 Os and 40s, removing pre-Synthesis naturalists like Jordan from their research programs, institutional contexts, and disciplinary homes, for the sake of synthesis narratives. This dissertation redresses this picture by examining a naturalist, who, although often cited as important in the synthesis, is more accurately viewed as a man working on the problems of an earlier period. This study examines the specific problems that concerned Jordan, as well as the dynamic institutional, international, theoretical and methodological context of entomology and natural history during his lifetime. It focuses upon how the context in which natural history has been done changed greatly during Jordan's life time, and discusses the role of these changes in both placing naturalists on the defensive among an array of new disciplines and attitudes in science, and providing them with new tools and justifications for doing natural history. One of the primary intents of this study is to demonstrate the many different motives and conditions through which naturalists came to and worked in natural history. -
The 2 Fundamental Questions: Linneaus and Kirchner
2/1/2011 The 2 fundamental questions: y Has evolution taken pp,lace, and if so, what is the Section 4 evidence? Professor Donald McFarlane y If evolution has taken place, what is the mechanism by which it works? Lecture 2 Evolutionary Ideas Evidence for evolution before Darwin Golden Age of Exploration y Magellan’s voyage –1519 y John Ray –University of y Antonius von Leeuwenhoek ‐ microbes –1683 Cambridge (England) y “Catalog of Cambridge Plants” – 1660 –lists 626 species y 1686 –John Ray listing thousands of plant species! y In 1678, Francis Willoughby publishes “Ornithology” Linneaus and Kirchner Athenasius Kircher ~ 1675 –Noah’s ark Carl Linneaus – Sistema Naturae ‐ 1735 Ark too small!! Uses a ‘phenetic” classification – implies a phylogenetic relationship! 300 x 50 x 30 cubits ~ 135 x 20 x 13 m 1 2/1/2011 y Georges Cuvier 1769‐ 1832 y “Fixity of Species” Evidence for Evolution –prior to 1830 • Enormous diversity of life –WHY ??? JBS Haldane " The Creator, if He exists, has "an inordinate fondness for beetles" ". Evidence for Evolution –prior to 1830 Evidence for Evolution –prior to 1830 y The discovery of variation. y Comparative Anatomy. Pentadactyl limbs Evidence for Evolution –prior to Evidence for Evolution –prior to 1830 1830 y Fossils – homologies with living species y Vestigal structures Pentadactyl limbs !! 2 2/1/2011 Evidence for Evolution –prior to 1830 Evidence for Evolution –prior to 1830 y Invariance of the fossil sequence y Plant and animal breeding JBS Haldane: “I will give up my belief in evolution if someone finds a fossil rabbit in the Precambrian.” Charles Darwin Jean Baptiste Lamark y 1744‐1829 y 1809 –1882 y Organisms have the ability to adapt to their y Voyage of Beagle 1831 ‐ 1836 environments over the course of their lives. -
Appendix A: Scientific Notation
Appendix A: Scientific Notation Since in astronomy we often have to deal with large numbers, writing a lot of zeros is not only cumbersome, but also inefficient and difficult to count. Scientists use the system of scientific notation, where the number of zeros is short handed to a superscript. For example, 10 has one zero and is written as 101 in scientific notation. Similarly, 100 is 102, 100 is 103. So we have: 103 equals a thousand, 106 equals a million, 109 is called a billion (U.S. usage), and 1012 a trillion. Now the U.S. federal government budget is in the trillions of dollars, ordinary people really cannot grasp the magnitude of the number. In the metric system, the prefix kilo- stands for 1,000, e.g., a kilogram. For a million, the prefix mega- is used, e.g. megaton (1,000,000 or 106 ton). A billion hertz (a unit of frequency) is gigahertz, although I have not heard of the use of a giga-meter. More rarely still is the use of tera (1012). For small numbers, the practice is similar. 0.1 is 10À1, 0.01 is 10À2, and 0.001 is 10À3. The prefix of milli- refers to 10À3, e.g. as in millimeter, whereas a micro- second is 10À6 ¼ 0.000001 s. It is now trendy to talk about nano-technology, which refers to solid-state device with sizes on the scale of 10À9 m, or about 10 times the size of an atom. With this kind of shorthand convenience, one can really go overboard. -
Deep Carbon Science
From Crust to Core Carbon plays a fundamental role on Earth. It forms the chemical backbone for all essential organic molecules produced by living organ- isms. Carbon-based fuels supply most of society’s energy, and atmos- pheric carbon dioxide has a huge impact on Earth’s climate. This book provides a complete history of the emergence and development of the new interdisciplinary field of deep carbon science. It traces four cen- turies of history during which the inner workings of the dynamic Earth were discovered, and it documents the extraordinary scientific revolutions that changed our understanding of carbon on Earth for- ever: carbon’s origin in exploding stars; the discovery of the internal heat source driving the Earth’s carbon cycle; and the tectonic revolu- tion. Written with an engaging narrative style and covering the scien- tific endeavors of about 150 pioneers of deep geoscience, this is a fascinating book for students and researchers working in Earth system science and deep carbon research. is a life fellow at St. Edmund’s College, University of Cambridge. For more than 50 years he has passionately engaged in bringing discoveries in astronomy and cosmology to the general public. He is a fellow of the Royal Historical Society, a former vice- president of the Royal Astronomical Society and a fellow of the Geological Society. The International Astronomical Union designated asteroid 4027 as Minor Planet Mitton in recognition of his extensive outreach activity and that of Dr. Jacqueline Mitton. From Crust to Core A Chronicle of Deep Carbon Science University of Cambridge University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India 79 Anson Road, #06–04/06, Singapore 079906 Cambridge University Press is part of the University of Cambridge. -
Organic Matter in Meteorites Department of Inorganic Chemistry, University of Barcelona, Spain
REVIEW ARTICLE INTERNATIONAL MICROBIOLOGY (2004) 7:239-248 www.im.microbios.org Jordi Llorca Organic matter in meteorites Department of Inorganic Chemistry, University of Barcelona, Spain Summary. Some primitive meteorites are carbon-rich objects containing a vari- ety of organic molecules that constitute a valuable record of organic chemical evo- lution in the universe prior to the appearance of microorganisms. Families of com- pounds include hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids, amino acids, amines, amides, heterocycles, phosphonic acids, sulfonic acids, sugar-relat- ed compounds and poorly defined high-molecular weight macromolecules. A vari- ety of environments are required in order to explain this organic inventory, includ- ing interstellar processes, gas-grain reactions operating in the solar nebula, and hydrothermal alteration of parent bodies. Most likely, substantial amounts of such Received 15 September 2004 organic materials were delivered to the Earth via a late accretion, thereby provid- Accepted 15 October 2004 ing organic compounds important for the emergence of life itself, or that served as a feedstock for further chemical evolution. This review discusses the organic con- Address for correspondence: Departament de Química Inorgànica tent of primitive meteorites and their relevance to the build up of biomolecules. Universitat de Barcelona [Int Microbiol 2004; 7(4):239-248] Martí i Franquès, 1-11 08028 Barcelona, Spain Tel. +34-934021235. Fax +34-934907725 Key words: primitive meteorites · prebiotic chemistry · chemical evolution · E-mail: [email protected] origin of life providing new opportunities for scientific advancement. One Introduction of the most important findings regarding such bodies is that comets and certain types of meteorites contain organic mole- Like a carpentry shop littered with wood shavings after the cules formed in space that may have had a relevant role in the work is done, debris left over from the formation of the Sun origin of the first microorganisms on Earth. -
A Magnetic Susceptibility Database for Stony Meteorites
Direttore Enzo Boschi Comitato di Redazione Cesidio Bianchi Tecnologia Geofisica Rodolfo Console Sismologia Giorgiana De Franceschi Relazioni Sole-Terra Leonardo Sagnotti Geomagnetismo Giancarlo Scalera Geodinamica Ufficio Editoriale Francesca Di Stefano Istituto Nazionale di Geofisica e Vulcanologia Via di Vigna Murata, 605 00143 Roma Tel. (06) 51860468 Telefax: (06) 51860507 e-mail: [email protected] A MAGNETIC SUSCEPTIBILITY DATABASE FOR STONY METEORITES Pierre Rochette1, Leonardo Sagnotti1, Guy Consolmagno2, Luigi Folco3, Adriana Maras4, Flora Panzarino4, Lauri Pesonen5, Romano Serra6 and Mauri Terho5 1Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy [[email protected]] 2Specola Vaticana, Castel Gandolfo, Italy 3Antarctic [PNRA] Museum of Siena, Siena, Italy 4Università La Sapienza, Roma, Italy 5University of Helsinki, Finland 6“Giorgio Abetti” Museum of San Giovanni in Persiceto, Italy Pierre Rochette et alii: A Magnetic Susceptibility Database for Stony Meteorites 1. Introduction the Museo Nationale dell’Antartide in Siena [Folco and Rastelli, 2000], the University of More than 22,000 different meteorites Roma “la Sapienza” [Cavaretta Maras, 1975], have been catalogued in collections around the the “Giorgio Abetti” Museum in San Giovanni world (as of 1999) of which 95% are stony types Persiceto [Levi-Donati, 1996] and the private [Grady, 2000]. About a thousand new meteorites collection of Matteo Chinelatto. In particular, are added every year, primarily from Antarctic the Antarctic Museum in Siena is the curatorial and hot-desert areas. Thus there is a need for centre for the Antarctic meteorite collection rapid systematic and non-destructive means to (mostly from Frontier Mountain) recovered by characterise this unique sampling of the solar the Italian Programma Nazionale di Ricerche in system materials. -
Magnetite Plaquettes Are Naturally Asymmetric Materials in Meteorites
1 (Revision 2) 2 Magnetite plaquettes are naturally asymmetric materials in meteorites 3 Queenie H. S. Chan1, Michael E. Zolensky1, James E. Martinez2, Akira Tsuchiyama3, and Akira 4 Miyake3 5 1ARES, NASA Johnson Space Center, Houston, Texas 77058, USA. 6 2Jacobs Engineering, Houston, Texas 77058, USA. 7 3Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 8 606-8502, Japan. 9 10 Correspondence to: Queenie H. S. Chan. Correspondence and requests for materials should be 11 addressed to Q.H.S.C. (Email: [email protected]) 12 13 Abstract 14 Life on Earth shows preference towards the set of organics with particular spatial configurations. 15 Enantiomeric excesses have been observed for α-methyl amino acids in meteorites, which 16 suggests that chiral asymmetry might have an abiotic origin. A possible abiotic mechanism that 17 could produce chiral asymmetry in meteoritic amino acids is their formation under the influence 18 of asymmetric catalysts, as mineral crystallization can produce spatially asymmetric structures. 19 Although magnetite plaquettes have been proposed to be a possible candidate for an asymmetric 20 catalyst, based on the suggestion that they have a spiral structure, a comprehensive description of 21 their morphology and interpretation of the mechanism associated with symmetry-breaking in 22 biomolecules remain elusive. Here we report observations of magnetite plaquettes in 1 23 carbonaceous chondrites (CCs) which were made with scanning electron microscopy and 24 synchrotron X-ray computed microtomography (SXRCT). We obtained the crystal orientation of 25 the plaquettes using electron backscatter diffraction (EBSD) analysis. SXRCT permits 26 visualization of the internal features of the plaquettes. -
Information Theory, Evolution, and the Origin of Life
Information theory, evolution, and the origin of life HUBERT P. YOCKEY CAMBRIDGE UNIVERSITY PRESS CA\15RIDG£ \J);IVE;<SITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Delhi, Dubai, Tokyo, Mexico City Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473• USA wv1rw.cambridge.org Information on this tide: www.cambridge.org/978opu69585 © Hubert P. Yockey 2005 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2005 Reprinred 2006 First paperback edition 2010 A catalog record for this publication is available from the British Library Library of Congress Cataloging in Publication data Yockey, Hubert P. Information theory, evolution, and the origin of life I Huberr P. Yockey. p. em. Includes bibliographical references (p. ) . ISS� 0·521·80293-8 (hardback: alk. paper) r. Molecular biology. 2. Information theory in biology. 3· Evolution (Biology) 4· Life-Origin. r. Title. QHso6.Y634 2004 572.8 dc22 2004054518 ISBN 978-0·)21-80293-2 Hardback ISBN 978-0-52H6958-5 Paperback Cambridge University Press has no responsibility for rhe persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information theory, evolution, and the origin of life Information TheOI)\ Evolution, and the Origin of Life presents a timely introduction to the use of information theory and coding theory in molecular biology. -
Tempo and Mode in Evolution WALTER M
Proc. Nati. Acad. Sci. USA Vol. 91, pp. 6717-6720, July 1994 Colloquium Paper This paper was presented at a colloquium entiled "Tempo and Mode in Evoluton" organized by Walter M. Fitch and Francisco J. Ayala, held Januwy 27-29, 1994, by the National Academy of Sciences, in Irvine, CA. Tempo and mode in evolution WALTER M. FITCH AND FRANCISCO J. AYALA Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92717 George Gaylord Simpson said in his classic Tempo andMode The conflict between Mendelians and biometricians was in Evolution (1) that paleontologists enjoy special advantages resolved between 1918 and 1931 by the work ofR. A. Fisher over geneticists on two evolutionary topics. One general and J. B. S. Haldane in England, Sewall Wright in the United topic, suggested by the word "tempo," has to do with States, and S. S. Chetverikov in Russia. Independently of "evolutionary rates. ., their acceleration and deceleration, each other, these authors proposed theoretical models of the conditions ofexceptionally slow or rapid evolutions, and evolutionary processes which integrate Mendelian inheri- phenomena suggestive of inertia and momentum." A group tance, natural selection, and biometrical knowledge. of related problems, implied by the word "mode," involves The work of these authors, however, had a limited impact "the study of the way, manner, or pattern of evolution, a on the biology of the time, because it was formulated in study in which tempo is a basic factor, but which embraces difficult mathematical language and because it was largely considerably more than tempo" (pp. xvii-xviii). theoretical with little empirical support. -
The Beginnings of Vertebrate Paleontology in North America Author(S): George Gaylord Simpson Source: Proceedings of the American Philosophical Society, Vol
The Beginnings of Vertebrate Paleontology in North America Author(s): George Gaylord Simpson Source: Proceedings of the American Philosophical Society, Vol. 86, No. 1, Symposium on the Early History of Science and Learning in America (Sep. 25, 1942), pp. 130-188 Published by: American Philosophical Society Stable URL: http://www.jstor.org/stable/985085 . Accessed: 29/09/2013 21:55 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Philosophical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Philosophical Society. http://www.jstor.org This content downloaded from 150.135.114.183 on Sun, 29 Sep 2013 21:55:20 PM All use subject to JSTOR Terms and Conditions THE BEGINNINGS OF VERTEBRATE PALEONTOLOGY IN NORTH AMERICA GEORGE GAYLORD SIMPSON Associate Curator of Vertebrate Paleontology, American Museum of Natural History (Read February14, 1942, in Symposiumon theEarly Historyof Science and Learning in America) CONTENTS siderablevariety of vertebratefossils had been foundin before1846, the accepteddate of that dis- 132 the far West First Glimpses.... ......................... covery. Amongthem were findsby Lewis and Clark in Longueuil,1739, to Croghan,1766 ......... ........ 135 1804-1806,a good mosasaurskeleton from South Dakota, Identifyingthe Vast Mahmot.................... -
The American Museum of Natural History
THE AMERICAN MUSEUM OF NATURAL HISTORY EIGHTY-FIFTH ANNUAL REPORT JULY, 1953, THROUGH JUNE, 1954 THE AMERICAN MUSEUM OF NATURAL HISTORY EIGHTY-FIFTH ANNUAL REPORT JULY, 1953, THROUGH JUNE, 1954 THE CITY OF NEW YORK 1954 EIGHTY-FIFTH ANNUAL REPORT OF THE PRESIDENT To the Trustees of The American Museum of Natural History and to the Municipal Authorities of the City of New York THE Museum's fiscal year, which ended June 30, 1954, was a good one. As in our previous annual report, I believe we can fairly state that continuing progress is being made on our long-range plan for the Museum. The cooperative attitude of the scientific staff and of our other employees towards the program set forth by management has been largely responsible for what has been accomplished. The record of both the Endowment and Pension Funds during the past twelve months has been notably satisfactory. In a year of wide swings of optimism and pessimism in the security markets, the Finance Committee is pleased to report an increase in the market value of the Endowment Fund of $3,011,800 (87 per cent of which has been due to the over-all rise in prices and 13 per cent to new gifts). Common stocks held by the fund increased in value approximately 30 per cent in the year. The Pension Fund likewise continued to grow, reaching a valuation of $4,498,600, as compared to $4,024,100 at the end of the previous year. Yield at cost for the Endow- ment Fund as of July 1 stood at 4.97 per cent and for the Pension Fund at 3.74 per cent.