Meteoritics & Planetary Science 41, Nr 11, 1797–1831 (2006) Abstract available online at http://meteoritics.org Petrology of silicate inclusions in the Sombrerete ungrouped iron meteorite: Implications for the origins of IIE-type silicate-bearing irons Alex RUZICKA1*, Melinda HUTSON1, and Christine FLOSS2 1Cascadia Meteorite Laboratory, Department of Geology, Portland State University, 1721 Southwest Broadway, P.O. Box 751, Portland, Oregon 97207–0751, USA 2Washington University, Laboratory for Space Sciences, Campus Box 1105, Saint Louis, Missouri 63130, USA *Corresponding author. E-mail:
[email protected] (Received 26 January 2006; revision accepted 26 July 2006) Dedicated to the late Martin Prinz All appendix tables for this article are available online at http://meteoritics.org. Abstract–The petrography and mineral and bulk chemistries of silicate inclusions in Sombrerete, an ungrouped iron that is one of the most phosphate-rich meteorites known, was studied using optical, scanning electron microscopy (SEM), electron microprobe analysis (EMPA), and secondary ion mass spectrometry (SIMS) techniques. Inclusions contain variable proportions of alkalic siliceous glass (~69 vol% of inclusions on average), aluminous orthopyroxene (~9%, Wo1−4Fs25–35, up to ~3 wt% Al), plagioclase (~8%, mainly An70–92), Cl-apatite (~7%), chromite (~4%), yagiite (~1%), phosphate- rich segregations (~1%), ilmenite, and merrillite. Ytterbium and Sm anomalies are sometimes present in various phases (positive anomalies for phosphates, negative for glass and orthopyroxene), which possibly reflect phosphate-melt-gas partitioning under transient, reducing conditions at high temperatures. Phosphate-rich segregations and different alkalic glasses (K-rich and Na-rich) formed by two types of liquid immiscibility. Yagiite, a K-Mg silicate previously found in the Colomera (IIE) iron, appears to have formed as a late-stage crystallization product, possibly aided by Na-K liquid unmixing.