Molecular Architecture of G O and the Structural Basis for RGS16

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Architecture of G O and the Structural Basis for RGS16 Molecular architecture of G␣o and the structural basis for RGS16-mediated deactivation Kevin C. Slep*†, Michele A. Kercher‡§, Thomas Wieland¶ʈ, Ching-Kang Chen¶, Melvin I. Simon¶**, and Paul B. Sigler‡§†† *Department of Biology, University of North Carolina, Chapel Hill, NC 27599; ‡Department of Molecular Biophysics and Biochemistry, and §Howard Hughes Medical Institute, Yale University, New Haven, CT 06511; and ¶Division of Biology, California Institute of Technology, Mail Code 147-75, Pasadena, CA 91125 Contributed by Melvin I. Simon, February 16, 2008 (sent for review December 18, 2007) Heterotrimeric G proteins relay extracellular cues from heptahelical (11). With the number of RGS proteins greatly exceeding the transmembrane receptors to downstream effector molecules. number of G␣ subunits, RGS proteins are likely to be finely tuned, Composed of an ␣ subunit with intrinsic GTPase activity and a ␤␥ titrated, and localized to regulate specific signaling pathways within heterodimer, the trimeric complex dissociates upon receptor- aG␣ subunit’s repertoire of effector targets. To mediate the mediated nucleotide exchange on the ␣ subunit, enabling each specificity and fidelity requisite for accurate signal transmission, the component to engage downstream effector targets for either G␣ subunit and its binding partners (GPCR, G␤␥, RGS, and activation or inhibition as dictated in a particular pathway. To effector) must have specific reciprocating molecular determinants mitigate excessive effector engagement and concomitant signal to minimize the convergence of independent signaling pathways. transmission, the G␣ subunit’s intrinsic activation timer (the rate of Thus, a comprehensive understanding of the molecular basis for G␣ GTP hydrolysis) is regulated spatially and temporally by a class of engagement with its activators, regulators, and effectors is critical GTPase accelerating proteins (GAPs) known as the regulator of G for elucidating specificity determinants. RGS subfamilies pair with protein signaling (RGS) family. The array of G protein-coupled distinct cognate G␣ substrates via unique stereochemical binding receptors, G␣ subunits, RGS proteins and downstream effectors in determinants. The RGS subfamilies R4, R7, and R12 engage G␣i/o mammalian systems is vast. Understanding the molecular deter- (3, 12, 13); the R4 subfamily also engages G␣q (14); the rgRGS minants of specificity is critical for a comprehensive mapping of the subfamily engages G␣12/13 (15); and the RZ subfamily engages G␣z G protein system. Here, we present the 2.9 Å crystal structure of the and G␣i (3, 16, 17). It is noted that G␣–RGS interaction modes enigmatic, neuronal G protein G␣o in the GTP hydrolytic transition observed in R4, R7 and R12 (5, 7) [see accompanying article by state, complexed with RGS16. Comparison with the 1.89 Å struc- Soundararajan et al. (18)] contrast with the unique interlocking ture of apo-RGS16, also presented here, reveals plasticity upon G␣o geometry observed between p115RhoGEF rgRGS and the G␣13/i1 binding, the determinants for GAP activity, and the structurally chimera (19) and the effector-like binding mode observed between unique features of G␣o that likely distinguish it physiologically GRK2 and G␣q (20). from other members of the larger G␣i family, affording insight to G␣o is a member of the G␣i family, which includes G␣i1-3 and receptor, GAP and effector specificity. G␣t. Although G␣o is the most abundant G␣ subunit in the human brain, little is known about the pathways it is involved in, G protein ͉ GAP ͉ RGS in stark contrast to our understanding of G␣i1-3 and G␣t. Much of the work on G␣o to date has implicated a role for its cognate ␤␥ 2ϩ any extracellular cues ranging from photons to neurotrans- G subunit in the activation of Ca channels (21). Additional ␣ Mmitters are detected with high specificity by G protein- evidence points to G o involvement in signaling from A1- coupled receptors that in turn elicit an intracellular response by adenosine receptors (22), dopamine D2 receptors (D2R) (23) ␮ ␣ promoting GTP exchange on the ␣ subunit of a heterotrimeric and -opioid signaling (24). A G o effector molecule has been ␣ reported, GRIN1, which promotes growth cone neurite exten- G protein. The heterotrimeric G protein, composed of an ␣ subunit exhibiting endogenous GTPase activity and a het- sion in the mammalian brain (25). The implicated role of G o as ␤␥ a mediator and regulator of core neurological and cognitive erodimeric subunit, dissociates, enabling each component to ␣ activate downstream effectors until GTP is hydrolyzed on the ␣ GPCR-coupled pathways positions G o as a prime target for subunit and the heterotrimeric complex reforms. The ␣ subunit’s pharmaceutical intervention. A molecular understanding of endogenous GTP hydrolysis rate is relatively slow, therefore the downstream signaling components is a key step toward identi- cell uses GTPase accelerating proteins (GAPs) to increase the fying potential therapeutic points of drug intervention used rate to suit the time scale and magnitude needed for a specific physiological response. Author contributions: K.C.S., M.A.K., and P.B.S. designed research; K.C.S. and M.A.K. per- BIOCHEMISTRY The regulators of G protein signaling (RGS) proteins are a class formed research; T.W., C.-K.C., and M.I.S. contributed new reagents/analytic tools; K.C.S., of heterotrimeric G protein GAP first identified in Saccharomyces M.A.K., and P.B.S. analyzed data; and K.C.S. and M.I.S. wrote the paper. cerevisiae (Sst2) and Caenorhabditis elegans (Egl10) (1, 2). Studies, The authors declare no conflict of interest. both biochemical and structural, have shown an overall preference Data Deposition: The atomic coordinates have been deposited in the Protein Data Bank, for RGS domains to bind G␣ subunits in their transition state www.pdb.org (PDB ID codes 3C7L and 3C7K). Ϫ (mimicked by the analog GDP⅐AlF4 ) and to accelerate GTPase †To whom correspondence may be addressed at: Department of Biology, CB# 3280, 402 activity by stabilizing the transition state of hydrolysis, thereby Fordham Hall, University of North Carolina, Chapel Hill, NC 27599-3280. E-mail: optimizing the endogenous GTPase activity of the G␣ subunit [email protected]. ʈ without directly contributing to the hydrolytic mechanism (3–5). Present Address: Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Maybachstrasse 14, D-68169 RGS proteins serve to quench the G protein signal temporally and Mannheim, Germany. spatially, either independently, or coupled (in cis or in trans)toan **To whom correspondence may be addressed at: Division of Biology, California Institute effector (6, 7). Thirty-seven RGS proteins have been identified in of Technology, Mail Code 147-75, 1200 East California Boulevard, Pasadena, CA 91125. the human genome, cataloged into eight subfamilies based on the E-mail: [email protected]. protein family the RGS domain resides delineated as RGS sub- ††Deceased January 11, 2000. families R4, R7, R12, RZ, and RhoGEF RGS (rgRGS); G protein- This article contains supporting information online at www.pnas.org/cgi/content/full/ coupled receptor kinases (GRKs); sorting nexins; and Axin (8–10). 0801569105/DCSupplemental. Each member displays a unique expression and localization pattern © 2008 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0801569105 PNAS ͉ April 29, 2008 ͉ vol. 105 ͉ no. 17 ͉ 6243–6248 Downloaded by guest on September 28, 2021 Ϫ Ϫ Fig. 1. Structure of the G␣o⅐GDP⅐AlF4 ⅐RGS16 complex. The G␣o⅐GDP⅐AlF4 ⅐RGS16 complex is represented in ribbons format. RGS16 is indicated in gray; G␣o GTPase domain is in green with nucleotide-dependent switch regions highlighted in orange; G␣o helical domain is in purple. Structure at Right is rotated 90° about the y axis relative to the structure at Left. alone or in combination with GPCR-targeted drugs to minimize 7). The two subdomains are united by a conserved hydropho- side effects (26). bic interface that constitutes the structure’s core. RGS16 is a Here, we report the first crystal structure determination of conserved member of the R4 RGS subfamily and retains G␣o, presented in the transition state of hydrolysis, complexed central conserved elements that define RGS domains except with the R4 subfamily RGS protein RGS16 (27). G␣o displays a for one component, Thr-158, which replaces the conserved number of unique determinants that likely affords it specificity isoleucine or valine found in the equivalent position across all in receptor, RGS, and effector engagement. We discuss the other RGS members (Fig. S1). Thr-158 is buried in the conserved nature of the RGS GAP mechanism, structural hydrophobic core between the two subdomains. It enhances aspects that confer specificity, and the plasticity of the RGS stabilization through a hydrogen bond to the residue 154 domain required to engage and maintain binding during the backbone carbonyl and engages the side chain of Phe-93 in a ␣ transformation of G o from the GTP-bound state to the tran- unique geometry independently confirmed by Soundararajan ␣ ⅐ ⅐ Ϫ⅐ sition state by comparing the G o GDP AlF4 RGS16 complex et al. (18). to our independently determined structure of apo-RGS16, also ␣ presented here. The G –RGS interactions noted in our deter- The RGS16 GAP Mechanism. The RGS16 RGS domain engages the ␣ mination of G o complexed to RGS16 dovetails with specificity G␣ switch regions via a conserved interface that buttresses their findings presented in an accompanying article by Soundararajan transition state conformation. The interaction is structurally et al. (18), facilitating the first examination of an RGS protein similar to that observed in G␣ ⅐RGS4 and G␣ ⅐RGS9 struc- ␣ i1 i1/t complexed to different G subunits. tures (5, 7). Although the total group of interactions between the ␣ Results and Discussion RGS domain and the G switch regions is not identical between ␣ ⅐ ␣ these pairs, key conserved RGS residues are used in identical Architecture of the G o RGS16 Complex.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Related Malignant Phenotypes in the Nf1-Deficient MPNST
    Published OnlineFirst February 19, 2013; DOI: 10.1158/1541-7786.MCR-12-0593 Molecular Cancer Genomics Research RAS/MEK–Independent Gene Expression Reveals BMP2- Related Malignant Phenotypes in the Nf1-Deficient MPNST Daochun Sun1, Ramsi Haddad2,3, Janice M. Kraniak2, Steven D. Horne1, and Michael A. Tainsky1,2 Abstract Malignant peripheral nerve sheath tumor (MPNST) is a type of soft tissue sarcoma that occurs in carriers of germline mutations in Nf1 gene as well as sporadically. Neurofibromin, encoded by the Nf1 gene, functions as a GTPase-activating protein (GAP) whose mutation leads to activation of wt-RAS and mitogen-activated protein kinase (MAPK) signaling in neurofibromatosis type I (NF1) patients' tumors. However, therapeutic targeting of RAS and MAPK have had limited success in this disease. In this study, we modulated NRAS, mitogen-activated protein/extracellular signal–regulated kinase (MEK)1/2, and neurofibromin levels in MPNST cells and determined gene expression changes to evaluate the regulation of signaling pathways in MPNST cells. Gene expression changes due to neurofibromin modulation but independent of NRAS and MEK1/2 regulation in MPNST cells indicated bone morphogenetic protein 2 (Bmp2) signaling as a key pathway. The BMP2-SMAD1/5/8 pathway was activated in NF1-associated MPNST cells and inhibition of BMP2 signaling by LDN-193189 or short hairpin RNA (shRNA) to BMP2 decreased the motility and invasion of NF1-associated MPNST cells. The pathway-specific gene changes provide a greater understanding of the complex role of neurofibromin in MPNST pathology and novel targets for drug discovery. Mol Cancer Res; 11(6); 616–27.
    [Show full text]
  • Identification of Transcriptional Mechanisms Downstream of Nf1 Gene Defeciency in Malignant Peripheral Nerve Sheath Tumors Daochun Sun Wayne State University
    Wayne State University DigitalCommons@WayneState Wayne State University Dissertations 1-1-2012 Identification of transcriptional mechanisms downstream of nf1 gene defeciency in malignant peripheral nerve sheath tumors Daochun Sun Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Sun, Daochun, "Identification of transcriptional mechanisms downstream of nf1 gene defeciency in malignant peripheral nerve sheath tumors" (2012). Wayne State University Dissertations. Paper 558. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. IDENTIFICATION OF TRANSCRIPTIONAL MECHANISMS DOWNSTREAM OF NF1 GENE DEFECIENCY IN MALIGNANT PERIPHERAL NERVE SHEATH TUMORS by DAOCHUN SUN DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2012 MAJOR: MOLECULAR BIOLOGY AND GENETICS Approved by: _______________________________________ Advisor Date _______________________________________ _______________________________________ _______________________________________ © COPYRIGHT BY DAOCHUN SUN 2012 All Rights Reserved DEDICATION This work is dedicated to my parents and my wife Ze Zheng for their continuous support and understanding during the years of my education. I could not achieve my goal without them. ii ACKNOWLEDGMENTS I would like to express tremendous appreciation to my mentor, Dr. Michael Tainsky. His guidance and encouragement throughout this project made this dissertation come true. I would also like to thank my committee members, Dr. Raymond Mattingly and Dr. John Reiners Jr. for their sustained attention to this project during the monthly NF1 group meetings and committee meetings, Dr.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • Egfr Activates a Taz-Driven Oncogenic Program in Glioblastoma
    EGFR ACTIVATES A TAZ-DRIVEN ONCOGENIC PROGRAM IN GLIOBLASTOMA by Minling Gao A thesis submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March 2020 ©2020 Minling Gao All rights reserved Abstract Hyperactivated EGFR signaling is associated with about 45% of Glioblastoma (GBM), the most aggressive and lethal primary brain tumor in humans. However, the oncogenic transcriptional events driven by EGFR are still incompletely understood. We studied the role of the transcription factor TAZ to better understand master transcriptional regulators in mediating the EGFR signaling pathway in GBM. The transcriptional coactivator with PDZ- binding motif (TAZ) and its paralog gene, the Yes-associated protein (YAP) are two transcriptional co-activators that play important roles in multiple cancer types and are regulated in a context-dependent manner by various upstream signaling pathways, e.g. the Hippo, WNT and GPCR signaling. In GBM cells, TAZ functions as an oncogene that drives mesenchymal transition and radioresistance. This thesis intends to broaden our understanding of EGFR signaling and TAZ regulation in GBM. In patient-derived GBM cell models, EGF induced TAZ and its known gene targets through EGFR and downstream tyrosine kinases (ERK1/2 and STAT3). In GBM cells with EGFRvIII, an EGF-independent and constitutively active mutation, TAZ showed EGF- independent hyperactivation when compared to EGFRvIII-negative cells. These results revealed a novel EGFR-TAZ signaling axis in GBM cells. The second contribution of this thesis is that we performed next-generation sequencing to establish the first genome-wide map of EGF-induced TAZ target genes.
    [Show full text]
  • The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
    The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem.
    [Show full text]
  • The Human Regulator of G-Protein Signaling Protein 6 Gene (RGS6) Maps Between Markers WI-5202 and D14S277 on Chromosome 14Q24.3
    138J Hum Genet (1999) 44:138–140 © Jpn Soc Hum Genet and Springer-Verlag 1999 BRIEF REPORT—GENE MAPPING Naohiko Seki · Atsushi Hattori · Akiko Hayashi Sumie Kozuma · Tada-aki Hori · Toshiyuki Saito The human regulator of G-protein signaling protein 6 gene (RGS6) maps between markers WI-5202 and D14S277 on chromosome 14q24.3 Received: September 14, 1998 / Accepted: November 1, 1998 Abstract The recently discovered regulators of G-protein proteins by activating the intrinsic GTPase activity of the α signaling proteins, termed the RGS family, have been subunits (for reviews, see Dohlman and Thorner 1997; shown to modulate the functioning of G-proteins by activat- Koelle 1997; Neer 1997). ing the intrinsic guanosine triphosphatase (GTPase) activity At present, full or partial sequences of the mRNAs for of the α subunits. Here, we report the chromosomal loca- numerous putative RGS proteins have been identified in tion and tissue expression of the human regulator of RGS6 mammalian species (De Vries et al. 1995; Chen et al. 1996; gene. The messenger RNA was ubiquitously expressed in Druey et al. 1996; Koelle and Horvitz, 1996; Siderovski et al. various tissues. Polymerase chain reaction (PCR)-based 1996; Gold et al. 1997; Snow et al. 1997; 1998; Seki et al. analysis with a human/rodent monochromosomal hybrid 1998a). The cDNA sequence of human RGS6 has recently panel and a radiation hybrid panel indicated that the gene been registered with the public database (accession number was mapped between genetic markers WI-5202 and AF073920). We are attempting to carry out systematic chro- D14S277 on chromosome 14q24.3 region.
    [Show full text]
  • Hedgehog Inhibitor Sonidegib Potentiates 177Lu-Octreotate
    Spetz et al. BMC Cancer (2017) 17:528 DOI 10.1186/s12885-017-3524-x RESEARCH ARTICLE Open Access Hedgehog inhibitor sonidegib potentiates 177Lu-octreotate therapy of GOT1 human small intestine neuroendocrine tumors in nude mice Johan Spetz1* , Britta Langen1, Nils Rudqvist1, Toshima Z. Parris2, Khalil Helou2, Ola Nilsson3 and Eva Forssell-Aronsson1 Abstract Background: 177Lu-octreotate can be used to treat somatostatin receptor expressing neuroendocrine tumors. It is highly effective in animal models, but clinical studies have so far only demonstrated low cure rates. Hedgehog inhibitors have shown therapeutic effect as monotherapy in neuroendocrine tumor model systems and might be one option to enhance the efficacy of 177Lu-octreotate therapy. The aim of this study was to determine the therapeutic effect of combination therapy using 177Lu-octreotate and the Hedgehog signaling pathway inhibitor sonidegib. Methods: GOT1-bearing BALB/c nude mice were treated with either sonidegib (80 mg/kg twice a week via oral gavage), a single injection of 30 MBq 177Lu-octreotate i.v., or a combination of both. Untreated animals served as controls. Tumor size was measured twice-weekly using calipers. The animals were killed 41 d after injection followed by excision of the tumors. Total RNA was extracted from each tumor sample and then subjected to gene expression analysis. Gene expression patterns were compared with those of untreated controls using Nexus Expression 3.0, IPA and Gene Ontology terms. Western blot was carried out on total protein extracted from the tumor samples to analyze activation-states of the Hh and PI3K/AKT/mTOR pathways. Results: Sonidegib monotherapy resulted in inhibition of tumor growth, while a significant reduction in mean tumor volume was observed after 177Lu-octreotate monotherapy and combination therapy.
    [Show full text]
  • De-Repression of the RAC Activator ELMO1 in Cancer Stem Cells
    RESEARCH ARTICLE De-repression of the RAC activator ELMO1 in cancer stem cells drives progression of TGFb-deficient squamous cell carcinoma from transition zones Heather A McCauley1*, Ve´ ronique Chevrier2, Daniel Birnbaum2, Ge´ raldine Guasch1,2* 1Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, United States; 2Centre de Recherche en Cance´rologie de Marseille (CRCM), Inserm, U1068, F-13009, CNRS, UMR7258, F-13009, Institut Paoli- Calmettes, F-13009, Aix-Marseille University, UM 105, F-13284, Marseille, France Abstract Squamous cell carcinomas occurring at transition zones are highly malignant tumors with poor prognosis. The identity of the cell population and the signaling pathways involved in the progression of transition zone squamous cell carcinoma are poorly understood, hence representing limited options for targeted therapies. Here, we identify a highly tumorigenic cancer stem cell population in a mouse model of transitional epithelial carcinoma and uncover a novel mechanism by which loss of TGFb receptor II (Tgfbr2) mediates invasion and metastasis through de-repression of ELMO1, a RAC-activating guanine exchange factor, specifically in cancer stem cells of transition zone tumors. We identify ELMO1 as a novel target of TGFb signaling and show that restoration of Tgfbr2 results in a complete block of ELMO1 in vivo. Knocking down Elmo1 impairs metastasis of carcinoma cells to the lung, thereby providing insights into the mechanisms of progression of *For correspondence: Heather. Tgfbr2-deficient invasive transition zone squamous cell carcinoma. [email protected] (HAM); DOI: 10.7554/eLife.22914.001 geraldine.guasch-grangeon@ inserm.fr (GG) Competing interests: The authors declare that no Introduction competing interests exist.
    [Show full text]
  • A Major Qualifying Project Report Submitted to The
    A MAJOR QUALIFYING PROJECT REPORT SUBMITTED TO THE FACULTY OF THE WORCESTER POLYTECHNIC INSTITUTE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE BY DONGNI ZHANG, MA DATE: NOVEMBER 10TH, 2014 SPONSORED BY: WORCESTER POLYTECHNIC INSTITUTE PROJECT ADVISOR: PROFESSOR ZHEYANG WU Table of Contents ChaptEr 1: Introduction ........................................................................................................................................... 3 ChaptEr 2: MEthodology .......................................................................................................................................... 4 ResEarch design ................................................................................................................................................... 4 Seed gene detection ............................................................................................................................................ 5 CandidatE gEne detEction .................................................................................................................................... 5 AnnotatE nsSNVs according to protEin binding sitEs ........................................................................................... 6 Likelihood ratio tEsts (LRT) .................................................................................................................................. 6 LRT for burdEn scorE wEightEd by binding sitE information (LRT-BS) ................................................................
    [Show full text]
  • The Genetic Basis of Intradural Spinal Tumors and Its Impact on Clinical Treatment
    NEUROSURGICAL FOCUS Neurosurg Focus 39 (2):E3, 2015 The genetic basis of intradural spinal tumors and its impact on clinical treatment Michael Karsy, MD, PhD, Jian Guan, MD, Walavan Sivakumar, MD, Jayson A. Neil, MD, Meic H. Schmidt, MD, MBA, and Mark A. Mahan, MD Department of Neurosurgery, Clinical Neurosciences Center, The University of Utah, Salt Lake City, Utah Genetic alterations in the cells of intradural spinal tumors can have a significant impact on the treatment options, coun- seling, and prognosis for patients. Although surgery is the primary therapy for most intradural tumors, radiochemothera- peutic modalities and targeted interventions play an ever-evolving role in treating aggressive cancers and in addressing cancer recurrence in long-term survivors. Recent studies have helped delineate specific genetic and molecular differ- ences between intradural spinal tumors and their intracranial counterparts and have also identified significant variation in therapeutic effects on these tumors. This review discusses the genetic and molecular alterations in the most common intradural spinal tumors in both adult and pediatric patients, including nerve sheath tumors (that is, neurofibroma and schwannoma), meningioma, ependymoma, astrocytoma (that is, low-grade glioma, anaplastic astrocytoma, and glioblas- toma), hemangioblastoma, and medulloblastoma. It also examines the genetics of metastatic tumors to the spinal cord, arising either from the CNS or from systemic sources. Importantly, the impact of this knowledge on therapeutic options
    [Show full text]
  • G-PROTEIN COUPLED RECEPTOR MEDIATED SIGNALING PATHWAYS in CHEMORESISTANT MELANOMA and OVARIAN CANCER by MOLLY KOERTEL ALTMAN
    G-PROTEIN COUPLED RECEPTOR MEDIATED SIGNALING PATHWAYS IN CHEMORESISTANT MELANOMA AND OVARIAN CANCER by MOLLY KOERTEL ALTMAN (Under the Direction of MANDI M. MURPH) ABSTRACT Cellular signaling pathways are involved in numerous physiological processes such as reproduction, growth, and the development of cancer and chemoresistance. G- protein coupled receptors (GPCRs) are master regulators of many signaling pathways as they are expressed in numerous tissues types throughout the body. GPCRs are being investigated in cancer development particularly through their roles in angiogenesis, metastasis, and inflammation-associated cancer. Growth factors that bind and activate GPCRs to mediate signaling pathways involved in growth and survival include lysophosphatidic acid (LPA). In our studies, both in vitro and in vivo methods were used to test the importance of several signaling pathways in chemoresistant cancer cell survival and tumor biology. In our studies, we found that specific Regulators of G-protein signaling (RGS) proteins are involved in modulating growth and survival pathways in ovarian cancer. Specifically, we showed that silencing of RGS10 and RGS17 proteins increases viability of ovarian cancer cells, and we further examined the role of modulating RGS10 expression on cell differentiation, proliferation, and survival pathways. We also showed that the inhibition of autotaxin the enzyme that produces LPA is a potential therapeutic target for melanoma and how LPA mediated receptor pathways can be manipulated to overcome chemoresistance in cancer. Our most valuable observation was that our novel compounds were able to reduce tumor progression in vivo in a primary xenograft model of melanoma in correlation with a reduction in markers of angiogenesis. Our data serves to help better understand signaling pathways involved in the development of chemoresistance.
    [Show full text]