Top 20 Innovative Bio-Based Products

Total Page:16

File Type:pdf, Size:1020Kb

Top 20 Innovative Bio-Based Products Top 20 innovative bio-based products Task 3 of “Study on Support to R&I Policy in the Area of Bio-based Products and Services” Written by University of Bologna and Fraunhofer ISI EN December – 2018 Top 20 innovative bio-based products European Commission Directorate-General for Research and Innovation Directorate F — Bioeconomy Unit F.2 — Biobased Products and Processing Contact Maria Fernandez Gutierrez E-mail [email protected] [email protected] European Commission B-1049 Brussels Manuscript completed in December 2018. This document has been prepared for the European Commission however it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. More information on the European Union is available on the internet (http://europa.eu). Luxembourg: Publications Office of the European Union, 2019 PDF ISBN 978-92-76-03420-9 doi: 10.2777/85805 KI-02-19-301-EN-N © European Union, 2019. Reuse is authorised provided the source is acknowledged. The reuse policy of European Commission documents is regulated by Decision 2011/833/EU (OJ L 330, 14.12.2011, p. 39). For any use or reproduction of photos or other material that is not under the EU copyright, permission must be sought directly from the copyright holders. EUROPEAN COMMISSION Top 20 innovative bio-based products Task 3 of “Study on Support to R&I Policy in the Area of Bio-based Products and Services” edited by University of Bologna and Fraunhofer ISI Directorate-General for Research and Innovation 2019 EN 1 Table of Contents ABSTRACT ........................................................................................................ 3 RESUME SCIENTIFIQUE ...................................................................................... 3 EXECUTIVE SUMMARY ........................................................................................ 4 RESUME ........................................................................................................... 10 SECTION 1 BACKGROUND, POLICY CONTEXT AND AIM OF THE STUDY ................... 18 1 Background ................................................................................................................ 18 2 Policy context ............................................................................................................. 19 3 Aim of the study ......................................................................................................... 20 SECTION 2 APPROACH AND METHODOLOGY ........................................................ 24 SECTION 3 BRIEF INTRODUCTION TO THE BIOMASS COMPONENTS INCLUDED IN THE STUDY ............................................................................................................. 27 SECTION 4 THE DATABASE OF BIO-BASED PRODUCTS UNDER DEVELOPMENT: RELEVANT OUTCOMES ....................................................................................... 35 SECTION 5 THE SELECTED TOP 20 INNOVATIVE BIO-BASED PRODUCTS: RELEVANT OUTCOMES ....................................................................................................... 49 SECTION 6 DETAILED CASE STUDIES ON THE TOP 20 INNOVATIVE BIO-BASED PRODUCTS ....................................................................................................... 53 1 Guayule rubber ........................................................................................................... 54 2 Microfibrillated cellulose (nanocellulose) ......................................................................... 63 3 Thermoplastic biopolymers reinforced with plant fibres .................................................... 71 4 Plant fibres reinforced bioresin pre-pregs ....................................................................... 80 5 Self-binding composite non-woven plant fibres ............................................................... 89 6 Lignin biocomposites reinforced with plant fibres............................................................. 94 7 High-purity lignin ........................................................................................................ 99 8 Lignin-based carbon nanofibres .................................................................................... 110 9 Lignin bio-oil .............................................................................................................. 119 10 Lignin-based phenolic resins ......................................................................................... 131 11 Bio-BTX aromatics ...................................................................................................... 141 12 Bio-based phenol and alkylphenols ................................................................................ 151 13 Bio-based polyamide 12 ............................................................................................... 158 14 Biolubricants .............................................................................................................. 170 15 PHAs from renewable oils and fats ................................................................................ 180 16 Limonene-based engineering polymers .......................................................................... 193 17 Bacterial biosurfactants: sophorolipids and rhamnolipids .................................................. 202 18 Biotechnological chitosan ............................................................................................. 212 19 PHAs from urban wastes .............................................................................................. 228 20 Volatile fatty acids (VFAs) mixture ................................................................................ 236 SECTION 7 R&D GAPS ....................................................................................... 244 ABBREVIATIONS ............................................................................................... 267 APPENDIX A - SHORT DESCRIPTIONS OF THE INNOVATIVE BIO-BASED PRODUCTS INCLUDED IN THE DATABASE ............................................................................. 269 APPENDIX B - DATA SOURCES AND LITERATURE SURVEY ..................................... 291 2 ABSTRACT This study was carried out for the EC-DG RTD in the framework of the BIOSPRI tender "Study on support to R&I policy in the area of bio-based products (BBPs) and services", and was implemented by the University of Bologna (Italy) and Fraunhofer ISI (Germany) as part of a Consortium led by COWI A/S (Denmark). The study mapped the most relevant value chains currently under development that derive from main biomass components (natural rubber, plant fibres, lignin, renewable oils and fats) and low-volume high-value (LVHV) biomass components (terpenes, natural polyelectrolytes), in addition to urban wastes. The sugar platform was not included in the present study because its potential exploitation for the development of biofuels and biochemicals was covered in a previous study commissioned by the European Commission, and concluded in 2015 [1]. While more than 100 innovative BBPs were monitored, lignin was found to be generating the highest number of innovative products, together with terpenes and urban wastes. More than 30 innovative BBPs are approaching full availability on the market, and more than 20 products are now at the pilot plant level. Through an assessment based on the active marketplace, EU-based development, degree of innovation and market potential, the TOP20 most innovative BBPs holding the greatest promise for commercial deployment within the next 5-10 years were identified. This selection includes engineering materials, new bioplastics, high added-value products for demanding applications in the pharmaceutical and biomedical fields, as well as sustainable substitutes for critical raw materials. Detailed case studies were developed on the TOP20 innovative BBPs. RÉSUMÉ SCIENTIFIQUE Cette étude a été réalisée pour le compte de la CE-DG RTD, dans le cadre du projet BIOSPRI «Study on support to R&I policy in the area of bio-based products (BBPs) and services». Elle a été menée par l’Université de Bologne (Italie) et Fraunhofer ISI (Allemagne), parties prenantes du consortium dirigé par COWI A/S (Danemark). L’étude a permis de dresser une liste des chaînes de valeur les plus pertinentes en cours de développement, provenant des principaux composants de la biomasse (caoutchouc naturel, fibres végétales, lignine, huiles et graisses recyclables), des composants de la biomasse à faible volume et à forte valeur (terpènes, polyélectrolytes naturels), ainsi que des déchets urbains. Le sucre en tant que matière première n’a pas été abordé dans cette étude car son exploitation potentielle pour le développement de biocarburants et de produits biochimiques a déjà été traitée dans une étude commandée par la Communauté Européenne et présentée en 2015 [1]. Sur plus de 100 BBPs analysés, il a été constaté que la lignine, le terpène et les déchets urbains généraient le plus grand nombre de produits innovants. Plus de 30 BBPs innovants sont sur le point d’être commercialisés à grande échelle, et plus de 20 produits en sont à l’étape de l’usine pilote. Grâce à une évaluation basée sur le marché actif, le degré de développement au niveau de l’Union Européenne, le degré d’innovation et le potentiel commercial, le TOP20 des BBPs les plus innovants offrant les meilleures perspectives de déploiement commercial dans les 5 à 10
Recommended publications
  • Making! the E-Magazine for the Fibrous Forest Products Sector
    PAPERmaking! The e-magazine for the Fibrous Forest Products Sector Produced by: The Paper Industry Technical Association Volume 5 / Number 1 / 2019 PAPERmaking! FROM THE PUBLISHERS OF PAPER TECHNOLOGY Volume 5, Number 1, 2019 CONTENTS: FEATURE ARTICLES: 1. Wastewater: Modelling control of an anaerobic reactor 2. Biobleaching: Enzyme bleaching of wood pulp 3. Novel Coatings: Using solutions of cellulose for coating purposes 4. Warehouse Design: Optimising design by using Augmented Reality technology 5. Analysis: Flow cytometry for analysis of polyelectrolyte complexes 6. Wood Panel: Explosion severity caused by wood dust 7. Agriwaste: Soda-AQ pulping of agriwaste in Sudan 8. New Ideas: 5 tips to help nurture new ideas 9. Driving: Driving in wet weather - problems caused by Spring showers 10. Women and Leadership: Importance of mentoring and sponsoring to leaders 11. Networking: 8 networking skills required by professionals 12. Time Management: 101 tips to boost everyday productivity 13. Report Writing: An introduction to report writing skills SUPPLIERS NEWS SECTION: Products & Services: Section 1 – PITA Corporate Members: ABB / ARCHROMA / JARSHIRE / VALMET Section 2 – Other Suppliers Materials Handling / Safety / Testing & Analysis / Miscellaneous DATA COMPILATION: Installations: Overview of equipment orders and installations since November 2018 Research Articles: Recent peer-reviewed articles from the technical paper press Technical Abstracts: Recent peer-reviewed articles from the general scientific press Events: Information on forthcoming national and international events and courses The Paper Industry Technical Association (PITA) is an independent organisation which operates for the general benefit of its members – both individual and corporate – dedicated to promoting and improving the technical and scientific knowledge of those working in the UK pulp and paper industry.
    [Show full text]
  • The Effect of Organosolv Pretreatment Variables on Enzymatic Hydrolysis of Sugarcane Bagasse
    Chemical Engineering Journal 168 (2011) 1157–1162 Contents lists available at ScienceDirect Chemical Engineering Journal journal homepage: www.elsevier.com/locate/cej The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse L. Mesa a, E. González a, C. Cara b, M. González a, E. Castro b, S.I. Mussatto c,∗ a Center of Analysis Process, Faculty of Chemistry and Pharmacy, Central University of Las Villas, Villa Clara, Cuba b Department of Chemical Environmental and Materials Engineering, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain c Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal article info abstract Article history: Sugarcane bagasse pretreated with dilute-acid was submitted to an organosolv ethanol process with Received 10 November 2010 NaOH under different operational conditions (pretreatment time, temperature, and ethanol concentra- Received in revised form 27 January 2011 tion) aiming to maximize the glucose yield in the subsequent enzymatic hydrolysis stage. The different Accepted 3 February 2011 pretreatment conditions resulted in variations in the chemical composition of the solid residue as well as in the glucose recovered by enzymatic hydrolysis. All the studied variables presented significant (p < 0.05) Keywords: influence on the process. The optimum organosolv pretreatment conditions consisted in using 30% (v/v) Sugarcane bagasse ethanol at 195 ◦C, during 60 min. Enzymatic hydrolysis of the residue then obtained produced 18.1 g/l Organosolv Ethanol glucose, correspondent to a yield of 29.1 g glucose/100 g sugarcane bagasse. The scale-up of this process, Enzymatic hydrolysis by performing the acid pretreatment in a 10-l semi-pilot reactor fed with direct steam, was success- Glucose fully performed, being obtained a glucose yield similar to that found when the acid pretreatment was performed in autoclave.
    [Show full text]
  • Production of Sugars, Ethanol and Tannin from Spruce Bark and Recovered Fibres
    IENCE SC • VTT SCIENCE • T S E Production of sugars, ethanol and tannin from N C O H I N spruce bark and recovered fibres S O I V Dissertation L • O S G Valorisation of forest industry-related side- and waste streams in a T 76 Y H • R G biorefinery context could help to reduce dependence on fossil I E L S H 76 E G A resources and introduce new value chains and sources of income I R H C for the forest industry. This thesis examined two abundant and H underutilized biomass streams spruce bark and recovered fibres as biorefinery feedstocks for the production of sugars, ethanol and tannin. Hot water extraction of tannins from spruce bark, steam explosion to reduce the recalcitrance of the feedstock towards hydrolytic Production of sugars, ethanol and tannin from spruce... enzymes, enzymatic hydrolysis of bark carbohydrates and fermentation of released sugars to ethanol were demonstrated and the effect of main process parameters studied. Recovered fibres were fractionated from solid recovered fuel, a standardised combustion fuel composed mainly of packaging waste, and the composition and enzymatic digestibility of the material were determined. The effect of pretreatment, solids loading and the use of surfactants on hydrolysis yield was studied. Selected steps for processing spruce bark and recovered fibres were scaled up from laboratory- to small pilot scale.The results of the work carried out in this thesis indicate that the biorefinery concepts presented for spruce bark and recovered fibres have technical potential for industrial application. Production
    [Show full text]
  • “Accelerating Innovation and Market Uptake of Biobased Products” Biobased for Growth a PUBLIC-PRIVATE PARTNERSHIP on BIOBASED INDUSTRIES Table of Content
    “Accelerating innovation and market uptake of biobased products” Biobased for Growth A PUBLIC-PRIVATE PARTNERSHIP ON BIOBASED INDUSTRIES Table of content 1 Introduction 6 1.1 PPP initiative backed by a committed consortium 6 1.2 Strategic objectives 7 2 Answering Europe’s biobased challenges 9 3 Strong added value of acting at EU level 10 4 Economic analysis – current state of play and analysis of economic impact 11 5 Broader socio-economic impact analysis 13 6 Priority research & innovation areas 15 6.1 Fostering a sustainable biomass supply 16 6.2 Biorefi neries: Optimising effi cient processing 18 6.3 Developing markets, products and policies 21 7 An organisation is built that fi ts the challenges 23 7.1 Introduction 23 7.2 The biobased PPP Institute 24 7.3 Position in the fi eld 27 Annex 1 An Overview of founding partners companies 29 Annex 2 Research and technological challenges 31 Annex 3 Biomass supply – overview of today’s practice 36 Annex 4 Lead Market Initiative - priority recommendations 39 Annex 5 Policy Feedback mechanism 41 DRAFT Executive summary Our vision is that of a competitive, innovative and sustainable Europe: leading the transi- tion towards a post-petroleum society while decoupling economic growth from resource depletion and environmental impact. We envisage a biobased economy founded on locally sourced and produced plant and waste-derived materials, chemicals, fuels, food and feed. At the heart of this vision are biorefi neries which will gradually replace oil refi neries by using renewable resources in place of fossil fuels. In doing so, biorefi neries will play an important part in spurring growth and drive the effort to reindustrialise Europe.
    [Show full text]
  • Research for a Biobased Economy Success Stories and Challenges Facing the German Bioeconomy
    Research for a biobased economy Success stories and challenges facing the German bioeconomy 1 Contents Preface 2 Bioeconomy – Foundation for a sustainable economy 4 How can the economy and ecology be reconciled? ...................................................................................................... 4 The bioeconomy as a driver of innovation ...................................................................................................................... 5 The policy and research context of the bioeconomy 8 Clear visions for a cross-departmental strategy ............................................................................................................ 8 Further development of the research agenda in the bioeconomy ...........................................................................10 Innovations for a biobased economy 12 Field of action: Securing global nutrition ......................................................................................................................15 Field of action: Ensuring sustainable agricultural production ..................................................................................18 Field of action: Producing healthy and safe foods ......................................................................................................21 Field of action: Using renewable resources for industry ............................................................................................23 Field of action: Developing biomass-based energy carriers ......................................................................................27
    [Show full text]
  • Extrusion Foaming of Bioplastics for Lightweight Structure in Food Packaging
    EXTRUSION FOAMING OF BIOPLASTICS FOR LIGHTWEIGHT STRUCTURE IN FOOD PACKAGING A thesis submitted for the degree of Doctor of Philosophy by Sitthi Duangphet School of Engineering and Design Brunel University December 2012 i Abstract This thesis reports the systematic approaches to overcome the key drawbacks of the pure PHBV, namely low crystallisation rate, tensile strength, ductility, melt viscosity, thermal stability and high materials cost. The physical, mechanical, thermal, and rheological properties of the pure PHBV were studied systematically first to lay a solid foundation for formulation development. The influence of blending with other biopolymers, inclusion of filler, and chain extender additives in terms of mechanical properties, rheology, thermal decomposition and crystallization kinetics were then followed. Creating lightweight structures by foaming is considered to be one of the effective ways to reduce material consumption, hence the reduction of density and morphology of PHBV-based foams using extrusion foaming technique were studied comprehensively in terms of extrusion conditions (temperature profiles, screw speed and material feeding rate) and the blowing agent content. The material cost reduction was achieved by adding low-cost filler (e.g. CaCO3) and reduction of density by foaming. The thermal instability was enhanced by incorporation of chain extender (e.g. Joncryl) and blending with a high thermal stability biopolymer (e.g. PBAT). The polymer blend also improved the ductility. Adding nucleation agent enhanced the crystallization rate to reduce stickiness of extruded sheet. The final formulation (PHBV/PBAT/CaCO3 composite) was successfully extruded into high quality sheet and thermoformed to produce prototype trays in an industrial scale trial. The effect of the extrusion conditions (temperature profiles, screw speed and material feeding rate) and the blowing agent content are correlated to the density reduction of the foams.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0157779 A1 Kim Et Al
    US 2013 O157779 A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0157779 A1 Kim et al. (43) Pub. Date: Jun. 20, 2013 (54) GOLF BALL COMPOSITION cover layer. The outer cover layer and/or one or more inter mediate layers includes a blend of a)2 to 60 wt % (based on (75) Inventors: Hyun J. Kim, Carlsbad, CA (US); Hong the total weight of the blend composition) of a cyclic olefin G. Jeon, Carlsbad, CA (US) polymer which includes a norbornene-based monomer hav (73) Assignee: Taylor Made Golf Company, Inc. ing the general formula: (21) Appl. No.: 13/330,453 (22) Filed: Dec. 19, 2011 Publication Classification (51) Int. Cl. A63B 37/00 (2006.01) A63B 37/2 (2006.01) R18 R19, R2 A63B 37/08 (2006.01) R20 A63B 37/02 (2006.01) A63B 37/06 (2006.01) (52) U.S. Cl. where R' to R' independently representahydrogenatom, a USPC ........... 473/373; 473/378; 473/385; 473/372; halogenatom or a hydrocarbon group and mis from 0 to about 473/376; 473/377 3; and b) about 40 to about 98 wt % (based on the total weight of the blend composition) of one or more additional polymer (57) ABSTRACT components. The blend composition has a melt flow index This invention pertains to a golf ball which includes a core, (MFI) from 1 to 80 g/10 min., a material hardness of 30 to 90 optionally one or more intermediate layers; and an outer Shore D, and a flex modulus of 10 to 120 kpsi.
    [Show full text]
  • Synthesis of Functionalized Polyamide 6 by Anionic Ring-Opening Polymerization Deniz Tunc
    Synthesis of functionalized polyamide 6 by anionic ring-opening polymerization Deniz Tunc To cite this version: Deniz Tunc. Synthesis of functionalized polyamide 6 by anionic ring-opening polymerization. Poly- mers. Université de Bordeaux; Université de Liège, 2014. English. NNT : 2014BORD0178. tel- 01281327 HAL Id: tel-01281327 https://tel.archives-ouvertes.fr/tel-01281327 Submitted on 2 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Logo Université de cotutelle THÈSE PRÉSENTÉE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX ET DE L’UNIVERSITÉ DE LIEGE ÉCOLE DOCTORALEDE SCIENCES CHIMIQUES (Université de Bordeaux) ÉCOLE DOCTORALE DE CHIMIE (Université de Liège) SPÉCIALITÉ POLYMERES Par Deniz TUNC Synthesis of functionalized polyamide 6 by anionic ring-opening polymerization Sous la direction de Stéphane CARLOTTI et Philippe LECOMTE Soutenue le 30 octobre 2014 Membres du jury: M. PERUCH, Frédéric Directeur de recherche, Université de Bordeaux Président M. HOOGENBOOM, Richard Professeur, Ghent University Rapporteur M. MONTEIL, Vincent Chargé de recherche, Université Claude Bernard Rapporteur M. YAGCI, Yusuf Professeur, Istanbul Technical University Examinateur M. AMEDURI, Bruno Directeur de recherche, Institut Charles Gerhardt Examinateur M. SERVANT, Laurent Professeur, Université de Bordeaux Invité Preamble This PhD had been performed within the framework of the IDS FunMat joint doctoral programme.
    [Show full text]
  • ( 12 ) United States Patent
    US009902815B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 ,902 , 815 B2 Tamminen et al. ( 45 ) Date of Patent: Feb . 27 , 2018 ( 54 ) FUNCTIONALIZED LIGNIN AND METHOD ( 58 ) Field of Classification Search OF PRODUCING THE SAME ??? . .. C07G 1 / 00 See application file for complete search history . @(71 ) Applicant : Teknologian tutkimuskeskus VTT , VTT (FI ) ( 56 ) References Cited U . S . PATENT DOCUMENTS @(72 ) Inventors : Tarja Tamminen , Espoo (FI ) ; Jarmo Ropponen , Espoo (FI ) ; Eva - Lena Hult , 2 ,429 , 102 A 10 / 1947 Lewis et al. Espoo ( FI) ; Kristiina Poppius- Levlin , 3 , 149 , 085 A 9 / 1964 Ball et al . Espoo (FI ) 4 ,017 ,430 A * 4 / 1977 Briggs .. .. .. 530 / 502 5 ,773 , 590 A * 6 / 1998 Hart 530 / 500 6 ,172 ,204 B1 * 1 /2001 Sarkanen et al. 530 /500 @(73 ) Assignee : Teknologian tutkimuskeskus VTT Oy, 2010 /0105798 A1 * 4 /2010 Hasegawa . .. .. 522 / 99 Espoo (FI ) 2010 /0152428 A1* 6 / 2010 Gifford et al . .. .. .. 530 / 504 2010 / 0204368 A1 * 8 / 2010 Benko et al. .. .. .. .. .. .. .. 524 / 73 ( * ) Notice : Subject to any disclaimer, the term of this 2010 / 0331531 A1 * 12 / 2010 Mykytka .. .. 530 / 501 patent is extended or adjusted under 35 2011/ 0263836 A1 * 10 / 2011 Vuorenpalo et al. .. .. 530 / 500 U . S . C . 154 ( b ) by 33 days. 2012 /0012035 A1 * 1 / 2012 Blank et al. .. .. 106 / 802 ( 21) Appl. No. : 14 /348 , 904 OTHER PUBLICATIONS (22 ) PCT Filed : Oct. 8 , 2012 Holmbom ( Journal of the American Oil Chemists Society , 1977 , p . 289 - 293 ) . * Stenberg et al . (Surface Coatings International Part B : Coatings ( 86 ) PCT No. : PCT/ FI2012 /050965 Transactions , vol. 88 , B2 , 83 - 156 , 2005 ) .
    [Show full text]
  • Why Biobased?
    WHY BIOBASED? Opportunities in the Emerging Bioeconomy Jay S. Golden and Robert B. Handfield July 25, 2014 Submitted to: U. S. Department of Agriculture, Office of Procurement and Property Management BioPreferred Program® 361 Reporter’s Building 300 7th St. SW Washington, DC 20024 EXECUTIVE SUMMARY This report explores the opportunities associated with the biobased economy (excluding fuel, food and feed). Much of the work relies upon prior literature. Some of the key findings include: Government policies and industry Business While there is wealth of data and to Business sustainability programs are information regarding the economic driving the biobased economy. impact of the bioeconomy in Europe and various nations, there is a lack of Across the globe, nations are investing in understanding and quantification of the Public/Private Partnerships to expand economic benefits of the bioeconomy and their biobased economy for domestic and specifically the non-fuel bioeconomy in the international consumers. U.S. In the U.S., the United States Department There are challenges facing the continued of Agriculture (USDA) BioPreferred expansion of the bioeconomy. These program and Federally-supported research include reliable availability of raw materials continue to drive investment in research with increased climate and severe weather and development (R&D) and make impacts, water availability, and stability of available broader sets of biobased the markets. consumer products. The biobased economy is, in fact, growing, and it offers great potential for increased job creation in numerous sectors across the U.S. Continued investments are needed to An economic impact model is required to establish a biobased infrastructure while study the potential impacts of the ensuring that the economics of biobased bioeconomy and policies that can feedstocks are competitive with existing, encourage investment.
    [Show full text]
  • Impacts of a Ban Or Restrictions in Sale of Items in the EU's Single Use Plastics Directive
    SOCIAL RESEARCH NUMBER: 32/2020 PUBLICATION DATE: 19/05/2020 Preliminary Research to Assess the Impacts of a Ban or Restrictions in Sale in Wales of Items in the EU's Single Use Plastics Directive Mae’r ddogfen yma hefyd ar gael yn Gymraeg. This document is also available in Welsh. © Crown Copyright Digital ISBN 978-1-80038-424-8 Title: Preliminary Research to Assess the Impacts of a Ban or Restrictions in Sale in Wales of Items in the EU's Single Use Plastics Directive Author(s): George Cole, Resource Futures Carla Worth, Resource Futures Katie Powell, Resource Futures Sam Reeve, Resource Futures Susie Stevenson, Miller Research (UK) Nick Morgan, Miller Research (UK) Howard Walker, Bridge Economics Full Research Report: Cole, G; Worth, C; Powell, K; Reeve, S; Stevenson, S; Morgan, N; Walker, H (2019). Preliminary Research to Assess the Impacts of a Ban or Restrictions in Sale in Wales of Items in the EU's Single Use Plastics Directive. Cardiff: Welsh Government, GSR report number 32/2020 Available at: https://gov.wales/impacts-ban-or-restrictions-sale-items-eus-single- use-plastics-directive Views expressed in this report are those of the researcher and not necessarily those of the Welsh Government For further information please contact: Isabella Malet-Lambert Knowledge and Analytical Services Welsh Government Cathays Park Cardiff CF10 3NQ 03000 628250 [email protected] Table of contents List of tables ..........................................................................................................................
    [Show full text]
  • 172 Subpart C—Substances for Use As Components
    § 175.210 21 CFR Ch. I (4–1–13 Edition) not to exceed 0.05 percent by weight of Rubber hydrochloride. the finished pressure-sensitive adhe- Rubber (natural latex solids or crepe, sive. smoked or unsmoked). (8) 2-Hydroxy-1-[4-(2-hydroxyethoxy) Terpene resins (a- and b-pinene), homopolymers, copolymers, and conden- phenyl]-2-methyl-1-propanone (CAS sates with phenol, formaldehyde, cou- Reg. No. 106797–53–9) as a photoinitiator marone, and/or indene. at a level not to exceed 5 percent by Tetrasodium ethylenediaminetetraacetate. weight of the pressure-sensitive adhe- Tri(mixed mono- and dinonylphenyl) sive. phosphite (which may contain not more than 1 percent by weight of (9) Butanedioic acid, sulfo-1,4-di-(C9- triisopropanolamine). C11 alkyl) ester, ammonium salt (also known as butanedioic acid sulfo-1, 4- (c) Acrylonitrile copolymers identi- diisodecyl ester, ammonium salt [CAS fied in this section shall comply with Reg. No. 144093–88–9]) as a surface ac- the provisions of § 180.22 of this chap- tive agent at a level not to exceed 3.0 ter. percent by weight of the finished pres- sure-sensitive adhesive. [42 FR 14534, Mar. 15, 1977, as amended at 42 FR 15674, Mar. 22, 1977; 48 FR 15617, Apr. 12, (b) Pressure-sensitive adhesives pre- 1983; 63 FR 3464, Jan. 23, 1998; 63 FR 51528, pared from one or a mixture of two or Sept. 28, 1998; 64 FR 48291, Sept. 3, 1999] more of the substances listed in this paragraph may be used as the food-con- Subpart C—Substances for Use as tact surface of labels and/or tapes ap- plied to raw fruit and raw vegetables.
    [Show full text]