An Inventory of Subglacial Volcanoes in West Antarctica
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Air and Shipborne Magnetic Surveys of the Antarctic Into the 21St Century
TECTO-125389; No of Pages 10 Tectonophysics xxx (2012) xxx–xxx Contents lists available at SciVerse ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Air and shipborne magnetic surveys of the Antarctic into the 21st century A. Golynsky a,⁎,R.Bellb,1, D. Blankenship c,2,D.Damasked,3,F.Ferracciolie,4,C.Finnf,5,D.Golynskya,6, S. Ivanov g,7,W.Jokath,8,V.Masolovg,6,S.Riedelh,7,R.vonFresei,9,D.Youngc,2 and ADMAP Working Group a VNIIOkeangeologia, 1, Angliysky Avenue, St.-Petersburg, 190121, Russia b LDEO of Columbia University, 61, Route 9W, PO Box 1000, Palisades, NY 10964-8000, USA c University of Texas, Institute for Geophysics, 4412 Spicewood Springs Rd., Bldg. 600, Austin, Texas 78759-4445, USA d BGR, Stilleweg 2 D-30655, Hannover, Germany e BAS, High Cross, Madingley Road, Cambridge, CB3 OET, UK f USGS, Denver Federal Center, Box 25046 Denver, CO 80255, USA g PMGE, 24, Pobeda St., Lomonosov, 189510, Russia h AWI, Columbusstrasse, 27568, Bremerhaven, Germany i School of Earth Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, OH, 43210, USA article info abstract Article history: The Antarctic geomagnetics' community remains very active in crustal anomaly mapping. More than 1.5 million Received 1 August 2011 line-km of new air- and shipborne data have been acquired over the past decade by the international community Received in revised form 27 January 2012 in Antarctica. These new data together with surveys that previously were not in the public domain significantly Accepted 13 February 2012 upgrade the ADMAP compilation. -
MID-LATITUDE MARTIAN ICE AS a TARGET for HUMAN EXPLORATION, ASTROBIOLOGY, and IN-SITU RESOURCE UTILIZATION. D. Viola1 ([email protected]), A
First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars (2015) 1011.pdf MID-LATITUDE MARTIAN ICE AS A TARGET FOR HUMAN EXPLORATION, ASTROBIOLOGY, AND IN-SITU RESOURCE UTILIZATION. D. Viola1 ([email protected]), A. S. McEwen1, and C. M. Dundas2. 1University of Arizona, Department of Planetary Sciences, 2USGS, Astrogeology Science Center. Introduction: Future human missions to Mars will region of late Noachian highlands terrain, and is com- need to rely on resources available near the Martian prised of a series of grabens and ridges surrounded by surface. Water is of primary importance, and is known later Hesperian/Amazonian lava flows from the Thar- to be abundant on Mars in multiple forms, including sis region [7]. The proposed landing site is within these hydrated minerals [1] and pore-filling and excess ice lava flows (HAv), and provides access to a region of deposits [2]. Of these sources, excess ice (or ice which late Hesperian lowlands in the western region of the exceeds the available regolith pore space) may be the EZ. There is evidence for Amazonian glacial and peri- most promising for in-situ resource utilization (ISRU). glacial activity [e.g., HiRISE images Since Martian excess ice is thought to contain a low PSP_008671_2210 and ESP_017374_2210], and the fraction of dust and other contaminants (~<10% by Gamma Ray Spectrometer water map suggests that volume, [3]) only a modest deposit of excess ice will there is abundant subsurface ice in the uppermost me- be sufficient to support a human presence. ter within this region [10]. Meandering channel-like Subsurface water ice may also be of astrobiological features have been identified in HiRISE images (e.g., interest as a potential current habitat or as a preserva- PSP_003529_2195 in close proximity to apparent ice tion medium for biosignatures. -
Office of Polar Programs
DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1 -