Brannockite, a New Tin Mineral by John S

Brannockite, a New Tin Mineral by John S

<p><strong>Fig. 1. Cluster&nbsp;of brannockite&nbsp;crystals photographed&nbsp;while fluorescing&nbsp;under short- </strong></p><p><strong>wave ultraviolet&nbsp;light. Photograph by&nbsp;Julius Weber. </strong></p><p><strong>Brannockite, </strong><br><strong>A New Tin Mineral </strong></p><p><strong>by John S. White, </strong><em>J r., </em><strong>Joel E. Arem, and&nbsp;Joseph A. Nelen </strong></p><p><strong>(Smithsonian Institution, Washington, D.&nbsp;C.), </strong><br><strong>Peter B. Leavens (University of&nbsp;Delaware, Newark)&nbsp;and Richard&nbsp;W. Thomssen&nbsp;(Tucson, Arizona) </strong></p><p><em>INTRODUCTION </em></p><p>brannockite is&nbsp;the only tin and lithium&nbsp;bearing member of the group&nbsp;and also the only one found&nbsp;in a pegmatite. Osumilite occurs in&nbsp;volcanic rocks; roedderite,&nbsp;merrihueite <br>In 1968 one of the authors&nbsp;(JSW) was informed&nbsp;of the existence of&nbsp;a fluorescent&nbsp;mineral from the Foote Mineral Company's spodumene mine&nbsp;at Kings&nbsp;Mountain, Cleveland County, North Carolina.&nbsp;The informant&nbsp;was Mr. Carter Hudgins of&nbsp;Marion, North Carolina,&nbsp;who collected&nbsp;and donated to&nbsp;the National&nbsp;Museum of&nbsp;Natural History an extremely fine&nbsp;specimen. and yagiite&nbsp;<strong>all </strong>are limited&nbsp;in occurrence to meteorites. </p><p></p><ul style="display: flex;"><li style="flex:1">Milarite, hydrous&nbsp;potassium, calcium&nbsp;and beryllium </li><li style="flex:1">a</li></ul><p>aluminosilicate is&nbsp;considered a&nbsp;structural analog,&nbsp;however its anomalous&nbsp;optics (biaxial") casts doubt upon its&nbsp;true structural nature. </p><p><strong>brannockite </strong></p><p>An x-ray powder&nbsp;diffraction pattern was&nbsp;immediately taken. The pattern&nbsp;bears a&nbsp;strong resemblance&nbsp;to that&nbsp;of osumilite in&nbsp;terms of&nbsp;line positions,&nbsp;but intensities&nbsp;show <br>(K,Na)LiaSn2lSi120aol </p><p><strong>merrihueite </strong></p><p>(K,NabFe2(Fe,Mg)alSi120aO] </p><p><strong>osumilite </strong></p><p></p><ul style="display: flex;"><li style="flex:1">substantial differences. The&nbsp;habit </li><li style="flex:1">-</li><li style="flex:1">very thin, transparent </li></ul><p></p><ul style="display: flex;"><li style="flex:1">hexagonal plates&nbsp;extended the&nbsp;analogy. The early evi- </li><li style="flex:1">-</li></ul><p>(K,Na,Ca)(Fe,Mg)2(Al,Fe',Fe"')alAI2SiloOaoleH20 </p><p><strong>roedderite </strong></p><p>dence appeared&nbsp;to suggest&nbsp;that the mineral&nbsp;is a structural analog of&nbsp;osumilite, and&nbsp;ensuing studies proved this&nbsp;to be the case. <br>(Na,K)2Mg2(Mg,Fe)alSi120ao] </p><p><strong>yagiite </strong></p><p>Brannockite is&nbsp;the lithium-tin&nbsp;analog of&nbsp;osumilite, with the formula&nbsp;KLiaSn2Si120ao. It&nbsp;is free&nbsp;of the&nbsp;elements aluminum, iron&nbsp;and magnesium&nbsp;and the only significant&nbsp;departure from&nbsp;a "clean"&nbsp;composition is&nbsp;less than&nbsp;a percent of Na20.&nbsp;Four analogs of&nbsp;osumilite are&nbsp;now known&nbsp;but </p><p><strong>(Na,K </strong>h'5Mg2( <strong>AI,Mg,Fe </strong>)a[AI2SiloOaol </p><p>The mineral&nbsp;is named&nbsp;for Dr. Kent&nbsp;C. Brannock,&nbsp;Chemist, Tennessee&nbsp;Eastman Company, Kingsport, Tennessee, who first called&nbsp;the authors'&nbsp;attention to&nbsp;the rare minerals </p><p></p><ul style="display: flex;"><li style="flex:1"><em>March-April, </em></li><li style="flex:1"><em>1973 </em></li></ul><p></p><p>73 </p><p><em>MORPHOLOGY </em></p><p>The crystals&nbsp;are not complex,&nbsp;only four forms were noted in&nbsp;goniometric studies:&nbsp;{100} , {1l0}&nbsp;, {114} and&nbsp;{001} . The pinacoid&nbsp;{OOI} is by far the&nbsp;dominant form&nbsp;as all crystals are very thin plates;&nbsp;the ratio&nbsp;of thickness&nbsp;to breadth being about&nbsp;1:20. The&nbsp;beveling form&nbsp;{1l4} is&nbsp;readily discernible on&nbsp;all crystals&nbsp;(Fig. 2). The&nbsp;axial ratio by&nbsp;goniometry is&nbsp;<em>c/a= </em>1.430, which&nbsp;agrees well&nbsp;with the 1.421&nbsp;ratio calculated from&nbsp;the refined&nbsp;x-ray data. </p><p><em>CHEMISTRY </em></p><p>First attempts&nbsp;at determining&nbsp;the composition nockite were&nbsp;with the electron&nbsp;microprobe. of branThe only elements detected analysis were tin&nbsp;and silicon.&nbsp;The very low summation&nbsp;and comparison with&nbsp;the chemistry&nbsp;of the&nbsp;mineral's analogs suggested the&nbsp;presence of&nbsp;significant amounts of&nbsp;one or more light metals.&nbsp;Many of&nbsp;the associated&nbsp;late hydro- </p><ul style="display: flex;"><li style="flex:1">and determined </li><li style="flex:1">in this preliminary </li></ul><p><em>Fig. </em>2. Two&nbsp;views of&nbsp;idealized brannockite&nbsp;crystals, thermal minerals at&nbsp;the Foote&nbsp;mine are enriched&nbsp;in either beryllium or&nbsp;lithium. of this&nbsp;locality and&nbsp;was in trumental&nbsp;in helping&nbsp;them obtain specimens. He&nbsp;has been&nbsp;a constant&nbsp;source of&nbsp;inspiration throughout the&nbsp;course of&nbsp;our rudie of&nbsp;the Foote&nbsp;mine's <br>Semiquantitative niques (including&nbsp;flame and d.c. arc emission&nbsp;spectroscopy, spark source mass&nbsp;spectrometry, 'and&nbsp;electron microscopy) performed&nbsp;at Oak&nbsp;Ridge National&nbsp;Laboratory on a few crystals&nbsp;showed that&nbsp;brannockite contains&nbsp;the al- </p><ul style="display: flex;"><li style="flex:1">analyses using&nbsp;a combination </li><li style="flex:1">of tech- </li></ul><p>minerals, an&nbsp;effort leadins&nbsp;to the description species switzer&nbsp;ire. eakerire&nbsp;and tetrawickrnanite of the&nbsp;new prior to the present&nbsp;one. and the identification&nbsp;of more&nbsp;than eighty established species. kalis lithium&nbsp;and potassium&nbsp;in substantial&nbsp;amounts, and&nbsp;is free of&nbsp;beryllium. A&nbsp;return to&nbsp;the microprobe&nbsp;and a&nbsp;more thorough analysis&nbsp;gave 4.5% <em>KzO. </em>A 3.08 mg sample&nbsp;was then analysed&nbsp;by flame&nbsp;photometry which&nbsp;finally provided </p><p>OCC <em>RRE CE &nbsp; A D &nbsp; PROPERTIES </em></p><p>Brannockite thermal portions of&nbsp;the lithium-tin&nbsp;enriched mined primarily&nbsp;for spodumene&nbsp;near Kings Mountain. occurs in&nbsp;minute amounts&nbsp;in late&nbsp;hydropegmatite </p><ul style="display: flex;"><li style="flex:1">a</li><li style="flex:1">more quantitative </li><li style="flex:1">value for&nbsp;the lithium&nbsp;content and </li></ul><p>It is found&nbsp;in vugs&nbsp;and on flat fracture&nbsp;surfaces in&nbsp;leached pegmatite associated with&nbsp;bavenite, pyrite,&nbsp;tetrawickrnanite, stannian&nbsp;titanite (4-6%&nbsp;Sn), albite&nbsp;and quartz.&nbsp;Due to supported the&nbsp;microprobe results&nbsp;for potassium. The complete&nbsp;analysis (Table I)&nbsp;is in excellent&nbsp;agreement with the ideal, within the limits of&nbsp;the techniques the small size of&nbsp;the crystals </p><p>«</p><p>I mm),&nbsp;their perfect&nbsp;transis very&nbsp;difficult employed and&nbsp;in consideration brannockite sacrificed. of the&nbsp;meager amounts of parency and&nbsp;absence of&nbsp;color, brannockite to see unless&nbsp;viewed under short-wave&nbsp;(only) ultraviolet light which&nbsp;causes the&nbsp;mineral to&nbsp;fluoresce a&nbsp;bright bluewhite. Many crystals have extremely&nbsp;tiny pyrite&nbsp;crystals scattered over&nbsp;their surfaces&nbsp;but the relative&nbsp;ages of&nbsp;brannockite and&nbsp;bavenite could&nbsp;not be determined. <br>Table I.&nbsp;Analysis of&nbsp;brannockite. </p><p>KLi3SnzSilZ0S0 BRANNOCKITE </p><p>4.2% 4.0 <br>3.72+ 3.75+ 0.74+ <br>28.2* 65.8* <br>102.2 <br>4.5* </p><p><em>KzO </em></p><p>u,o </p><p>NazO </p><p>s-o, </p><p>s.o, </p><p></p><ul style="display: flex;"><li style="flex:1">Brannockite </li><li style="flex:1">is uniaxial&nbsp;negative </li><li style="flex:1">with birefringence </li></ul><p>about .002-.001, </p><p>E</p><p>= 1.566 and <em>w </em>= 1.567. There&nbsp;is no&nbsp;optical <br>27.1 </p><p>evidence of&nbsp;twinning or&nbsp;cleavage. The&nbsp;mineral is&nbsp;brittle but hardness&nbsp;was not determined&nbsp;owing to&nbsp;the minuteness of the&nbsp;crystals. <br>64.7 </p><ul style="display: flex;"><li style="flex:1">100.0 </li><li style="flex:1">103.0 </li></ul><p>* by electron&nbsp;microprobe -t- by flame&nbsp;photometry </p><ul style="display: flex;"><li style="flex:1">The crystals&nbsp;of brannockite </li><li style="flex:1">are so&nbsp;tiny, transparent, </li><li style="flex:1">and </li></ul><p>Precision of&nbsp;analytical techniques&nbsp;is about&nbsp;±3'1"0 of amount </p><p>present. rarely free of&nbsp;attached minerals (bavenite and&nbsp;pyrite especially) that&nbsp;the technique&nbsp;of flotation&nbsp;in methylene&nbsp;iodide (thinned with&nbsp;acetone) was&nbsp;used because&nbsp;all that&nbsp;was needed was one clean&nbsp;crystal. The densities&nbsp;of other&nbsp;minerals in larger&nbsp;crystals were carefully&nbsp;measured. These&nbsp;were then </p><p><em>CRYSTALLOGRAPHY </em></p><p>Precession x-ray&nbsp;photographs hexagonal, space&nbsp;group <em>P6/mcc. </em>The precession&nbsp;and powder photographs&nbsp;of osumilite&nbsp;and brannockite&nbsp;are almost </p><ul style="display: flex;"><li style="flex:1">show brannockite </li><li style="flex:1">to be </li></ul><p>placed in&nbsp;the same&nbsp;solution with&nbsp;a brannockite comparison. Phenacite from&nbsp;Brazil (2.960) remained&nbsp;suspended well&nbsp;above brannockite&nbsp;while brazilianite&nbsp;from crystal for identical, indicating a&nbsp;strong structural&nbsp;similarity between the two minerals. <br>Brazil (2.985) was suspended&nbsp;slightly below the new min- </p><p>eral. On&nbsp;this basis a&nbsp;density of&nbsp;2.980 was assigned&nbsp;to brannockite. The&nbsp;calculated density&nbsp;(Z = 2) is 3.08&nbsp;gm/ ems. </p><ul style="display: flex;"><li style="flex:1">Cell parameters </li><li style="flex:1">were determined </li><li style="flex:1">by computer&nbsp;refine- </li></ul><p>ment of&nbsp;x-ray powder&nbsp;data (Table II),&nbsp;using the program </p><p><em>The Mineralogical &nbsp; Record </em></p><p>74 </p><p><em>.. , " ,: &nbsp; ',' ' . 'f &nbsp; .' </em><sub style="top: 0.96em;">. -</sub><em>,</em><sub style="top: 0.96em;">/.' </sub></p><p>.... <sup style="top: -3em;">,'_</sup>\<sup style="top: -3em;">..</sup>\ "··J-·r:'//-:&nbsp;"/ </p><p>,</p><p>: .'&nbsp;\ - 1&nbsp;-; . </p><p><em>-&gt; . </em></p><p><sub style="top: 1.02em;">'-. :</sub><em>:</em><sub style="top: 1.02em;">~</sub><em>&lt; :</em><sub style="top: 1.02em;">&lt;</sub><em>-</em><sub style="top: 1.02em;">,</sub><em>- "</em><sub style="top: 1.02em;">.~</sub><em>. . -</em><sub style="top: 1.02em;">, </sub><em>\\,./: -I. //'. &nbsp; .; </em></p><p>~ ~ ~/'&nbsp;~ '. </p><p></p><ul style="display: flex;"><li style="flex:1">-</li><li style="flex:1">~</li><li style="flex:1">'.I. </li><li style="flex:1">"</li><li style="flex:1">"</li><li style="flex:1">•. </li></ul><p></p><p>."'-- </p><p>.</p><p>---- . </p><p>--- </p><p>~</p><p>.",- .........-- </p><p>~. </p><p>----...., </p><p>.. </p><p>.</p><p>- .. ..----- </p><p>.</p><p>.</p><p>-</p><p>.</p><p>-....-...... </p><p>.' </p><p><sup style="top: -0.96em;">.-----. </sup>--<sup style="top: -0.96em;">..</sup>~ </p><p><em>"-::d:7:tl)~' ~ ~ ~ : </em></p><p><em>" . " &nbsp; J </em></p><p></p><ul style="display: flex;"><li style="flex:1">I ' </li><li style="flex:1">,</li><li style="flex:1">'\ </li><li style="flex:1">- , </li></ul><p></p><p><em>&lt;; </em></p><p><em>Fig. </em>3. O-Ievel precession&nbsp;photograph <br>(001) showing&nbsp;twinned crystals. </p><p></p><ul style="display: flex;"><li style="flex:1">'. </li><li style="flex:1">#</li><li style="flex:1">.• ', </li></ul><p></p><p><em>I . &nbsp; . " . . . '. '., .. " : . . ' ~ </em></p><p>..%-.# •&nbsp;. • </p><p>.• </p><p>.</p><p>.</p><p>.</p><p>". 4.. </p><p></p><ul style="display: flex;"><li style="flex:1"><em>J • • </em></li><li style="flex:1"><em>". </em></li><li style="flex:1"><em>.• ~ </em></li></ul><p></p><p>•. </p><p>..• </p><p>-</p><p>\</p><p>.</p><p>"</p><p><em>I</em></p><p>.. </p><p>---. </p><p><em>Fig. </em>4. O-Ievel precession&nbsp;photograph (001) of an untwinned&nbsp;crystal. </p><p>Precession photographs&nbsp;of several&nbsp;brannockite crystals appeared as&nbsp;shown in&nbsp;Fig. 3, Twinning was&nbsp;suspected because of&nbsp;an obvious&nbsp;doubling of&nbsp;rows of&nbsp;strong spots on the photographs.&nbsp;A search&nbsp;for untwinned&nbsp;material evenof Appleman&nbsp;and Evans. Indices for a&nbsp;starting set&nbsp;of <em>d- </em>values were assigned&nbsp;by analogy&nbsp;with those&nbsp;of osumilite. Successive refinements&nbsp;and addition&nbsp;of new&nbsp;lines produced a completely&nbsp;indexed pattern. The&nbsp;refined cell&nbsp;parameters are <em>a </em>= 10.0167(2)'\ and c&nbsp;= 14.24521 The cell&nbsp;volume is </p><p>1237.814,\3, and Z&nbsp;= 2, </p><p></p><ul style="display: flex;"><li style="flex:1">tually produced&nbsp;a crystal&nbsp;that gave the photograph </li><li style="flex:1">in </li></ul><p>Fig. 4. Many&nbsp;of the crystals&nbsp;examined gave&nbsp;c-axis, zero- </p><p>75 </p><p></p><ul style="display: flex;"><li style="flex:1"><em>March-April, </em></li><li style="flex:1"><em>1973 </em></li></ul><p></p><p>Table <strong>II. </strong>Brannockite </p><p></p><ul style="display: flex;"><li style="flex:1">-</li><li style="flex:1">Powder X-ray&nbsp;Data. </li></ul><p>°dcalc(A) </p><p>1.549 1.482 1.451 1.427 1.417 dmeas(A) <br>1.548 1.482 1.453 1.428 1.416 1.389 1.344 </p><p>1/101 </p><p></p><ul style="display: flex;"><li style="flex:1">dcalc(A) </li><li style="flex:1">dmeas(A) </li></ul><p></p><p><strong>hkl </strong></p><p>h k I </p><p>1/101 </p><p>100 002 <br>68728<br>10 <br>1214539166255612622635421<br>8.675 7.122 5.505 5.008 4.337 <br>8.693 7.141 5.504 5.000 4.343 <br>2241331312234323621111222112<br>511 505 </p><ul style="display: flex;"><li style="flex:1">102 </li><li style="flex:1">228 </li></ul><p>1 1 0 200 <br>514 602 <br>1 1 2 202 <br>4.096 3.705 3.561 3.446 <br>4.109 3.722 3.559 3.467 <br>520 426 <br>1.389 1.349 </p><ul style="display: flex;"><li style="flex:1">004 </li><li style="flex:1">1.324 </li><li style="flex:1">1.325 </li></ul><p>1.310 <br>434 </p><ul style="display: flex;"><li style="flex:1">1 1 3 </li><li style="flex:1">21 10 </li></ul><p>6 1&nbsp;2 409 <br>1.307 </p><ul style="display: flex;"><li style="flex:1">1.300 </li><li style="flex:1">1.297 </li></ul><p></p><ul style="display: flex;"><li style="flex:1">21 </li><li style="flex:1">0</li><li style="flex:1">3.279 </li></ul><p>3.195 2.978 2.902 <br>3.295 3.198 2.977 2.905 <br>1.278 <br>211 </p><p>122 <br>1.278 1.236 1.200 <br>1.235 1.200 <br>606 615 <br>1 1 4 204 302 220 214 222 304 313 206 224 314 410 4 1 1 306 008 405 414 422 <br>1.182 1.158 1.096 1.044 <br>.9928 .9446 .941 <br>2.752 2.679 2.504 2.412 <br>2.754 2.681 2.502 2.413 <br>1.182 1.158 1.096 1.044 <br>30 11 3210 0013 529 <br>2.362 2.245 2.146 </p><ul style="display: flex;"><li style="flex:1">2.362 </li><li style="flex:1">.9928 </li></ul><p>.9447 .941 <br>636 <br>2.245 2.147 2.088 2.048 1.992 <br>903 734 <br>2.082 2.048 1.994 </p><ul style="display: flex;"><li style="flex:1">.932 </li><li style="flex:1">.931 </li><li style="flex:1">638 </li></ul><p>.8795 .8414 .8283 .8221 .8180 .8022 .7969 .7779 <br>.8795 .8415 .8283 .8221 .8180 .8022 .7969 .7779 <br>826 835 4314 663 10 12 10 1&nbsp;4 932 <br>1.893 1.876 1.835 1.781 1.726 1.671 1.598 1.577 <br>1.892 1.874 1.833 1.784 1.725 1.671 1.599 1.577 <br>11 03} 10 1&nbsp;6 <br>2</p><ul style="display: flex;"><li style="flex:1">41 </li><li style="flex:1">5</li></ul><p>1 Visual&nbsp;estimates from&nbsp;powder photograph. 114.6 mm&nbsp;diameter. </p><ul style="display: flex;"><li style="flex:1">Silicon used as&nbsp;internal standard,&nbsp;Cu radiation </li><li style="flex:1">(Ni filtered) </li><li style="flex:1">camera </li></ul><p>level precession&nbsp;photographs the&nbsp;same as&nbsp;Fig. 3,&nbsp;indicating a non-random&nbsp;relationship between&nbsp;pairs of&nbsp;brannockite mula for the osumilite&nbsp;group (including&nbsp;osumilite, yagiite, roedderite and&nbsp;merrihueite)(Bunch and&nbsp;Fuchs, 1968).&nbsp;By crystals. Two&nbsp;lines of spots&nbsp;in the&nbsp;twin precession&nbsp;photographs are&nbsp;common to&nbsp;both individuals&nbsp;of the&nbsp;twin. These lines pass through&nbsp;the reflections&nbsp;210 and&nbsp;510, and&nbsp;the twin would, at&nbsp;first glance,&nbsp;appear to&nbsp;be equally&nbsp;well produced by using&nbsp;either of&nbsp;these directions&nbsp;as a twin&nbsp;axis. Close scrutiny of&nbsp;the un&nbsp;twinned and&nbsp;twinned nets,&nbsp;however, indicated that&nbsp;some weak maxima&nbsp;are not duplicated&nbsp;by twinning about [510]&nbsp;, and&nbsp;therefore [210]&nbsp;is the&nbsp;proposed analogy, Sn&nbsp;in brannockite Li is in 4-fold&nbsp;coordination. is in 6-fold&nbsp;coordination If there&nbsp;is a distribution and of <br>Sn and&nbsp;Li between&nbsp;the 4-fold&nbsp;and 6-fold sites a&nbsp;detailed structural examination will&nbsp;be required&nbsp;to verify&nbsp;this. </p><p><em>ACKNOWLEDGEMENTS </em></p><p>The authors&nbsp;wish to express&nbsp;their gratitude&nbsp;to Raymond L. Walker&nbsp;and JoeiA.&nbsp;Carter, Oak&nbsp;Ridge National&nbsp;Laboratory, for&nbsp;their help in&nbsp;the analysis&nbsp;and to&nbsp;Howard T.&nbsp;Evans, Jr., U. S. Geological&nbsp;Survey, for&nbsp;assistance in&nbsp;interpreting the twinning. </p><ul style="display: flex;"><li style="flex:1">twin axis for brannockite. </li><li style="flex:1">The measured&nbsp;displacement </li></ul><p>precession photographs of the twinned&nbsp;nets in&nbsp;brannockite is 21&nbsp;°23', quite close to&nbsp;the calculated&nbsp;value of&nbsp;21 °47'&nbsp;for twice the angle between&nbsp;(210) and&nbsp;(110). </p><p><em>REFERENCES </em></p><p>Appleman, D.&nbsp;E. and H. T. Evans,&nbsp;Job 9214: Indexing&nbsp;and </p><p><em>COORDINATION AND &nbsp; STRUCTURAL FORMULA </em></p><p></p><ul style="display: flex;"><li style="flex:1">least-squares </li><li style="flex:1">refinement </li><li style="flex:1">of powder&nbsp;diffraction </li><li style="flex:1">data. </li></ul><p>The general&nbsp;formula for&nbsp;osumilite-type </p><p>MeXIIMezVI Me}V&nbsp;(Si,AlhzIV Oso&nbsp;where Na, are generally&nbsp;present in&nbsp;12-fold coordination, minerals and Ca <br>Mg and Fe is <br>Computer contribution, Technical Information <em>to be </em>available through National <br>K</p><p>Service, Springfield,&nbsp;Va. 22151. </p><p></p><ul style="display: flex;"><li style="flex:1">in both&nbsp;6- and&nbsp;4-fold coordination, </li><li style="flex:1">and AI,&nbsp;Mn and Ti in </li></ul><p>is <br>Bunch, T.&nbsp;E. and L.&nbsp;H. Fuchs&nbsp;(1968) Yagiite,&nbsp;a new&nbsp;sodium- </p><ul style="display: flex;"><li style="flex:1">4-fold coordination.&nbsp;The ideal formula&nbsp;of brannockite </li><li style="flex:1">magnesium </li><li style="flex:1">analogue </li><li style="flex:1">of osumilite. </li></ul><p></p><p><em>Amer. Mineral.. </em></p><p><em>~</em></p><p>KSnzLisSi1z0so, which fits&nbsp;well the general&nbsp;structural for- </p><p><em>~l~ </em><br><em>The Mineralogical &nbsp; Record </em></p><p>76 </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us