<<

Geol. Mag.: page 1 of 13 c Cambridge University Press 2016 1 doi:10.1017/S0016756816000832

1 from slump deposits of the 2 Argentine Precordillera: new insights into its passive margin 3 development

∗ 4 GUSTAVO G. VOLDMAN †‡, JUAN L. ALONSO§, LUIS P. FERNÁNDEZ§, ∗ ∗ 5 ALDO L. BANCHIG¶, GUILLERMO L. ALBANESI ‡, GLADYS ORTEGA 6 & RAÚL CARDÓ¶|| ∗ 7 CONICET, Museo de Paleontología, CIGEA, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional 8 de Córdoba, X5016GCB Córdoba, Argentina 9 ‡CICTERRA (CONICET-UNC), Córdoba, Argentina 10 §Departamento de Geología, Universidad de Oviedo, 33005 Oviedo, Spain 11 ¶Facultad de Ciencias Exactas y Naturales, Universidad Nacional de San Juan, 5400 San Juan, Argentina 12 ||Servicio Geológico Minero Argentino (SEGEMAR), 5400 San Juan, Argentina

13 (Received 22 January 2016; accepted 26 July 2016)

14 Abstract – The Los Sombreros Formation represents the western continental margin slope deposits of 15 the Argentine Precordillera, a sub-terrane accreted to Gondwana as part of the Cuyania Terrane in early 16 Palaeozoic times. The age of these gravity-driven deposits is controversial and, therefore, a precise 17 biostratigraphic scheme is essential to reveal the evolution of the continental margin. New 18 samplings along with sedimentological and structural analysis carried out in the Los Sombreros 19 Formation in the La Invernada Range provide clues to its depositional framework. The sedimentary 20 succession is made up of dominantly calciturbidites, carbonate breccias and conglomerates, along with 21 mudstones that represent the pelagic/hemipelagic background sedimentation. It displays hectometric 22 to outcrop-scale slump folds with variable hinge-line orientations and pinch-and-swell structures, 23 evidencing soft-sediment deformation, consistent with a slope to base-of-slope setting. Three limestone 24 samples from this succession include conodonts referable to the pandemic Hirsutodontus simplex 25 Subzone of the intermedius Zone (upper , Cambrian) and from the Macerodus 26 dianae Zone (upper , Ordovician), implying that a slope connected the shallow-water 27 shelf with a deep-water (oceanic) basin at least since late Cambrian times. The conodont faunas show 28 affinities to coeval assemblages from outer shelf and slope environments around Laurentia yet they 29 are not conclusive to postulate a geographic origin for the Precordillera. The thermal alteration of the 30 conodonts is consistent with sedimentary burial and nappe stacking in this sector of the Precordillera. 31 32 Keywords: conodont, slope facies, slump, Los Sombreros Formation, Argentine Precordillera, Cambrian, Ordovician.

33 1. Introduction The transition between the Central and Western 51 Precordillera is represented by the disorganized 52 34 In the external zone of the Andean orogen, the Ar- deposits of the Los Sombreros Formation (Cuerda, 53 35 gentine Precordillera records a series of tectono- Cingolani & Varela, 1983; Banchig, Keller & Milana, 54 36 stratigraphic events related to the building of 1990) and the Corralito Formation (Furque & Caballé, 55 37 Gondwana during early to middle Palaeozoic times 1988; Furque et al. 1990), recording the slope of a 56 38 (e.g. Cawood, 2005; Rapela et al. 2016). Eastern, Cent- continental margin. However, the complex structure 57 39 ral and Western domains have classically been distin- and the scarcity of fossils challenge against a precise 58 40 guished after their structural and stratigraphic features depositional scheme, whilst Ordovician and 59 41 (Ortiz & Zambrano, 1981; Baldis et al. 1982). The East- ages have been proposed for the Los Sombreros 60 42 ern and Central Precordillera involve a large passive- Formation (e.g. Benedetto & Vaccari, 1992; Voldman, 61 43 margin carbonate platform, Cambro-Ordovician in age, Albanesi & Ramos, 2009; Peralta, 2013). For instance, 62 44 which is overlain by Middle Ordovician siliciclastic Peralta (2013) considered that all the disorganized 63 45 foreland-basin deposits that reach up to the Devo- deposits slid in Devonian times, after sedimentation 64 46 nian Punta Negra Formation. Conversely, the West- of the Punta Negra Formation. Thus, constraining the 65 47 ern Precordillera exhibits a deep-water succession, spatio-temporal framework of the mélanges is essential 66 48 with ocean-floor sedimentary rocks containing pillow for understanding the geotectonic evolution of the 67 49 lavas and mafic–ultramafic bodies in the westernmost passive continental margin of the early Palaeozoic 68 50 sections. Precordillera. 69 In the present study, new conodont findings along 70 †Author for correspondence: [email protected] with structural, stratigraphic and sedimentological data 71 2 G. G. VOLDMAN AND OTHERS

Lower Ordovician limestones displaying platform fa- 107 cies not represented elsewhere (e.g. Bordonaro, 2003). 108 The Los Sombreros Formation displays ubiquitous 109 extensional structures that result in block-in-matrix 110 fabric in some places as a consequence of submar- 111 ine sliding (Alonso et al. 2008). The main outcrop belt 112 of the mélange extends along the eastern flank of the 113 Tontal Range (Fig. 1), where the formation is more than 114 1000 m thick in the Seca Creek type section (Cuerda, 115 Cingolani & Varela, 1983; Cuerda et al. 1986). The 116 outcrops continue patchily to the north up to the Jáchal 117 River area (Benedetto & Vaccari, 1992), whereas its 118 southern prolongation is represented by the Estancia 119 San Isidro Formation in Mendoza, which exhibits giant 120 Cambrian limestone blocks enclosed in a green shaly 121 matrix of Darriwilian age (Keller, 1999; Heredia & 122 Beresi, 2004;Ortegaet al. 2007). Thus, the slope fa- 123 cies of the Precordillera extends over 300 km with N–S 124 Figure 1. (Colour online) Location map of the Argentine Pre- orientation (Fig. 1). 125 cordillera fold-and-thrust belt showing the studied locality and the western, central and eastern morphostructural domains. Base image derived from Shuttle Radar Topography Mission (SRTM). 3. Previous biostratigraphic studies of the Los 126 Sombreros Formation 127

72 for the Los Sombreros Formation in the La Inver- The Los Sombreros Formation was originally referred 128 73 nada Range are presented. The record of the Hir- to the Lower Ordovician Series based on graptolite re- 129 74 sutodontus simplex Subzone of the Cordylodus inter- cords from its lower third (Cuerda et al. 1985). Later 130 75 medius Zone (upper Furongian, Cambrian) and the trilobite findings revealed the presence of lower and 131 76 Macerodus dianae Zone (upper Tremadocian, Ordovi- middle Cambrian rocks (Bordonaro & Baldis, 1987; 132 77 cian) in gravity-flow deposits with synsedimentary de- Bordonaro & Banchig, 1990), interpreted as outer- 133 78 formation features suggests the existence of a slope platform resedimented blocks in a Lower – Middle 134 79 in late Cambrian – Early Ordovician times. Moreover, Ordovician succession with autochthonous conodonts 135 80 the defined high-resolution conodont biostratigraphy and graptolites (Benedetto & Vaccari, 1992; Bordon- 136 81 improves the intrabasinal correlation with the Precor- aro, 2003). Lehnert (1994) described the first con- 137 82 dilleran carbonate platform as well as with other re- odont assemblage of the Cordylodus proavus Zone 138 83 gions of the world. (upper Furongian) in the Precordillera, from out- 139 crops of the Los Sombreros Formation in the Tontal 140 Range. The conodont association includes Cordylodus 141 84 2. Geological setting primitivus Bagnoli, Barnes & Stevens, Cordylodus 142 85 The Argentine Precordillera of La Rioja, San Juan and proavus Müller and Eoconodontus notchpeakensis 143 86 Mendoza provinces is a c. 80 km wide foreland fold- Miller. These conodont elements derive from a cal- 144 87 and-thrust belt that involves Palaeozoic to Cenozoic cisiltite lens that overlies shales with graptolite speci- 145 88 rocks, which extends between 29º and 33º S in the An- mens that demonstrate its allochthonous character. 146 89 dean foothills above the shallow subduction segment Albanesi, Ortega & Hünicken (1995) proposed that 147 90 of the Nazca plate (Heim, 1952; Allmendinger et al. the conformable stratigraphic contact between the Los 148 91 1990; Gosen, 1992; Ramos, Cristallini & Pérez, 2002) Sombreros Formation and the overlying Yerba Loca 149 92 (Fig. 1). The Precordilleran Cambrian–Ordovician car- Formation at Ancaucha Creek, 10 km northwest of 150 93 bonate platform sequence is unique to South America Jáchal city, is early Darriwilian in age. They determ- 151 94 and makes up part of a larger region of the Andean ined that the top of the Los Sombreros Formation at this 152 95 foothills of western Argentina that is referred to as the locality is lower Darriwilian at the most, by consider- 153 96 Cuyania composite terrane (Ramos, 1995). ing the presence of the index conodont 154 97 At the continental slope and rise, to the west of the clavatus Stouge & Bagnoli from the basal beds of the 155 98 Precordilleran carbonate platform, the Los Sombreros Yerba Loca Formation and the absence of the key spe- 156 99 mélange is a mudstone-dominated deep-water disor- cies Paroistodus horridus (Barnes & Poplawski), which 157 100 ganized unit, containing a diverse array of rocks derived appears c. 40 m above the Yerba Loca base. 158 101 from the platform, the slope and the basement. These Further fossil findings include upper Cambrian, 159 102 rocks include arkosic sandstones, megabreccias, con- Tremadocian, Floian and Darriwilian conodont faunas 160 103 glomerates with well-rounded basement-derived meta- (Voldman, Albanesi & Ramos, 2009; Voldman et al. 161 104 morphic and igneous pebbles to boulders, thin-bedded 2014) as well as graptolites referable to the uppermost 162 105 fine-grained limestones, carbonate breccias and blocks Tremadocian, Floian and Sandbian stages (e.g. A. L. 163 106 up to several hectometres in size of lower Cambrian to Banchig, unpub. Ph.D. thesis, Univ. Nacional San Juan, 164 Conodonts from slump deposits of the Precordillera 3

sion and gradationally overlie a breccia/conglomerate 206 division. Breccias/conglomerates contain mainly clasts 207 of mudstones, peloidal grainstones and recrystallized 208 limestones, with minor amounts of chert and quartz 209 clasts. They constitute beds that are massive or graded, 210 and that may be gradationally overlain by a calciturbid- 211 ite; some exceptional examples of stratified (laminated) 212 beds also occur (Fig. 3c). The whole succession lacks in 213 situ shallow-water faunas, with the exception of scarce 214 lingulids, and exhibits slight bioturbation restricted to 215 the peloidal/calcisphere limestones. Remarkably, it dis- 216 Figure 2. (Colour online) Geological map of the study area with plays hectometric slump folds, extensional faults and 217 fossiliferous sampling points. lateral transitions between intact and faulted/brecciated 218 beds (Fig. 3a, d). 219 165 1995; Banchig & Moya, 2002;Ortegaet al. 2014). As a whole, most of these facies are indicative of sed- 220 166 Additionally, Astini, Thomas & Yochelson (2004) imentation from gravity flows, from cohesive debris 221 167 identified the enigmatic fossil Salterella maccullochi flows to low-density turbidity currents (see Lowe, 222 168 (Murchison) in the Ancaucha Olistolith of the Los Som- 1982; McIlreath & James, 1984; Mutti et al. 1999, 223 169 breros Formation, composed of inner-shelf deposits amongst others). Fine-grained, peloidal/calcisphere 224 170 that they interpreted as lower Cambrian synrift strata. mudstones probably represent the pelagic/hemipelagic 225 background sedimentation. This interpretation is com- 226 patible with the synsedimentary deformation features 227 171 4. Study area and methods (see also Section 5.a.1. below), all indicating a slope 228 to base-of-slope setting. The relatively deep-water en- 229 172 The La Invernada Range constitutes a critical region to vironment is also suggested by the absence of in situ 230 173 investigate the architecture and kinematic development shallow-water fauna and the scarcity of bioturbation. 231 174 of the disorganized deposits of the Los Sombreros The slumped succession at the Aguada de La Cueva 232 175 Formation. This range lies to the north of the Tontal Creek section is unconformably overlain by grey shales 233 176 Range, extending for c. 60 km with a N–S trend with poorly preserved graptolites, including Archicli- 234 177 (Fig. 1). It displays E-verging thrusts and related folds, macograptus sp., Dicellograptus sp., Dicranograptus 235 178 involving a lower Palaeozoic succession that also sp., Nemagraptus sp. and Reteograptus speciosus Har- 236 179 includes the Siluro-Devonian mélange deposits of the ris, which suggest a late Darriwilian to Sandbian age 237 180 Corralito Formation, which crop out exclusively in for the upper part of the Los Sombreros Formation 238 181 this range. In order to determine the age of the Los in this area (Sample AMGRAP, Figs 2, 4). These 239 182 Sombreros Formation at the Aguada de La Cueva graptolitic shales are in turn unconformably over- 240 183 Creek section (Fig. 2), nine limestone samples (14 kg lain by sandstone–mudstone alternations with scarce 241 184 in total) were collected and processed following the calcarenites and interbedded conglomerates and cal- 242 185 standard techniques to recover conodont elements careous breccias of the Sierra de La Invernada Forma- 243 186 (Stone, 1987). Three samples were productive, yield- tion (Furque et al. 1990), which are Middle–Late Or- 244 187 ing 80 specimens that are housed under the repository dovician in age (Ortega et al. 2008). 245 188 codes CORD-MP 50734 to 50814 in the Museo de The Los Sombreros Formation is carried on a W- 246 189 Paleontología, Facultad de Ciencias Exactas, Físicas dipping thrust surface onto the Siluro-Devonian Cor- 247 190 y Naturales, Universidad Nacional de Córdoba, Ar- ralito mélange (Fig. 2), which comprises greenish grey 248 191 gentina. Field work also included structural mapping shales and coquinas with extensional features, such as 249 192 and stratigraphic and sedimentological studies, during boudins, as well as limestone blocks of the San Juan 250 193 which kinematic data were acquired and rocks were Formation. The thrust surface displays Cʹ-type shear 251 194 described in terms of their bedding and lithology and bands and striations, recording an eastward movement 252 195 sampled for thin-section preparation. of the hanging wall. It is probably Andean in age be- 253 cause it is located at the toe of the Invernada Range and 254 196 5. Results therefore should have been responsible for the uplift of 255 this modern geomorphic feature. However, this thrust 256 197 5.a. Stratigraphy and structure could be the result of rejuvenation of an older Chanic 257 198 In the Aguada de La Cueva Creek area, the Los or Gondwanic thrust during Andean times, which com- 258 199 Sombreros Formation consists of a c. 500–600 m monly occurs in the Argentine Precordillera (Ramos, 259 200 thick succession of dominantly limestones, carbon- Vujovich & Dallmeyer, 1996; Alonso et al. 2005). 260 201 ate breccias and conglomerates and subordinate shales 202 (Fig. 2). The limestones are thin bedded, varying 5.a.1. Synsedimentary deformation 261 203 from peloidal/calcisphere mudstones and wackestones 204 to graded and laminated calclithites (calciturbidites) Regarding the internal structure of the Los Sombreros 262 205 (Fig. 3a, b), which may pass upwards into a shale divi- Formation, the most conspicuous features in the study 263 4 G. G. VOLDMAN AND OTHERS

Figure 3. (Colour online) Field photographs of selected deposits from the Los Sombreros Formation at the Agua de la Cueva Creek. (a) Detail of an interval made of pebble-to-cobble breccias (left of photograph) and thin-bedded limestones (laminated mudstones and graded and laminated calciturbidites). Notice the local disruption of bedding, which laterally passes into undisturbed bedding. Stratigraphic top towards the left. (b) Interval formed of calciturbidites and variably laminated, slightly bioturbated mudstones with peloids and calcispheres. The lowermost bed is a graded calciturbidite evolving from a basal fine-pebble-bearing granulestone to a sand-grade division, whose upper part is faintly laminated and displays smooth undulations. Younging direction is to the top of the photograph. Hammer handle for scale c. 19 cm long. (c) Poorly sorted boulder-to-pebble carbonate breccia/conglomerate, displaying two divisions, a lower graded division and an upper laminated division. Walking pole is c. 120 cm long. Stratigraphic top towards the right. (d) Close-up of an interval made of thin-bedded lime mudstones, commonly laminated, with a variable degree of folding and bed disruption and brecciation. Bedding in the area is parallel to the bed above the scale, which is almost intact. The yellowish matrix surrounding the clasts is mainly dolomitic. Younging direction is to the top of the photograph.

264 area are hectometric folds that can be interpreted as a normal fault), all the above mentioned structures sup- 282 265 slump structures (Fig. 2). These folds do not involve port the interpretation that gravitational collapse and 283 266 the overlying Sierra de La Invernada Formation. As sliding was the cause of the deformation. In Figure 5d, 284 267 well, most of the smaller, outcrop-scale structures are the cut-off lines of the tension fractures (blue) are par- 285 268 slump folds with variable hinge-line orientations and allel to the boudin necks lineation (red), recording the 286 269 pinch-and-swell structures, which record soft-sediment same extension direction. 287 270 deformation (Fig. 5). Tension fractures perpendicular 271 to bedding and normal faults also occur. In the ex- 5.b. Conodont fauna and biostratigraphy 288 272 ample of Figure 5a, b, tension fractures are restricted 273 to the yellowish beds, indicating that these beds under- Three carbonate samples taken at the Aguada de 289 274 went brittle behaviour, while other beds, with pinch- La Cueva Creek section yielded conodonts, which 290 275 and-swell boudinage, were stretched by more ductile constrain the age of the slump deposits of the Los 291 276 deformation, probably because the yellowish beds were Sombreros Formation with a high-resolution biostrati- 292 277 more lithified. So, pinch-and-swell boudins and tension graphy and improve the conodont biozonation scheme 293 278 and shear fractures are more or less coeval and all of of the Precordillera. The of the identified spe- 294 279 them imply bed-parallel extension. Although the devel- cies is well known, following descriptions of previous 295 280 opment of the slump fold in Figure 5a, b is prior to ex- authors; therefore, only a brief discussion is presented 296 281 tensional deformation (both fold limbs are truncated by herein. 297 Conodonts from slump deposits of the Precordillera 5

A lime mudstone affected by synsedimentary exten- 298 sional faults (sample AM6) yielded Cordylodus caboti 299 Bagnoli, Barnes & Stevens, C. cf. tortus Barnes, C. 300 intermedius Furnish, C. proavus Müller, C. cf. andresi 301 Viira & Sergeyeva, Drepanoistodus sp., Teridontus na- 302 kamurai (Nogami), datsonensis (Druce 303 & Jones), sp. and the index species 304 Hirsutodontus simplex (Druce & Jones) (Fig. 6). The 305 latter species is chronostratigraphically restricted to the 306 Cordylodus intermedius Zone, Stage 10 of the Furong- 307 ian. H. simplex is characterized by a simple cone with 308 circular cross-section and a series of spines scattered 309 mainly on the anterior and lateral sides of the base and 310 cusp (Fig. 6n). 311 The different species of Cordylodus were dis- 312 tinguished by considering the general shape of the 313 elements, the pattern of denticulation (discrete, 314 confluent) and the basal cavity configuration (number 315 Figure 4. Late Darriwilian to Sanbian graptolites from the up- of apices, depth, position and shape of its anterior 316 per levels of the Los Sombreros Formation (Sample AMGRAP, border). As described by Bagnoli, Barnes & Stevens 317 see location in fig. 2). (a) Archiclimacograptus sp., CORD-PZ (1987), the basal cavity of C. caboti (Fig. 6g–i) is not 318 25705; (b) Dicellograptus sp., CORD-PZ 25706; (c) Reteograp- as deep as in C. proavus (Fig. 6a–e), but also extends 319 tus speciosus Harris, CORD-PZ 25707; (d) Nemagraptus sp., above the posterior process. Its basal cavity displays 320 CORD-PZ 25708; (e) Dicranograptus? sp., CORD-PZ 25709. Scale bar: 1 mm. a slightly concave to straight anterior margin that 321

Figure 5. (Colour online) (a, b) Photograph and outcrop sketch showing a slump fold and pinch-and-swell structures in the carbonate succession of the Los Sombreros Formation. Tensional and shear fractures are depicted. See text for explanation, and location in Figure 2. (c) Stereoplot of fold axes in the study area. (d) Boudinaged limestone bed (on the left) and closely spaced microfractures (on the beds located to the right). Hammer for scale: 33 cm. 6 G. G. VOLDMAN AND OTHERS

Figure 6. (Colour online) Conodont elements from the Hirsutodontus simplex Subzone of the Cordylodus intermedius Zone (upper Furongian, Cambrian), sample AM6: (a–f) Cordylodus proavus Müller, (a) S element, lateral view, CORD-MP 50734; (b) S element, lateral view, CORD-MP 50735; (c) S element, lateral view, CORD-MP 50736; (d) P element, lateral view, CORD-MP 50737; (e) S element, lateral view, CORD-MP 50738; (f) S element, lateral view, CORD-MP 50739. (g–i) Cordylodus caboti Bagnoli, Barnes & Stevens, (g) S element, lateral view, CORD-MP 50740; (h) S element, lateral view, CORD-MP 50741; (i) S element, lateral view, CORD-MP 50742. (j) Cordylodus cf. tortus Barnes, S element, lateral view, CORD-MP 50743. (k–m, o, p) Cordylodus intermedius Furnish, (k) S element, lateral view, CORD-MP 50744; (l) S element, lateral view, CORD-MP 50745; (m) S element, lateral view, CORD-MP 50746; (o) M element, lateral view, CORD-MP 50747; (p) S element, lateral view, CORD-MP 50748. (n) Hirsuto- dontus simplex (Druce & Jones), CORD-MP 50749, (n1) anterolateral view, (n2) posterior view. (q) Westergaardodina sp., lateral view, Conodonts from slump deposits of the Precordillera 7

322 curves near the tip, with its apex centrally located, a new genus for hybrid Teridontus-like species after fur- 374 323 which differentiates it from C. intermedius (Nicoll, ther investigations. The limited number of specimens 375 324 1991; Pyle & Barnes, 2002; Zeballo & Albanesi, recovered does not allow for adequately defining the 376 325 2009). Miller et al. (2003) regarded C. caboti as a latitude of morphologic variability of these primitive 377 326 junior synonym of Cordylodus ‘drucei’ Miller; since forms. Therefore, we cautiously assign a simple sub- 378 327 we cannot follow his criteria in our collection, we symmetrical coniform element with long cusp to T. na- 379 328 maintain the species C. caboti as valid. kamurai (Fig. 6u) and those with short, erect and keeled 380 329 The Cordylodus intermedius Zone is divided into cusps with weak grooves to V.datsonensis, which is re- 381 330 alowerHirsutodontus simplex Subzone and an upper stricted to the Furongian (Fig. 6w). Younger species 382 331 Clavohamulus hintzei Subzone (Miller et al. 2003). The of Variabiloconus are easier to distinguish as they ex- 383 332 lower subzone begins with the First Appearance Datum hibit an increase of ornamentation and development 384 333 (FAD) of H. simplex whereas its top is defined by the of the cusp (Löfgren, Repetski & Ethington 1998; Ze- 385 334 FAD of C. hintzei. The presence of advanced species ballo & Albanesi, 2013a). The Teridontus nakamurai 386 335 of Cordylodus in sample AM6, such as C. caboti and specimen recovered from the Los Sombreros Forma- 387 336 C. intermedius, which are more frequent in the upper tion lacks the typical microstriation of the genus, as 388 337 subzone, in the absence of C. hintzei, suggests an upper previously observed by Lehnert (1994). The genus Or- 389 338 H. simplex Subzone for this stratigraphic level (e.g. minskia also resembles Teridontus and lacks microstri- 390 339 Ross et al. 1997). ation, yet it has a hyaline cusp (Landing, Westrop & 391 340 Cordylodus proavus extends from the upper Cam- Keppie, 2007). 392 341 brian up to the Zone, indicative of the Two samples obtained from thin-bedded fine-grained 393 342 base of the Ordovician, whereas C. intermedius and calciturbidites interbedded with marlstones and brec- 394 343 C. caboti reach up to the manitouensis Zone cias located a few metres stratigraphically above AM6 395 344 (Pyle & Barnes, 2002). Two elements recovered com- were also productive. Sample AM8A yielded one 396 345 pare well to the figured forms of Cordylodus cf. andresi specimen of Macerodus dianae Fåhraeus & Nowlan 397 346 sensu Zeballo & Albanesi (2009)(Fig. 6x), which ex- (Fig. 6s), a distinctive form of the standard North 398 347 hibit a narrower cavity compared to the nominal species American Midcontinent Realm zonation (Ross et al. 399 348 (re-illustrated by Miller et al. 2015). Additionally, C. 1997), whose biostratigraphic range is restricted to 400 349 andresi occurs in older rocks as it is restricted to the a narrow interval of the upper Tremadocian. The 401 350 Hirsutodontus hirsutus and Fryxellodontus inornatus M. dianae Zone correlates with the lower part of 402 351 zones of the C. proavus Zone. Cordylodus cf. tortus is the upper subzone of the Paltodus deltifer Subzone 403 352 strongly asymmetric, with a denticle flexed compared of the Baltoscandian scheme (Webby et al. 2004). 404 353 to the cusp plane and a basal cavity relatively shallow Sample AM8B contains eight elements including Dre- 405 354 with its apex slightly displaced to the posterior region panodus arcuatus Pander, Paltodus aff. inaequalis 406 355 (Zeballo & Albanesi, 2009). (Pander) (Fig. 6y), Rossodus cf. manitouensis Repet- 407 356 The taxonomy of simple cones is complex, partic- ski & Ethington (Fig. 6r), Scolopodus cf. subrex Ji 408 357 ularly owing to their high variability and subtle dia- & Barnes (Fig. 6t) and a cluster of the paracon- 409 358 gnostic features. Variabiliconus shares with Teridontus odont Phakelodus tenuis (Müller). The S. subrex Zone 410 359 a similar apparatus plan, an abrupt junction between the partly correlates with the Macerodus dianae Zone 411 360 hyaline base and albid cusp, and the surface microstri- (Pyle & Barnes, 2002), whereas Rossodus cf. man- 412 361 ation. In particular, Variabiliconus (Oneotodus) dat- itouensis points to a slightly older Ordovician age; 413 362 sonensis closely resembles Teridontus nakamurai but is yet the available material is not sufficient to verify its 414 363 distinguished by the circular basal outline, the upturn- taxonomy. 415 364 ing of the oral termination of the cusp and the presence 365 of shallow furrows associated with carinas (Druce & 5.c. Conodont palaeoecology and palaeobiogeographic 416 366 Jones, 1971; Zeballo & Albanesi, 2009). Miller (1980) considerations 417 367 reassigned Oneotodus datsonensis Druce & Jones to 368 T. nakamurai and to Semiacontiodus nogamii Miller. The recognition of the Furongian Hirsutodontus 418 369 Nicoll (1994) rejected the latter suggestion as well as simplex Subzone of the Cordylodus intermedius Zone 419 370 the emended diagnosis given by Ji & Barnes (1994a), and the Tremadocian Macerodus dianae Zone in 420 371 as they are not applicable to the type species of the the Los Sombreros Formation allows the biostrati- 421 372 genus, which lacks lateral grooves, costae and keels. graphic correlation between the slope facies and the 422 373 Tolmacheva & Abaimova (2009) suggested introducing carbonate-platform domain to be improved, as both 423

CORD-MP 50750. (u) Teridontus nakamurai (Nogami), S element, lateral view, CORD-MP 50751. (v) Drepanoistodus sp., S element, lateral view, CORD-MP 50752. (w) Variabiloconus datsonensis (Druce & Jones), CORD-MP 50753, (w1) lateral view, (w2) basal cavity view. (x) Cordylodus cf. andresi Viira & Sergeyeva, S element, lateral view, CORD-MP 50754. (r–t, y) Conodont elements from the Macerodus dianae Zone (upper Tremadocian, Ordovician): (r) Rossodus cf. manitouensis Repetski & Ethington, S element, lateral view, sample AM8B, CORD-MP 50755; (s) Macerodus dianae Fåhraeus & Nowlan, lateral view, sample AM8A, CORD-MP 50756; (t) Scolopodus cf. subrex Ji & Barnes, lateral view, sample AM8B, CORD-MP 50757; (y) Paltodus aff. inaequalis (Pander), lateral view, sample AM8B, CORD-MP 50758. Scale bar: 0.1 mm. 8 G. G. VOLDMAN AND OTHERS

424 zones occur within the La Silla Formation (Lehnert, Santa Rosita formations in the Cordillera Oriental (Ze- 484 425 Miller & Repetski, 1997). In particular, Albanesi, ballo & Albanesi, 2009). 485 426 Cañas & Mango (in press) described thoroughly the Although conodont provinces can be already distin- 486 427 conodont association of the M. dianae Zone for the guished in the late Cambrian (Jeong & Lee, 2000), 487 428 shallow-water carbonates of the La Silla Formation, at most of the palaeogeographic studies are concentrated 488 429 the Cerro Viejo de San Roque section. Hirsutodontus in the Ordovician, when major realms were already 489 430 simplex, whose biostratigraphic range is restricted established by late Tremadocian times (Miller, 1984; 490 431 to the Cordylodus intermedius Zone, was originally Charpentier, 1984). Accordingly, the Precordillera is 491 432 defined in Australia (Druce & Jones, 1971) and identified as a conodont faunal Province of the Temper- 492 433 subsequently recovered from China (Chen & Gong, ate Domain of the Shallow-Sea Realm (or the Open-Sea 493 434 1986; Chen et al. 1988), Laurentia (Miller, 1980; Ross Realm depending on the sedimentary setting) (Albanesi 494 435 et al. 1997; Terfelt, Bagnoli & Stouge, 2012; Miller & Bergström, 2010; Serra & Albanesi, 2013), as it 495 436 et al. 2014), Siberia (Abaimova, 1971, 1975) and NW lacks the typical shallow-water, tropical forms charac- 496 437 Argentina (Zeballo & Albanesi, 2009). Miller (1984) teristic of the Laurentian, Australasian or North China 497 438 suggested that Clavohamulus and Hirsutodontus had a provinces (Bagnoli & Stouge, 1991; Zhen & Percival, 498 439 nektobenthic habit of life and that they preferred warm, 2003). Instead, it is distinguished by cosmopolitan or 499 440 shallow seas. The record of Hirsutodontus in the Los widespread faunas, showing a moderate endemism and 500 441 Sombreros Formation would then indicate reworking diversity when compared with faunas from the Tropical 501 442 of shallow-water deposits into deep-water facies by Domain. The Baltoscandian Province of the Cold Do- 502 443 gravity flows, as observed in the GSSP for the base of main presents lower diversities and higher abundances 503 444 the Ordovician at Green Point, Newfoundland (Cooper, instead (Zhen & Percival, 2003). 504 445 Nowlan & Williams, 2001; Miller et al. 2014). Ac- Macerodus dianae, an index taxon of the late 505 446 cordingly, Clavohamulus hintzei Miller, indicative of Tremadocian, appeared in sample AM8A. It was first 506 447 the upper subzone of Cordylodus intermedius Zone, described from outcrops of the Cow Head Group in 507 448 is present in the shallow-marine facies of the La Silla western Newfoundland, a series of Laurentian slope 508 449 Formation, at the eastern domain of the carbonate deposits fed from the outer shelf and the upper contin- 509 450 platform (Lehnert, Miller & Repetski, 1997). ental slope (Fåhraeus & Nowlan, 1978; Pohler, Barnes 510 451 The species Teridontus nakamurai has been found & James, 1987). Ji & Barnes (1994a) emended its dia- 511 452 in several lithofacies suggesting a pelagic habit of life gnosis with material from the Boat Harbour Forma- 512 453 (Ji & Barnes, 1994b), eventually restricted to the shelf tion (St George Group) on the Port au Port Penin- 513 454 environments owing to a nektobenthic habit (Miller, sula in western Newfoundland. Macerodus dianae is 514 455 1984). After studying a large conodont collection from recognized in widely separated geographic locations 515 456 the Cordillera Oriental, Zeballo & Albanesi (2013b) of the Great Basin (Ethington & Clark, 1981; Repet- 516 457 recognized an antithetical relationship between the cos- ski, 1982; Ross et al. 1997; Landing et al. 2012), the 517 458 mopolitan genera Variabiloconus and Teridontus, veri- Arctic Archipelago of Canada (G. S. Nowlan, unpub. 518 459 fying that the latter predominates in the deeper parts of Ph.D. thesis, Univ. Waterloo, 1976) and northern Nor- 519 460 the platform. In particular, V. datsonensis is present in way (Lehnert, Stouge & Brandl, 2013). In the Kechika 520 461 NE Australia (Druce & Jones, 1971), Antarctica (Bug- Formation of British Columbia, the Macerodus dianae 521 462 gisch & Repetski, 1987) and NW Argentina (Zeballo Zone is absent and is substituted by the shallow-water 522 463 & Albanesi, 2009). Scolopodus subrex Zone (Pyle & Barnes, 2002). 523 464 The genus Cordylodus was a major component of Rossodus is a typical genus from the Great Basin, 524 465 most slope and platform communities during Furong- characteristic of the North American Midcontinent 525 466 ian and Early Ordovician times. C. proavus has a wide- Province. The latter is approximately equivalent to 526 467 spread geographic distribution and is found in a wide the Laurentian Province of the Tropical Domain, in 527 468 range of lithofacies, which suggests a pelagic habit the Shallow-Sea Realm, distinguished by shelf areas 528 469 of life. In contrast, C. andresi, C. caboti and C. in- ˂ 200 m in depth with high endemism and diversity 529 470 termedius preferred deeper-water environments (lower (Ethington & Clark, 1981; Ross et al. 1997; Zhen 530 471 proximal to distal slope facies), as younger species & Percival, 2003). Rossodus manitouensis Repetski 531 472 of Cordylodus adapted to a nektobenthic mode of life & Ethington has also been documented in China (= 532 473 (Miller, 1984; Zhang & Barnes, 2004). ‘’ oneotensus sensu An, Du & Gao, 1985; 533 474 The C. intermedius Zone has a wide global distri- Wang, Bergström & Lane, 1996), Korea (Seo, Lee 534 475 bution and has been documented in China (Chen & & Ethington, 1994), Thailand (Agematsu et al. 2008) 535 476 Gong, 1986), Laurentia (Bagnoli, Barnes & Stevens, and Tasmania (R. C. Cantrill, unpub. Ph.D. thesis, 536 477 1987; Barnes, 1988; Miller, 1988; Ross et al. 1997; Univ. Tasmania, 2003). It is also known from the 537 478 Miller et al. 2003) and central Asia (Dubinina, 2000). peri-Gondwanan volcanic arc of the Famatina Sys- 538 479 A correlative conodont assemblage has been retrieved tem, where it occurs along with Drepanodus arcuatus, 539 480 from Australia (Druce & Jones, 1971) and Iran (Müller, longibasis (Lindström), Paltodus deltifer 540 481 1973). In Argentina, it was previously identified in pristinus (Viira), P.cf. subaequalis Pander and Parois- 541 482 the Volcancito Formation of the Famatina System (Al- todus numarcuatus (Lindström), which characterize a 542 483 banesi et al. 2005) and the Cardonal (Rao, 1999) and biofacies dominated by pelagic species from deep/cold 543 Conodonts from slump deposits of the Precordillera 9

544 waters (Albanesi et al. 2005). In the eastern domain of related heat source is not possible to discern as CAI 602 545 the Precordillera, Lehnert, Miller & Repetski (1997) values are relatively low, within the range of the ob- 603 546 described Rossodus aff. manitouensis from shallow- served values in the platform, which can be accounted 604 547 water facies of the La Silla Formation, along with Alox- for solely by sedimentary burial (Voldman, Albanesi & 605 548 oconus cf. propinquus (Furnish), Scolopodus cf. floweri Ramos, 2010). 606 549 Repetski, Paroistodus numarcuatus and Colaptoconus Alternatively, the mafic rocks from the Western Pre- 607 550 quadraplicatus (Branson & Mehl). The authors correl- cordillera produced very restricted thermal anomalies 608 551 ated this conodont assemblage with the Low Diversity in the country rocks given the small volume of single- 609 552 Interval and the lower Macerodus dianae conodont pulsed basalt intrusions, which could only slightly 610 553 biozone in North America (Ross et al. 1997), con- contribute to a regional increment of the heat flux 611 554 sistent with the suggested age for the samples AM8A (Voldman, Albanesi & do Campo, 2008; González- 612 555 and AM8B from the slope facies of the Los Sombreros Menéndez et al. 2013). This is consistent with the 613 556 Formation. metamorphic conditions inferred from the paragen- 614 557 The record of Macerodus dianae in the slope fa- etic associations of the mafic rocks, which suggests 615 558 cies verifies a strong link between the conodont faunas c. 250–350 ºC and 2–3 kbar, with palaeogeothermal 616 − 559 from the Precordillera with those from Laurentia dur- gradients of  30–35 ºCkm 1 (Robinson, Bevins & 617 560 ing Early Ordovician times, demonstrating a connec- Rubinstein, 2005), which are typical of mature pass- 618 561 tion along the borders of the Iapetus Ocean. Accord- ive margins and foreland basins (e.g. Allen & Allen, 619 562 ingly, Lehnert, Miller & Repetski (1997) interpreted 2005). Consequently, the CAI 3 in the studied con- 620 563 that the record of Clavohamulus hintzei in the La odont samples reflects a thermal history related to the 621 564 Silla Formation as well as the faunal similarities at sedimentary burial and nappe stacking of the Western 622 565 the species level with the shallow-water North Amer- Precordillera. 623 566 ican Midcontinent Province was a consequence of the 567 derivation of the Cuyania Terrane from the Ouachita 568 Embayment in Laurentia. Nevertheless, the conodont 6. Conclusions 624 569 faunas do not provide clear evidence to postulate a The new conodont data from the Los Sombreros Form- 625 570 geographic origin for the Precordillera as they show ation in La Invernada Range along with the sedimento- 626 571 dominantly Laurentian affinities again in the Middle logical and structural analysis carried out in the study 627 572 Ordovician, after a gradual immigration of conodonts area show that slope sedimentation and gravity slid- 628 573 from colder regions (Albanesi, 1998; Albanesi & ing has taken place in the Precordillera since at least 629 574 Bergström, 2010). late Cambrian times, contrasting with the current hy- 630 pothesis of a Devonian age for the slope deposits of the 631 575 5.d. Conodont preservation and palaeothermometry Los Sombreros mélange. Moreover, the recognition of 632 the Hirsutodontus simplex Subzone of the Cordylodus 633 576 The Cambrian specimens recovered from sample AM6 intermedius Zone (upper Furongian, Cambrian) and the 634 577 are well preserved and exhibit a conodont colour alter- Macerodus dianae Zone (upper Tremadocian, Ordovi- 635 578 ation index (CAI) 3 that provides some translucency to cian) improves the correlation with the La Silla Forma- 636 579 the conodont elements. The conodonts present smooth tion of the Precordilleran carbonate platform as well as 637 580 surfaces and scarce mineral overgrowths. Microfrac- with regions of Gondwana and other palaeocontinents. 638 581 tures are frequent and are responsible for the lack of The record of the index species Macerodus dianae in 639 582 apices on cusps and denticles. Conodonts recovered the Los Sombreros Formation, as well as Clavohamu- 640 583 from samples AM8A and AM8B also exhibit a CAI lus hintzei in the La Silla Formation, emphasizes the 641 584 3 but display a sugary texture with abundant quartz strong faunal affinity of the shelf environments of the 642 585 overgrowths instead. In this case, the different type of Precordillera with the Laurentian Province of the Trop- 643 586 textural alteration suggests variations in the intensity ical Domain for the late Cambrian – Early Ordovician 644 587 of the diagenetic processes. periods. However, given the wide global distribution of 645 588 Interestingly, previous findings of reworked pre- the studied specimens, the present data are not indic- 646 589 Floian conodonts recovered from the Los Sombreros ative of a geographic origin for the Precordillera. The 647 590 Formation display high CAI values in contrast to the thermal alteration of the studied specimens is consist- 648 591 elements recovered from the host rock. This fact was ent with the sedimentary burial and nappe stacking of 649 592 interpreted as a result of burial-related metamorphism the Western Precordillera. 650 593 and exhumation of the carbonate platform near the su- 594 ture zone of Cuyania with Gondwana, which supplied 595 detritus to the deep-water basin of the Western Precor- Acknowledgements. The authors thank Gian Andrea Pini 651 596 dillera (Voldman, Albanesi & Ramos, 2009). (Università degli Studi di Trieste) for helping with field work. 652 We appreciate Nigel H. Woodcock and an anonymous re- 653 597 The record of Furongian–Lower Ordovician con-  viewer for their constructive suggestions. This study was 654 598 odonts with CAI 3 ( 110–200 ºC; Epstein, Epstein & funded by CONICET, Argentina (RD3646/14, RD2827/15 655 599 Harris, 1977) in the Los Sombreros Formation reflects and PIP 11220130100447CO) and the Ministerio de Eco- 656 600 a simpler burial history instead, if a uniform palaeo- nomía y Competitividad, Spain (project CGL2012-34475). 657 601 geothermal gradient in the basin is considered. A rift- This paper is also a contribution to the IGCP Project 591. 658 10 G. G. VOLDMAN AND OTHERS

659 References ASTINI,R.A.,THOMAS,W.A.&YOCHELSON, E. L. 2004. 726 Salterella in the Argentine Precordillera: an Early Cam- 727 660 ABAIMOVA, G. P. 1971. New Early Ordovician conodonts brian palaeobiogeographic indicator of Laurentian af- 728 661 from the southeastern part of the Siberian Platform. Pa- finity. Palaeogeography, Palaeoclimatology, Palaeoeco- 729 662 leontological Journal 5, 486–93. logy 213, 125–32. 730 663 ABAIMOVA, G. P.1975. Early Ordovician conodonts from the BAGNOLI,G.,BARNES,C.R.&STEVENS, R. K. 1987. 731 664 middle reaches of the Lena River. Transaction Series of Tremadocian conodonts from Broom Point and Green 732 665 the Siberian Scientific Research Institute for Geology, Point, western Newfoundland. Bollettino della Societa 733 666 Geophysics and Mineralogy, Novosibirsk 207, 1–129. Paleontologica Italiana 25(2), 145–58. 734 667 AGEMATSU,S.,SASHIDA,K.,SALYAPONGSE,S.&SARDSUD, BAGNOLI,G.&STOUGE, S. 1991. Paleogeographic distribu- 735 668 A. 2008. Early Ordovician conodonts from Tarutao Is- tion of Arenigian (Lower Ordovician) conodonts. Anais 736 669 land, southern peninsular Thailand. Palaeontology 51, da Academia Brasileira de Ciencias 63, 171–83. 737 670 1435–53. BALDIS,B.A.,BERESI,M.S.,BORDONARO,O.&VACA,A. 738 671 ALBANESI, G. L. 1998. Biofacies de conodontes de las 1982. Síntesis evolutiva de la Precordillera Argentina. 739 672 secuencias ordovícicas del cerro Potrerillo, Precordillera In V Congreso Latinoamericano de Geología, Buenos 740 673 Central de San Juan, R. Argentina. Actas Academia Aires. Actas 4 (ed. Editorial Board, 17–22 October 741 674 Nacional de Ciencias, Córdoba 12, 75–98. 1982), pp. 399–445. Buenos Aires: Asociación Geoló- 742 675 ALBANESI,G.L.&BERGSTRÖM, S. M. 2010. Early–Middle gica Argentina. 743 676 Ordovician conodont paleobiogeography with special BANCHIG,A.L.,KELLER,M.&MILANA, J. 1990. Brechas 744 677 regard to the geographic origin of the Argentine Pre- calcáreas de la Formación Los Sombreros, quebrada 745 678 cordillera: a multivariate data analysis. In The Ordovi- Ojos de Agua, sierra del Tontal, San Juan. XI Congreso 746 679 cian Earth System (eds S. C. Finney & W. B. N. Berry), Geológico Argentino, San Juan. Actas 2 (ed. Editorial 747 680 pp. 119–39. Geological Society of America, Special Pa- Board, 17–21 September 1990), pp. 149–52. Buenos 748 681 per no. 466. Aires: Asociación Geológica Argentina. 749 682 ALBANESI,G.L.,CAÑAS,F.&MANGO, M. In press. Fauna BANCHIG,A.L.&MOYA, M. C. 2002. La Zona de Tet- 750 683 de conodontes tremadocianos del techo de la Formación ragraptus approximatus (Ordovícico Inferior) en la si- 751 684 La Silla en el Cerro Viejo de San Roque, Precordillera erra del Tontal, Precordillera occidental Argentina. VIII 752 685 Central de San Juan. III Jornadas de Geología de Pre- Congreso Argentino de Paleontología y Bioestratigrafía, 753 686 cordillera, San Juan. Acta Geológica Lilloana. Corrientes. Resúmenes (ed. Editorial Board, 7–10 Oc- 754 687 ALBANESI,G.L.,ESTEBAN,S.B.,ORTEGA,G.,HÜNICKEN, tober 2002), 83 pp. Buenos Aires: Asociación Paleon- 755 688 M. A. & BARNES, C. R. 2005. Bioestratigrafía y am- tológica Argentina. 756 689 bientes sedimentarios de las formaciones Volcancito y BARNES, C. R. 1988. The proposed Cambrian–Ordovician 757 690 Bordo Atravesado (Cámbrico Superior-Ordovícico In- global Boundary stratotype and point (GSSP) in West- 758 691 ferior), Sistema de Famatina, provincia de La Rioja, ern Newfoundland, Canada. Geological Magazine 125, 759 692 Argentina. In Geología de la provincia de La Rioja: 381–414. 760 693 Precámbrico-Paleozoico Inferior (eds J. A. Dahlquist, BENEDETTO,J.L.&VACCARI, E. 1992. Significado estrati- 761 694 E. G. Baldo & P. H. Alasino), pp. 41–64. Buenos Aires: gráfico y tectónico de los complejos de bloques cambro– 762 695 Asociación Geológica Argentina. ordovícicos resedimentados de la Precordillera Occi- 763 696 ALBANESI,G.L.,ORTEGA,G.&HÜNICKEN, M. A. 1995. dental Argentina. Estudios Geológicos 48, 305–13. 764 697 Conodontes y graptolitos de la Formación Yerba Loca BORDONARO, O. 2003. Review of the Cambrian stratigraphy 765 698 (Arenigiano–Llandeiliano) en las quebradas de An- of the Argentine Precordillera. Geologica Acta 1, 11–21. 766 699 caucha y El Divisadero, Precordillera de San Juan, Ar- BORDONARO,O.&BALDIS, B. A. 1987. Tonkinella stephensis 767 700 gentina. Boletín de la Academia Nacional de Ciencias, (Trilobita) en el Cámbrico medio de la Sierra del Tontal, 768 701 Córdoba 60, 365–400. San Juan, Argentina. IV Congreso Latinoamericano de 769 702 ALLEN,P.A.&ALLEN, J. R. 2005. Basin Analysis. Prin- Paleontología, Santa Cruz de La Sierra. Actas 1 (ed. 770 703 ciples and Applications. Oxford: Blackwell Scientific Editorial Board, 27–30 July 1987), pp. 5–15. Santa Cruz 771 704 Publications, 560 pp. de la Sierra: Asociacioń Boliviana de Paleontologia.́ 772 705 ALLMENDINGER,R.W.,FIGUEROA,D.,SNYDER,D.,BEER,J., BORDONARO,O.&BANCHIG, A. L. 1990. Nuevos trilobites 773 706 MPODOZIS,C.&ISACKS, B. L. 1990. Foreland shorten- del Cámbrico medio en la Qa. Ojos de Agua, Sa. del 774 707 ing and crustal balancing in the Andes at 30º S latitude. Tontal, San Juan. Serie de Correlación Geológica 7, 775 708 Tectonics 9, 789–809. 25–37. 776 709 ALONSO,J.L.,GALLASTEGUI,J.,GARCÍA-SANSEGUNDO,J., BUGGISCH,W.&REPETSKI, J. E. 1987. Uppermost Cambrian 777 710 FARÍAS,P.,RODRÍGUEZ-FERNÁNDEZ,L.R.&RAMOS, (?) and Tremadocian conodonts from Handler Ridge 778 711 V.A. 2008. Extensional tectonics and gravitational col- (Robertson Bay terrane, northern Victoria Land, Ant- 779 712 lapse in an Ordovician passive margin: the Western Ar- arctica). Geologisches Jahrbuch 66, 145–85. 780 713 gentine Precordillera. Gondwana Research 13, 204–15. CAWOOD, P. A. 2005. Terra Australis Orogen: Rodinia 781 714 ALONSO,J.L.,RODRÍGUEZ FERNÁNDEZ,L.R.,GARCÍA- breakup and development of the Pacific and Iapetus 782 715 SANSEGUNDO,J.,HEREDIA,N.,FARIAS,P.& margins of Gondwana. Earth-Science Reviews 69, 783 716 GALLASTEGUI, J. 2005. Gondwanic and Andean struc- 249–79. 784 717 ture in the Argentine Central Precordillera: the Río San CHARPENTIER, R. R. 1984. Conodonts through time and 785 718 Juan section revisited. In VI International Symposium on space: studies in conodont provincialism. In Conodont 786 719 Andean Geodynamics, Barcelona. Extended Abstracts Biofacies and Provincialism (ed. D. L. Clark), pp. 11– 787 720 (ed. Editorial Board, 12–14 September 2005), pp. 36–9. 32. Geological Society of America, Special Paper no. 788 721 Paris: IRD Editions, Universitat de Barcelona, Instituto 196. 789 722 Geológico y Minero de España. CHEN,J.&GONG, W. 1986. Conodonts. In Aspects of 790 723 AN,T.X.,DU,G.Q.&GAO, Q. Q. 1985. Study on the Cambrian–Ordovician Boundary in Dayangcha, China 791 724 Ordovician Conodonts from Hubei. Beijing: Geological (ed. J.-Y. Chen.), pp. 93–223. Beijing: China Prospect 792 725 Publishing House, 64 pp. Publishing House. 793 Conodonts from slump deposits of the Precordillera 11

794 CHEN,J.-Y.,QIAN,Y.-Y.,ZHANG, J.-M., LIN, Y.-K., YIN,L.- dillera de Mendoza. Revista de la Asociación Geológica 862 795 M., WANG, Z.-H., WANG,Z.-Z.,YANG,J.-D.&WANG, Argentina 59, 178–92. 863 796 Y.-X. 1988. The recommended Cambrian–Ordovician JEONG,H.&LEE, Y. I. 2000. Late Cambrian biogeography: 864 797 global boundary stratotype of the Xiaoyangqiao sec- conodont bioprovinces from Korea. Palaeogeography, 865 798 tion (Dayangcha, Jilin Province, China). Geological Palaeoclimatology, Palaeoecology 162, 119–36. 866 799 Magazine 125, 415–44. JI,Z.&BARNES, C. R. 1994a. Lower Ordovician conodonts 867 800 COOPER,R.A.,NOWLAN,G.S.&WILLIAMS, S. H. 2001. of the St. George Group, Port au Port Peninsula, western 868 801 Global Stratotype Section and Point for base of the Or- Newfoundland, Canada. Palaentographica Canadiana 869 802 dovician System. Episodes 24, 19–28. 11, 1–149. 870 803 CUERDA,A.J.,CINGOLANI,C.A.&VARELA, R. 1983. Las JI,Z.&BARNES, C. R. 1994b. Conodont paleoecology of the 871 804 graptofaunas de la Formación Los Sombreros, Ordoví- Lower Ordovician St. George Group, Port au Port Pen- 872 805 cico inferior de la vertiente oriental de la sierra del insula, Western Newfoundland. Journal of Paleontology 873 806 Tontal. Ameghiniana 30, 239–60. 68, 1368–83. 874 807 CUERDA,A.J.,CINGOLANI,C.,VARELA,R.&SCHAUER, KELLER, M. 1999. Argentine Precordillera: Sedimentary and 875 808 O. 1986. Cámbrico y Ordovícico en la Precordillera de Plate Tectonic History of a Laurentian Crustal Fragment 876 809 San Juan: Formación Los Sombreros, ampliación de su in South America. Geological Society of America, Spe- 877 810 conocimiento bioestratigráfico, IV Congreso Argentino cial Paper no. 341, 131 pp. 878 811 de Bioestratigrafía y Paleontología, Mendoza. Actas 1 LANDING,E.,ADRAIN, J. M., WESTROP,S.R.&KRÖGER,B. 879 812 (ed. A. Cuerda, 23–27 November 1986), pp. 5–17. Men- 2012. Tribes Hill–Rochdale formations in east Lauren- 880 813 doza: Inca. tia: proxies for Early Ordovician (Tremadocian) eustasy 881 814 CUERDA,A.,CINGOLANI,C.A.,VARELA,R.,SCHAUER,O., on a tropical passive margin (New York and west Ver- 882 815 BALDIS,B.A.&BORDONARO, O. L. 1985. Hallazgo de mont). Geological Magazine 149, 93–123. 883 816 sedimentitas Cámbricas fosilíferas en la Sierra de Tontal LANDING,E.,WESTROP,S.R.&KEPPIE, J. D. 2007. Terminal 884 817 (Precordillera de San Juan). Ameghiniana 22, 281–2. Cambrian and lowest Ordovician succession of Mexican 885 818 DRUCE,E.C.&JONES, P. J. 1971. Cambro-Ordovician con- West Gondwana: biotas and sequence stratigraphy of the 886 819 odonts from the Burke River Structural Belt, Queens- Tiñú Formation. Geological Magazine 144, 909–36. 887 820 land. Bureau of Mineral Resources, Geology and Geo- LEHNERT, O. 1994. A Cordylodus proavus fauna from West 888 821 physics Bulletin 110, 1–159. Central Argentina (Los Sombreros Formation, Sierra 889 822 DUBININA, S. V.2000. Conodonts and Zonal Stratigraphy of del Tontal, San Juan). Zentralblatt für Geologie und 890 823 the Cambrian–Ordovician Boundary Deposits. Transac- Paläentologie 1, 245–62. 891 824 tions of the Geological Institute of the USSR Academy LEHNERT,O.,MILLER,J.F.&REPETSKI, J. E. 1997. Paleo- 892 825 of Sciences no. 517. Moscow: Nauka, 240 pp. geographic significance of Clavohamulus hintzei Miller 893 826 EPSTEIN,A.G.,EPSTEIN,J.B.&HARRIS, L. D. 1977. Con- (Conodonta) and other Ibexian conodonts in an early 894 827 odont Color Alteration – An Index to Organic Meta- Paleozoic carbonate platform facies of the Argentine 895 828 morphism. Geological Survey Professional Paper no. Precordillera. Geological Society of America Bulletin 896 829 995, 27 pp. 109, 429–43. 897 830 ETHINGTON,R.L.&CLARK, D. L. 1981. Lower and Middle LEHNERT,O.,STOUGE,S.&BRANDL, P. A. 2013. Con- 898 831 Ordovician Conodonts from the Ibex Area, Western Mil- odont biostratigraphy in the Early to Middle Ordovician 899 832 lard County, Utah. Brigham Young University Geology strata of the Oslobreen Group in Ny Friesland, Sval- 900 833 Studies 28, 1–160. bard. Zeitschrift der Deutschen Gesellschaft für Geowis- 901 834 FÅHRÆUS,L.E.&NOWLAN, G. S. 1978. Franconian (Late senschaften 164, 149–72. 902 835 Cambrian) to Early Champlainian (Middle Ordovician) LÖFGREN,A.,REPETSKI,J.E.ÐINGTON, R. L. 1998. 903 836 conodonts from the Cow Head Group, Western New- Some trans-Iapetus conodont faunal connections in the 904 837 foundland. Journal of Paleontology 52, 444–71. Tremadocian. Bolletino della Società Paleontologica 905 838 FURQUE,G.&CABALLÉ, M. 1988. Descripción Geológica Italiana 37, 159–73. 906 839 de la Sierra de La Invernada, Precordillera de San Juan. LOWE, D. R. 1982. Sediment gravity flows: II. Depositional 907 840 Buenos Aires: Dirección Nacional de Geología y Min- models with special reference to the deposits of high- 908 841 ería, 76 pp. density turbidity currents. Journal of Sedimentary Pet- 909 842 FURQUE,G.,CUERDA,A.J.,CABALLÉ,M.&ALFARO,M. rology 52, 279–97. 910 843 1990. El Ordovícico de la Sierra de la Invernada y su MCILREATH,J.A.&JAMES, N. P. 1984. Carbonate slopes. 911 844 fauna de graptolitos, San Juan. Revista del Museo de la In Facies Models (ed. R. G. Walker), pp. 245–57. 912 845 Plata (N.S.) Paleontología 9, 159–81. Geoscience Canada, Reprint Series no. 1. 913 846 GONZÁLEZ-MENÉNDEZ,L.,GALLASTEGUI,G.,CUESTA,A., MILLER, J. F.1980. Taxonomic revisions of some Upper Cam- 914 847 HEREDIA,N.&RUBIO-ORDÓÑEZ, A. 2013. Petrogenesis brian and Lower Ordovician conodonts with comments 915 848 of Early Paleozoic basalts and gabbros in the western on their evolution. University of Kansas Paleontological 916 849 Cuyania terrane: constraints on the tectonic setting of Contributions 99, 1–44. 917 850 the southwestern Gondwana margin (Sierra del Tigre, MILLER, J. F. 1984. Cambrian and earliest Ordovician con- 918 851 Andean Argentine Precordillera). Gondwana Research odont evolution, biofacies, and provincialism. In Con- 919 852 24, 359–76. odont Biofacies and Provincialism (ed. D. L. Clark), pp. 920 853 GOSEN,W.VON. 1992. Structural evolution of the Argen- 43–68. Geological Society of America, Special Paper 921 854 tine Precordillera: the Río San Juan section. Journal of no. 196. 922 855 Structural Geology 14, 643–67. MILLER, J. F. 1988. Conodonts as biostratigraphic tools for 923 856 HEIM, A. 1952. Estudios tectónicos en la Precordillera de San redefinition and correlation of the Cambrian-Ordovician 924 857 Juan. Revista de la Asociación Geológica Argentina 7, boundary. Geological Magazine 125, 349–62. 925 858 11–74. MILLER,J.F.,DATTILO,B.F.,ETHINGTON,R.L.,FREEMAN,R. 926 859 HEREDIA,S.E.&BERESI, M. S. 2004. La Formación Em- L. 2015. Polyfocal photography of conodonts and other 927 860 pozada y su relación estratigráfica con la Formación Es- microfossils using petrographic microscopes. Annales 928 861 tancia San Isidro (nom. nov.),OrdovícicodelaPrecor- de Paléontologie 101, 179–84. 929 12 G. G. VOLDMAN AND OTHERS

930 MILLER,J.F.,EVANS,K.R.,LOCH,J.D.,ETHINGTON,R.L., RAMOS,V.A.,CRISTALLINI,E.O.&PÉREZ, D. J. 2002. The 998 931 STITT,J.H.,HOLMER,L.&POPOV, L. 2003. Stratigraphy Pampean flat-slab of the Central Andes. Journal of South 999 932 of the Sauk II interval (Cambrian–Ordovician) in the America Earth Sciences 15, 59–78. 1000 933 Ibex area, western Millard County, Utah, and central RAMOS,V.A.,VUJOVICH,G.I.&DALLMEYER, R. D. 1996. 1001 934 Texas. Brigham Young University Geology Studies 47, Los klippes y ventanas tectónicas preándicas de la sierra 1002 935 23–118. de Pie de Palo (San Juan): edad e implicaciones tectón- 1003 936 MILLER,J.F.,REPETSKI,J.E.,NICOLL,R.S.,NOWLAN,G.& icas. XIII Congreso Geológico Argentino y III Con- 1004 937 ETHINGTON, R. L. 2014. The conodont Iapetognathus greso de Exploración de Hidrocarburos, Buenos Aires. 1005 938 and its value for defining the base of the Ordovician Actas 5 (ed. Editorial Board, 13–18 October 1996), 1006 939 System. Geologiska Föreningens i Stockholm Förhand- pp. 377–91. Buenos Aires: Asociación Geológica 1007 940 lingar 136, 185–8. Argentina. 1008 941 MÜLLER, K. J. 1973. Late Cambrian and Early Ordovician RAO, R. I. 1999. Los conodontes cambro-ordovícicos de la 1009 942 conodonts from northern Iran. Geological Survey of Iran sierra de Cajas y del Espinazo del Diablo, Cordillera 1010 943 Report 30, 1–77. Oriental, República Argentina. Revista Española de Mi- 1011 944 MUTTI,E.,TINTERRI,R.,REMACHA,E.,MAVILLA,N., cropaleontologia 31, 23–51. 1012 945 AGNELLA,S.&FAVA , L. 1999. An introduction to the RAPELA,C.W.,VERDECCHIA,S.O.,CASQUET,C., 1013 946 analysis of ancient turbidite basins from an outcrop per- PANKHURST,R.J.,BALDO,E.G.,GALINDO,C.,MURRA, 1014 947 spective. American Association of Petroleum Geologists J. A., DAHLQUIST,J.A.&FANNING, C. M. 2016. Identi- 1015 948 Continuing Education Course Note Series 39, 1–93. fying Laurentian and SW Gondwana sources in the Neo- 1016 949 NICOLL, R. S. 1991. Differentiation of Late Cambrian – proterozoic to Early Paleozoic metasedimentary rocks 1017 950 Early Ordovician species of Cordylodus (Conodonta) of the Sierras Pampeanas: paleogeographic and tectonic 1018 951 with biapical basal cavities. BMR Journal of Australian implications. Gondwana Research 32, 193–212. 1019 952 Geology & Geophysics 12, 223–44. REPETSKI, J. E. 1982. Conodonts from El Paso Group (Lower 1020 953 NICOLL, R. S. 1994. Seximembrate apparatus structure of Ordovician) of westernmost Texas and southern New 1021 954 the Late Cambrian coniform conodont Teridontus na- Mexico. New Mexico Bureau of Mines & Mineral Re- 1022 955 kamurai from the Chatsworth Limestone, Georgina sources Memoir 40, 1–121. 1023 956 Basin, Queensland. AGSO Journal of Australian Geo- ROBINSON,D.,BEVINS,R.E.&RUBINSTEIN, N. 2005. Sub- 1024 957 logy and Geophysics 15, 367–79. greenschist facies metamorphism of metabasites from 1025 958 ORTEGA,G.,ALBANESI,G.L.,BANCHIG,A.&PERALTA,G. the Precordillera terrane of western Argentina; con- 1026 959 L. 2008. High resolution conodont-graptolite biostrati- straints on the later stages of accretion onto Gondwana. 1027 960 graphy in the Middle–Upper Ordovician of the Sierra de European Journal of Mineralogy 17, 441–52. 1028 961 La Invernada Formation (Central Precordillera, Argen- ROSS,R.J.JR., HINTZE,L.F.,ETHINGTON,R.L.,MILLER,J. 1029 962 tina). Geologica Acta, 6, 161–80. F. , TAY L O R ,M.E.&REPETSKI, J. E. 1997. The Ibexian, 1030 963 ORTEGA,G.,ALBANESI,G.L.,HEREDIA,S.E.&BERESI,M. Lowermost Series in the North American Ordovician. 1031 964 S. 2007. Nuevos registros de graptolitos y conodontes U. S. Geological Survey Professional Paper 1579-A, 1032 965 ordovícicos de las formaciones Estancia San Isidro y 1–50. 1033 966 Empozada, Quebrada San Isidro, Precordillera de Men- SEO,K.-S.,LEE,H.-Y.ÐINGTON, R. L. 1994. Early Or- 1034 967 doza. Ameghiniana 44, 697–718. dovician Conodonts from the Dumugol Formation in the 1035 968 ORTEGA,G.,BANCHIG,A.L.,VOLDMAN,G.G.,ALBANESI, Baegunsan Syncline, Eastern Yeongweol and Samcheog 1036 969 G. L., ALONSO,J.L.,FESTA,A.&CARDÓ, R. 2014. Areas, Kangweon-Do, Korea. Journal of Paleontology 1037 970 Nuevos registros de graptolitos y conodontes en la 68, 599–616. 1038 971 Formación Los Sombreros (Ordovícico), Precordillera SERRA,F.&ALBANESI, G. L. 2013. Paleoecology and pa- 1039 972 de San Juan, Argentina, y su implicancia geológica. XIX leobiogeography of Darriwilian conodonts from the Las 1040 973 Congreso Geológico Argentino, Córdoba. Actas CD- Chacritas Formation, Central Precordillera of San Juan, 1041 974 ROM (ed. Editorial Board, 2–6 June 2014). Córdoba: Argentina. In Conodonts from the Andes (ed. G. L. Al- 1042 975 Asociación Geológica Argentina. banesi & G. Ortega), pp. 103–8. Asociación Paleontoló- 1043 976 ORTIZ,A.&ZAMBRANO, J. J. 1981. La Provincia Geoló- gica Argentina, Publicación Especial no. 13. 1044 977 gica Precordillera Oriental. VIII Congreso Geológico STONE, J. 1987. Review of investigative techniques used 1045 978 Argentino, San Luis. Actas, 3 (ed. Editorial Board, 20– in the study of conodonts. In Conodonts: Investigat- 1046 979 26 September 1981), 59–74. Buenos Aires: Asociación ive Techniques and Applications (ed. R. L. Austin), pp. 1047 980 Geológica Argentina. 17–34. Chichester: Ellis Horwood Limited. 1048 981 PERALTA, S. H. 2013. Devónico de la sierra de La Invernada, TERFELT,F.,BAGNOLI,G.&STOUGE, S. 2012. Re-evaluation 1049 982 Precordillera de San Juan, Argentina: revisión estrati- of the conodont Iapetognathus and implications for the 1050 983 gráfica e implicancias paleogeográficas. Revista de la base of the Ordovician System GSSP. Lethaia 45, 227– 1051 984 Asociación Geológica Argentina 70, 202–15. 37. 1052 985 POHLER,S.L.,BARNES,C.R.&JAMES, N. P. 1987. Recon- TOLMACHEVA,T.J.&ABAIMOVA, G. P.2009. Late Cambrian 1053 986 struction of a lost faunal realm: conodonts from breccia and Early Ordovician Conodonts from the Kulumbe 1054 987 beds of the Lower Ordovician Cow Head Group, west- River Section, Northwest Siberian Platform. Memoirs 1055 988 ern Newfoundland. In Conodonts: Investigative Tech- of the Association of Australasian Palaeontologists 37, 1056 989 niques and Applications (ed. R. L. Austin), pp. 341–62. 427–51. 1057 990 Chichester: Ellis Horwood Limited. VOLDMAN,G.G.,ALBANESI,G.L.&DO CAMPO, M. 2008. 1058 991 PYLE,J.L.&BARNES, C. R. 2002. Taxonomy, Evolution, and Conodont palaeothermometry of contact metamorph- 1059 992 Biostratigraphy of Conodonts from the Kechika Form- ism in Middle Ordovician rocks from the Precordillera 1060 993 ation, Skoki Formation, and Road River Group (Up- of western Argentina. Geological Magazine 145, 449– 1061 994 per Cambrian to Lower ), Northeastern British 62. 1062 995 Columbia. Ottawa: NRC Research Press, 227 pp. VOLDMAN,G.G.,ALBANESI,G.L.&RAMOS,V.A. 1063 996 RAMOS, V.A. 1995. Sudamérica: un mosaico de continentes 2009. Ordovician metamorphic event in the carbonate 1064 997 y océanos. Ciencia Hoy 6, 24–9. platform of the Argentine Precordillera: implications for 1065 Conodonts from slump deposits of the Precordillera 13

1066 the geotectonic evolution of the proto-Andean margin of ZEBALLO,F.J.&ALBANESI, G. L. 2009. Conodontes cám- 1090 1067 Gondwana. Geology 37, 311–4. bricos y Jujuyaspis keideli Kobayashi (Trilobita) en 1091 1068 VOLDMAN,G.G.,ALBANESI,G.L.&RAMOS, V. A. 2010. el Miembro Alfarcito de la Formación Santa Rosita, 1092 1069 Conodont geothermometry of the lower Paleozoic from quebrada de Humahuaca, Cordillera Oriental de Jujuy. 1093 1070 the Precordillera (Cuyania terrane), northwestern Ar- Ameghiniana 46, 537–56. 1094 1071 gentina. Journal of South America Earth Sciences 29, ZEBALLO,F.J.&ALBANESI, G. L. 2013a. New conodont 1095 1072 278–88. species and biostratigraphy of the Santa Rosita Form- 1096 1073 VOLDMAN,G.G.,ALONSO,J.L.,ALBANESI,G.L.,BANCHIG, ation (upper Furongian–Tremadocian) in the Tilcara 1097 1074 A. L., ORTEGA,G.,RODRÍGUEZ FERNÁNDEZ,L.R.& Range, Cordillera Oriental of Jujuy, Argentina. Geo- 1098 1075 FESTA, A. 2014. New conodont records from the Los logical Journal 48, 170–93. 1099 1076 Sombreros Formation, an Ordovician mélange in the ZEBALLO,F.J.&ALBANESI, G. L. 2013b. Biofacies and pa- 1100 1077 Argentine Precordillera. Gondwana 15, Madrid. Ab- laeoenvironments of conodonts in Cambro-Ordovician 1101 1078 stracts (eds R. J. Pankhurst, P. Castiñeiras & S. Sánchez sequences of the Quebrada de Humahuaca, Cordillera 1102 1079 Martínez, 14–18 July 2014), 170 pp. Madrid: Instituto Oriental of Jujuy, Argentina. Geological Journal 48, 1103 1080 Geológico y Minero de España. 194–211. 1104 1081 WANG,Z.H.,BERGSTRÖM,S.M.&LANE, H. R. 1996. ZHANG,S.&BARNES, C. R. 2004. Late Cambrian and Early 1105 1082 Conodont provinces and biostratigraphy in Ordovician Ordovician conodont communities from platform and 1106 1083 of China. Acta Palaeontologica Sinica 35, 29–59. slope facies, western Newfoundland: a statistical ap- 1107 1084 WEBBY,B.D.,COOPER,R.A.,BERGSTRÖM,S.M.&PARIS, proach. In The Palynology and Micropalaeontology of 1108 1085 F. 2004. Stratigraphic framework and time slices. In Boundaries (eds A. B. Beaudoin & M. J. Head), pp. 47– 1109 1086 The Great Ordovician Biodiversification Event (eds 72. Geological Society of London, Special Publication 1110 1087 B. D. Webby, F. Paris, M. L. Droser & I. G. Per- no. 230. 1111 1088 cival), pp. 41–7. New York: Columbia University ZHEN,Y.-Y.&PERCIVAL, I. A. N. 2003. Ordovician conodont 1112 1089 Press. biogeography – reconsidered. Lethaia 36, 357–69. 1113