14Yearsofdiscovery
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MID-LATITUDE MARTIAN ICE AS a TARGET for HUMAN EXPLORATION, ASTROBIOLOGY, and IN-SITU RESOURCE UTILIZATION. D. Viola1 ([email protected]), A
First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars (2015) 1011.pdf MID-LATITUDE MARTIAN ICE AS A TARGET FOR HUMAN EXPLORATION, ASTROBIOLOGY, AND IN-SITU RESOURCE UTILIZATION. D. Viola1 ([email protected]), A. S. McEwen1, and C. M. Dundas2. 1University of Arizona, Department of Planetary Sciences, 2USGS, Astrogeology Science Center. Introduction: Future human missions to Mars will region of late Noachian highlands terrain, and is com- need to rely on resources available near the Martian prised of a series of grabens and ridges surrounded by surface. Water is of primary importance, and is known later Hesperian/Amazonian lava flows from the Thar- to be abundant on Mars in multiple forms, including sis region [7]. The proposed landing site is within these hydrated minerals [1] and pore-filling and excess ice lava flows (HAv), and provides access to a region of deposits [2]. Of these sources, excess ice (or ice which late Hesperian lowlands in the western region of the exceeds the available regolith pore space) may be the EZ. There is evidence for Amazonian glacial and peri- most promising for in-situ resource utilization (ISRU). glacial activity [e.g., HiRISE images Since Martian excess ice is thought to contain a low PSP_008671_2210 and ESP_017374_2210], and the fraction of dust and other contaminants (~<10% by Gamma Ray Spectrometer water map suggests that volume, [3]) only a modest deposit of excess ice will there is abundant subsurface ice in the uppermost me- be sufficient to support a human presence. ter within this region [10]. Meandering channel-like Subsurface water ice may also be of astrobiological features have been identified in HiRISE images (e.g., interest as a potential current habitat or as a preserva- PSP_003529_2195 in close proximity to apparent ice tion medium for biosignatures. -
Crater Gradation in Gusev Crater and Meridiani Planum, Mars J
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, E02S08, doi:10.1029/2005JE002465, 2006 Crater gradation in Gusev crater and Meridiani Planum, Mars J. A. Grant,1 R. E. Arvidson,2 L. S. Crumpler,3 M. P. Golombek,4 B. Hahn,5 A. F. C. Haldemann,4 R. Li,6 L. A. Soderblom,7 S. W. Squyres,8 S. P. Wright,9 and W. A. Watters10 Received 19 April 2005; revised 21 June 2005; accepted 27 June 2005; published 6 January 2006. [1] The Mars Exploration Rovers investigated numerous craters in Gusev crater and Meridiani Planum during the first 400 sols of their missions. Craters vary in size and preservation state but are mostly due to secondary impacts at Gusev and primary impacts at Meridiani. Craters at both locations are modified primarily by eolian erosion and infilling and lack evidence for modification by aqueous processes. Effects of gradation on crater form are dependent on size, local lithology, slopes, and availability of mobile sediments. At Gusev, impacts into basaltic rubble create shallow craters and ejecta composed of resistant rocks. Ejecta initially experience eolian stripping, which becomes weathering-limited as lags develop on ejecta surfaces and sediments are trapped within craters. Subsequent eolian gradation depends on the slow production of fines by weathering and impacts and is accompanied by minor mass wasting. At Meridiani the sulfate-rich bedrock is more susceptible to eolian erosion, and exposed crater rims, walls, and ejecta are eroded, while lower interiors and low-relief surfaces are increasingly infilled and buried by mostly basaltic sediments. Eolian processes outpace early mass wasting, often produce meters of erosion, and mantle some surfaces. -
Mars Reconnaissance Orbiter and Opportunity Observations Of
PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Mars Reconnaissance Orbiter and Opportunity 10.1002/2014JE004686 observations of the Burns formation: Crater Key Point: hopping at Meridiani Planum • Hydrated Mg and Ca sulfate Burns formation minerals mapped with MRO R. E. Arvidson1, J. F. Bell III2, J. G. Catalano1, B. C. Clark3, V. K. Fox1, R. Gellert4, J. P. Grotzinger5, and MER data E. A. Guinness1, K. E. Herkenhoff6, A. H. Knoll7, M. G. A. Lapotre5, S. M. McLennan8, D. W. Ming9, R. V. Morris9, S. L. Murchie10, K. E. Powell1, M. D. Smith11, S. W. Squyres12, M. J. Wolff3, and J. J. Wray13 1 2 Correspondence to: Department of Earth and Planetary Sciences, Washington University in Saint Louis, Missouri, USA, School of Earth and Space R. E. Arvidson, Exploration, Arizona State University, Tempe, Arizona, USA, 3Space Science Institute, Boulder, Colorado, USA, 4Department of [email protected] Physics, University of Guelph, Guelph, Ontario, Canada, 5Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 6U.S. Geological Survey, Astrogeology Science Center, Flagstaff, Arizona, USA, 7 8 Citation: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA, Department Arvidson, R. E., et al. (2015), Mars of Geosciences, Stony Brook University, Stony Brook, New York, USA, 9NASA Johnson Space Center, Houston, Texas, USA, Reconnaissance Orbiter and Opportunity 10Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, USA, 11NASA Goddard Space Flight Center, observations of the Burns formation: Greenbelt, Maryland, USA, 12Department of Astronomy, Cornell University, Ithaca, New York, USA, 13School of Earth and Crater hopping at Meridiani Planum, J. -
Sdlao Uemoa Uicn
DiagnosticDiagnostic 4 FOR THE WEST AFRICAN COASTAL AREA THEWESTAFRICANFOR COASTAL REGIONAL SHORELINE MONITORING MONITORING SHORELINE REGIONAL STUDY AND DRAWING UP OF A UPOF STUDY ANDDRAWING REGIONAL DIAGNOSTIC MANAGEMENT SCHEME 2010 REGIONAL SHORELINE MONITORING STUDY AND DRAWING UP OF A MANAGEMENT SCHEME FOR THE WEST AFRICAN COASTAL AREA The regional study for shoreline monitoring and drawing up a development scheme for the West African coastal area was launched by UEMOA as part of the regional programme to combat coastal erosion (PRLEC – UEMOA), the subject of Regulation 02/2007/CM/UEMOA, adopted on 6 April 2007. This decision also follows on from the recommendations from the Conference of Ministers in charge of the Environment dated 11 April 1997, in Cotonou. The meeting of Ministers in charge of the environment, held on 25 January 2007, in Cotonou (Benin), approved this Regional coastal erosion programme in its conclusions. This study is implemented by the International Union for the IUCN, International Union for Conservation of Nature (UICN) as part of the remit of IUCN’s Marine Conservation of Nature, helps the and Coastal Programme (MACO) for Central and Western Africa, the world find pragmatic solutions to coordination of which is based in Nouakchott and which is developed our most pressing environment as a thematic component of IUCN’s Programme for Central and and development challenges. It supports scientific research, Western Africa (PACO), coordinated from Ouagadougou. manages field projects all over the world and brings governments, UEMOA is the contracting owner of the study, in this instance non-government organizations, through PRLEC – UEMOA coordination of the UEMOA United Nations agencies, Commission. -
Testable Hypotheses for Opportunity's Traverse
42nd Lunar and Planetary Science Conference (2011) 2199.pdf TESTABLE HYPOTHESES FOR OPPORTUNITY’S TRAVERSE FROM SANTA MARIA TO THE RIM OF ENDEAVOUR CRATER. A. A. Fraeman1, R. E. Arvidson1, S. L. Murchie2, F. P. Seelos2, and J. A. McGo- vern2, 1Washington University in St. Louis, Dept. of Earth and Planetary Science, St. Louis, MO (afrae- [email protected]), 2Johns Hopkins University Applied Physics Laboratory, Laurel, MD Introduction: As of January 2011, the Mars rover Botany Bay and the southern tip of Cape York: Opportunity was located at Santa Maria crater, ~6 km In contrast to the plains, CRISM normal [1] and over- away from the closest rim segment of the ~20 km di- sampled FRT data show signatures of hydrated phases, ameter Noachian-aged impact crater Endeavour (Fig. including hydrated sulfates, present throughout Botany 1). Endeavour predates the sedimentary rocks ex- Bay and the southern point of Cape York (Fig. 3). amined by Opportunity for the past 7 years, and Com- These phases have not been detected from orbit at any pact Reconnaissance Imaging Spectrometer for Mars other location along Opportunity’s ~26km traverse (CRISM) data indicate that Fe-Mg smectites are (with the exception of a small group of CRISM pixels present on the rim of this highly degraded crater [1]. on the SE rim of Santa Maria crater [3]), and suggests The purpose of this abstract is to present working a change in mineralogy occurs, probably at a strati- hypotheses to help guide the acquisition and analysis of graphic contact within Botany Bay. Opportunity’s continued Mars Reconnaissance Orbiter (MRO) cover- ground-truth observations will be essential in determin- age and Opportunity observations as the rover departs ing the nature of these phases as the rover approaches Santa Maria, traverses across the plains, and ascends Cape York, the closest rim segment. -
The Red Planet's Watery Past
New observations by rovers and orbiters indicate that liquid water not only existed on Mars, it once covered large parts of the planet’s surface, perhaps for more than a billion years WATER FLOWS ACROSS the Martian surface in an artist’s rendering of how the Red Planet may have looked 2.5 billion to four billion years ago. Salt deposits along the water’s edge C REDI T appear purple in this twilight view. 62 SCIENTIFIC AMERICAN DECEMBER 2006 COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC. RedThe Planet’s atery W Pastast BY JIM BELL y February 2005 the Mars Exploration Rover named Spirit had already spent more than a year in Gusev Crater, a two-kilometer-deep, Connecticut-size hole in the Red Planet’s surface. Because Gusev lies at the end of an ancient, dry river valley longer than the Grand Canyon, many of us on the rover’s mission team Bhad expected Spirit to fi nd evidence that the crater had been fi lled with water billions of years ago. On the fl at plains where the craft had landed, however, the rover found neither lake deposits nor other preserved signs that water had once fl owed inside Gusev. The rover’s photographs showed only dust and sand and bone-dry volcanic lava rocks. But everything changed once Spirit reached the slopes of the Columbia Hills, about 2.6 kilometers from the landing site. (Each of the hills is named after one of the seven astronauts who died in the space shuttle Columbia disaster in 2003.) As Spirit struggled to climb the western slope of Husband Hill, its wheels dislodged rocks and dug deep C REDI T tracks in the Martian soil. -
1 Archives of Natural History, 47, 147-165. Accepted Version. Robert
Archives of Natural History, 47, 147-165. Accepted version. Robert McCormick’s geological collections from Antarctica and the Southern Ocean, 1839–1843 PHILIP STONE British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, Scotland, UK (e-mail: [email protected]) ABSTRACT: Robert McCormick (1800–1890) took part in three mid-nineteenth- century British Polar expeditions, two to the Arctic and one to the Antarctic. The latter, from 1839 to 1843 and led by James Clark Ross, is the best known. McCormick served as senior surgeon on HMS Erebus and was responsible for the collection of zoological and geological specimens. Despite the novelty and potential scientific importance of these early geological collections from Antarctica and remote islands in the Southern Ocean, they received surprisingly little attention at the time. Ross deposited an official collection with the British Museum in 1844, soon after the expedition’s return, and this was supplemented by McCormick’s personal collection, bequeathed in 1890. McCormick had contributed brief and idiosyncratic geological notes to the expedition report published by Ross in 1847, but it was not until 1899 that an informed description of the Antarctic rocks was published, and only in 1921 were McCormick’s palaeobotanical specimens from Kerguelen examined. His material from other Southern Ocean islands received even less attention; had it been utilized at the time it would have supplemented the better-known collections made by the likes of Charles Darwin. In later life, McCormick became increasingly embittered over the lack of recognition afforded to him for his work in the Polar regions. -
2011-2 Sidereal-Times
The Official Publication of the Amateur Astronomers Association of Princeton Director Treasurer Program Chairman Ludy D’Angelo Michael Mitrano John Church 609-882-9336 (609)-737-6518 (609) 799-0723 [email protected] [email protected] [email protected] Assistant Director Secretary Editors Jeff Bernardis Larry Kane Bryan Hubbard, Ira Pollans and Michael Wright (609) 466-4238 (609) 273-1456 (908) 859-1670 and (609) 371-5668 [email protected] [email protected] [email protected] Also online at princetonastronomy.wordpress.com Volume 40 February 2011 Number 2 From the Director again starting in April. We’ll be doing some equip- ment upgrading from another generous donation to Snow! And more snow! And very cold! I used to the club. Also, there will be Super Science day at the State Planetarium coming up soon. never mind it, but this year it’s bugging me. It’s stopping or delaying many things. Our last meet- ing cancelled (a rarity!), very cold observing Also, we will soon be looking for another round of nights, very cold Outreach nights. But you know nominations for the next Board of Trustees of the club. This needs to be done by the May meeting. We what’s coming? SPRING! March and April bring need a volunteer to lead a nomination committee by chances at Messier Marathons. Maybe we could do one, maybe it won’t snow, or rain, or sleet, or our March meeting. We will be taking nominations hail. Who am I kidding, this is New Jersey, and for Director, Assistant Director, Program Chair, Sec- retary, and Treasurer. -
Sedimentary Textures Formed by Aqueous Processes, Erebus Crater, Meridiani Planum, Mars
Sedimentary textures formed by aqueous processes, Erebus crater, Meridiani Planum, Mars J. Grotzinger Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA J. Bell III Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, New York 14853, USA K. Herkenhoff United States Geological Survey, Flagstaff, Arizona 86001, USA J. Johnson A. Knoll Botanical Museum, Harvard University, Cambridge, Massachusetts 02138, USA E. McCartney Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, New York 14853, USA S. McLennan Department of Geosciences, State University of New York, Stony Brook, New York 11794-2100, USA J. Metz Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA J. Moore National Aeronautics and Space Administration Ames, Space Science Division, Moffett Field, California 94035, USA S. Squyres Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, New York 14853, USA R. Sullivan O. Ahronson Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA R. Arvidson Department of Earth and Planetary Sciences, Washington University, St. Louis, Missouri 63130, USA B. Joliff M. Golombek Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA K. Lewis Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, -
An Inventory of Subglacial Volcanoes in West Antarctica
Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021 A new volcanic province: an inventory of subglacial volcanoes in West Antarctica MAXIMILLIAN VAN WYK DE VRIES*, ROBERT G. BINGHAM & ANDREW S. HEIN School of GeoSciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK *Correspondence: [email protected] Abstract: The West Antarctic Ice Sheet overlies the West Antarctic Rift System about which, due to the comprehensive ice cover, we have only limited and sporadic knowledge of volcanic activity and its extent. Improving our understanding of subglacial volcanic activity across the province is important both for helping to constrain how volcanism and rifting may have influenced ice-sheet growth and decay over previous glacial cycles, and in light of concerns over whether enhanced geo- thermal heat fluxes and subglacial melting may contribute to instability of the West Antarctic Ice Sheet. Here, we use ice-sheet bed-elevation data to locate individual conical edifices protruding upwards into the ice across West Antarctica, and we propose that these edifices represent subglacial volcanoes. We used aeromagnetic, aerogravity, satellite imagery and databases of confirmed volca- noes to support this interpretation. The overall result presented here constitutes a first inventory of West Antarctica’s subglacial volcanism. We identified 138 volcanoes, 91 of which have not previ- ously been identified, and which are widely distributed throughout the deep basins of West Antarc- tica, but are especially concentrated and orientated along the >3000 km central axis of the West Antarctic Rift System. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. -
+ Part 17: Acronyms and Abbreviations (265 Kb PDF)
17. Acronyms and Abbreviations °C . Degrees.Celsius °F. Degrees.Fahrenheit °R . Degrees.Rankine 24/7. 24.Hours/day,.7.days/week 2–D. Two-Dimensional 3C. Command,.Control,.and.Checkout 3–D. Three-Dimensional 3–DOF . Three-Degrees.of.Freedom 6-DOF. Six-Degrees.of.Freedom A&E. Architectural.and.Engineering ACEIT. Automated.Cost-Estimating.Integrated.Tools ACES . Acceptance.and.Checkout.Evaluation.System ACP. Analytical.Consistency.Plan ACRN. Assured.Crew.Return.Vehicle ACRV. Assured.Crew.Return.Vehicle AD. Analog.to.Digital ADBS. Advanced.Docking.Berthing.System ADRA. Atlantic.Downrange.Recovery.Area AEDC. Arnold.Engineering.Development.Center AEG . Apollo.Entry.Guidance AETB. Alumina.Enhanced.Thermal.Barrier AFB .. .. .. .. .. .. .. Air.Force.Base AFE. Aero-assist.Flight.Experiment AFPG. Apollo.Final.Phase.Guidance AFRSI. Advanced.Flexible.Reusable.Surface.Insulation AFV . Anti-Flood.Valve AIAA . American.Institute.of.Aeronautics.and.Astronautics AL. Aluminum ALARA . As.Low.As.Reasonably.Achievable 17. Acronyms and Abbreviations 731 AL-Li . Aluminum-Lithium ALS. Advanced.Launch.System ALTV. Approach.and.Landing.Test.Vehicle AMS. Alpha.Magnetic.Spectrometer AMSAA. Army.Material.System.Analysis.Activity AOA . Analysis.of.Alternatives AOD. Aircraft.Operations.Division APAS . Androgynous.Peripheral.Attachment.System APS. Auxiliary.Propulsion.System APU . Auxiliary.Power.Unit APU . Auxiliary.Propulsion.Unit AR&D. Automated.Rendezvous.and.Docking. ARC . Ames.Research.Center ARF . Assembly/Remanufacturing.Facility ASE. Airborne.Support.Equipment ASI . Augmented.Space.Igniter ASTWG . Advanced.Spaceport.Technology.Working.Group ASTP. Advanced.Space.Transportation.Program AT. Alternate.Turbopump ATCO. Ambient.Temperature.Catalytic.Oxidation ATCS . Active.Thermal.Control.System ATO . Abort-To-Orbit ATP. Authority.to.Proceed ATS. Access.to.Space ATV . Automated.Transfer.Vehicles ATV . -
Fabergé Museum in Saint Petersburg
IN ST. PETERSBURG EXHIBIT INDEX • 2014 Fabergé Museum in Saint Petersburg EXHIBIT INDEX Saint Petersburg 2014 Museum Plan 8 9 12 7 10 11 2 6 1 3 5 4 Legend Footer Footer on the right page of the print Number of case 01 indicates the number of the room and in the room the number of the case □ Exhibits outside the case Room Room Cases number name on current pages 15 Exhibit number 2 • Blue Room | 05–08 Contents Museum Plan, legend ..............................................2 3 About the Link of Times Foundation ............6 Red Room page 21 Russian Silver .............................................................22 Cases 01–03 .......................................................24 1 04 ................................................................25 Grand Staircase 05–06 .......................................................26 page 9 07–08 .......................................................27 09–11 ........................................................28 About the Grand Staircase ...............................10 12.................................................................29 Outside the cases ................................................... 11 Outside the cases ...................................................30 2 4 Knights' Room Blue Room page 13 page 33 Military memorabilia art ....................................14 Fabergé Easter Masterpieces ........................34 Cases 01–02 .......................................................16 Cases 01–03 .......................................................36