Terminal Cambrian and Early Ordovician (Tremadocian) Conodonts from Eastern Alborz, North-Central Iran

Total Page:16

File Type:pdf, Size:1020Kb

Terminal Cambrian and Early Ordovician (Tremadocian) Conodonts from Eastern Alborz, North-Central Iran Alcheringa: An Australasian Journal of Palaeontology ISSN: 0311-5518 (Print) 1752-0754 (Online) Journal homepage: http://www.tandfonline.com/loi/talc20 Terminal Cambrian and Early Ordovician (Tremadocian) conodonts from Eastern Alborz, north-central Iran Hadi Jahangir, Mansoureh Ghobadi Pour, Alireza Ashuri & Arash Amini To cite this article: Hadi Jahangir, Mansoureh Ghobadi Pour, Alireza Ashuri & Arash Amini (2015): Terminal Cambrian and Early Ordovician (Tremadocian) conodonts from Eastern Alborz, north-central Iran, Alcheringa: An Australasian Journal of Palaeontology, DOI: 10.1080/03115518.2016.1118298 To link to this article: http://dx.doi.org/10.1080/03115518.2016.1118298 Published online: 14 Dec 2015. Submit your article to this journal Article views: 2 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=talc20 Download by: [Gazi University] Date: 17 December 2015, At: 08:12 Terminal Cambrian and Early Ordovician (Tremadocian) conodonts from Eastern Alborz, north-central Iran HADI JAHANGIR, MANSOUREH GHOBADI POUR*, ALIREZA ASHURI and ARASH AMINI HADI JAHANGIR,MANSOUREH GHOBADI POUR,ALIREZA ASHURI &ARASH AMINI, XX.XX.2015. Terminal Cambrian and Early Ordovician (Tremadocian) conodonts from Eastern Alborz, north-central Iran. Alcheringa ##, ###-###. ISSN 0311-5518. Uppermost Cambrian (Furongian) and Lower Ordovician (Tremadocian) deposits of eastern Alborz in northern Iran contain several successive low- to moderate-diversity conodont associations including 13 genera and 19 species of euconodonts, paraconodonts and protoconodonts, which define six biozones: 1, the Proconodontus muelleri;2,Eoconodontus notchpeakensis;3,Cordylodus andresi;4,Cordylodus proavus;5,Paltodus deltifer; and 6, Paroistodus proteus zones. With the exception of Cordylodus andresi, which is otherwise known from Baltoscandia and from the Oaxaquia terrane (Mexico), all index-taxa are geographically widespread, allowing long-range correlation within the Cold Domain or the North Atlantic Province, and in particular with Baltica. Invasion of euconodonts in the Alborz region, defined by the first occurrence of Proconodontus muelleri, coincides closely with a steady rise in sea level and termination of carbonate sedimentation, whereas the transition from the Proconodontus muelleri to Eoconodontus notchpeakensis zones occurs during a highstand interval unlike in Laurentian sequences. The interval corresponding to the Cordylodus andresi and Cordylodus proavus zones, and the transition from the Paltodus deltifer to Paroistodus proteus zones coincided with unstable sea levels and the formation of shoal complexes. The lower boundary of the Floian Stage can be provisionally placed slightly below the first documented occurrence of Acodus sp. cf. A. kechikaensis, somewhat below the second unit of andesitic lava flows in the Simeh-Kuh section. Hadi Jahangir [[email protected]] and Alireza Ashuri [[email protected]] Department of Geology, Faculty of Sciences, Ferdowsi University, Azadi Square, Mashhad 91775-1436, Iran; Mansoureh Ghobadi Pour* [[email protected]; [email protected]] and Arash Amini [[email protected]], Department of Geology, Faculty of Sciences, Golestan University, Gorgan 49138-15739, Iran. *Also affiliated with Department of Geology, National Museum of Wales, Cathays Park, Cardiff CF10 3NP, UK. Received 13.7.2015; revised 18.10.2015; accepted 6.11.2015. Key words: Terminal Cambrian, Ordovician, Tremadocian, conodonts, Alborz, Iran. CAMBRIAN (Furongian) conodonts have been known elements from the Deh-Molla section (Tables 1–3). from the Alborz region of northern Iran for more than However, the assemblages are diverse taxonomically 40 years; however, they have not been the focus of and include 13 genera and 20 species (Fig. 2). research since the pioneering publication by Müller The conodont fauna of the Simeh-Kuh section, (1973). Hence, the application of conodonts to the which represents the most complete Furongian to Lower lower Palaeozoic biostratigraphy of the region has been Ordovician sedimentary succession in the Alborz Downloaded by [Gazi University] at 08:12 17 December 2015 limited. Apart from a few preliminary reports on their region, was chosen as the major target of our study. presence in Lower to Middle Ordovician successions of The Furongian succession in Deh-Molla is important the eastern Alborz Mountains (Ghobadi Pour 2006, because, in addition to the Proconodontus muelleri, Ghobadi Pour et al. 2011a, b), Ordovician conodonts Eoconodontus notchpeakensis and Cordylodus andresi were practically unknown from the region. Only zones, it also preserves the Cordylodus proavus Zone recently has more comprehensive information on the (Fig. 2). Furongian conodont distributional data from late Tremadocian conodonts from the Deh-Molla section the Mila-Kuh section derive mainly from the paper by been published (Jahangir et al. 2014). This study aims Müller (1973). Our important supplementary informa- to analyse the taxonomic composition and stratigraphic tion supports the proposed conodont zonation for the distribution of terminal Cambrian (Furongian) and Early Furongian to Lower Ordovician (Tremadocian) succes- Ordovician (Tremadocian) conodont assemblages from sion of the Alborz region. the Simeh-Kuh, Mila-Kuh and Deh-Molla sections in Traditionally, the middle Cambrian to Ordovician the eastern Alborz Mountains, Semnan Province, Iran succession in the Alborz Mountains has been subdi- (Fig. 1). The conodont yield from the studied succes- vided into the middle to upper Cambrian Mila Forma- sions is fairly low; only 334 conodont elements were tion with the type section at Mila-Kuh introduced by recovered from the Simeh-Kuh section and 109 Stöcklin et al.(1964), and the Ordovician Lashkarak Formation with its type section in Alam-Kuh introduced by Gansser & Huber (1962); however, the relationships © 2015 Association of Australasian Palaeontologists http://dx.doi.org/10.1080/03115518.2016.1118298 between these two lithostratigraphic units have 2 HADI JAHANGIR et al. ALCHERINGA Fig. 1. Geographic setting of the uppermost Cambrian to Lower Ordovician (Tremadocian) conodont-bearing localities in the Alborz Mountains of Iran. remained unresolved, and the position of the Cambrian– Material and methods fi Ordovician boundary has not been de ned. As recently The studied samples were dissolved in dilute (10–15%), demonstrated by Ghobadi Pour et al.(2011c), the buffered acetic acid and after treatment, the residue was fi Lashkarak Formation, as originally de ned by Gansser handpicked without using heavy liquid separation. & Huber (1962), can be applied to the Middle and Almost all the identified taxa are figured; the specimens Upper Ordovician deposits of the Alborz Mountains. Its were photographed using a LEO 1450VP scanning elec- lower boundary coincides with the regional disconfor- tron microscope (SEM) at the University of Mashhad. mity at the base of the Darriwilian, which is traceable However, for some euconodonts, the outline of the Downloaded by [Gazi University] at 08:12 17 December 2015 across the Alborz region. basal cavity is diagnostic and thus can not be seen or The validity of the Mila Formation was questioned shown on figures from a SEM. For such specimens, by Geyer et al.(2014), because it is homonymous with photographs using transmitted light were taken using a ‘ ’ the Mila Formation introduced one year earlier by Canon EOS60D digital camera mounted on an Olympus Assereto (1963). The latter unit, as originally desig- binocular microscope. nated, also includes Devonian deposits. Instead, Geyer Thirty-seven limestone samples, each about 1.5 kg, et al.(2014) proposed to assign the Furongian part of were collected from the Simeh-Kuh and Deh-Molla sec- the Cambrian succession in the Alborz Mountains to tions. With a few exceptions, the source rocks are fi the newly de ned Deh-Molla Formation with its type mainly tempestites, or in some cases, shell beds in a section at Shahmirzad. However, the position of the siliciclastic succession. The conodont specimens are upper boundary of this lithostratigraphic unit is also usually complete or only slightly fragmented, but they uncertain and, according to our observations, the strati- are very delicate and fragile; thus many were recovered graphic interval corresponding to Mila Formation mem- broken during the course of preparation. The specimens ber 5 in the Mila-Kuh section is absent at Shahmirzad. are glossy black, dark-brown to light-brown, but Therefore, pending a general revision of the early translucent, when observed in transmitted light. Figured Palaeozoic lithostratigraphy of the Alborz region, we specimens are housed in the Azad University, avoid assignment of the Cambrian (Furongian) and Khorosgan Branch, Esfahan, Iran, under accession Lower Ordovician succession exposed at Simeh-Kuh to numbers AEU/L 5000–5099. any existing formal lithostratigraphic unit. ALCHERINGA CAMBRIAN–ORDOVICIAN CONODONTS FROM IRAN 3 Fig. 2. Stratigraphic columns of the Cambrian–Ordovician boundary beds at Mila-Kuh, Simeh-Kuh and Deh-Molla showing the levels of fossil assemblages and stratigraphic ranges of selected conodont, trilobite and brachiopod species. Simeh-Kuh section (2006) and revised herein (Fig. 2). It rests on a thick The Simeh-Kuh section is located in the eastern Alborz unit of light-grey bioclastic limestones including bra- Range, northeastern Iran, about 13 km northwest of
Recommended publications
  • CONODONTS of the MOJCZA LIMESTONE -.: Palaeontologia Polonica
    CONODONTS OF THE MOJCZA LIMESTONE JERZY DZIK Dzik, J. 1994. Conodonts of the M6jcza Limestone. -In: J. Dzik, E. Olemp ska, and A. Pisera 1994. Ordovician carbonate platform ecosystem of the Holy Cross Moun­ tains. Palaeontologia Polonica 53, 43-128. The Ordovician organodetrital limestones and marls studied in outcrops at M6jcza and Miedzygorz, Holy Cross Mts, Poland, contains a record of the evolution of local conodont faunas from the latest Arenig (Early Kundan, Lenodus variabilis Zone) to the Ashgill (Amorphognathus ordovicicus Zone), with a single larger hiatus corre­ sponding to the subzones from Eop/acognathus pseudop/anu s to E. reclinatu s. The conodont fauna is Baltic in general appearance but cold water genera , like Sagitto­ dontina, Scabbardella, and Hamarodus, as well as those of Welsh or Chinese af­ finities, like Comp/exodus, Phragmodus, and Rhodesognathu s are dominant in par­ ticular parts of the section while others common in the Baltic region, like Periodon , Eop/acognathus, and Sca/pellodus are extremely rare. Most of the lineages continue to occur throughout most of the section enabling quantitative studies on their phyletic evolut ion. Apparatuses of sixty seven species of thirty six genera are described and illustrated. Phyletic evolution of Ba/toniodus, Amorphognathu s, Comp/exodus, and Pygodus is biometrically documented. Element s of apparatu ses are homolog ized and the standard notation system is applied to all of them. Acodontidae fam. n., Drepa­ nodus kie/censis sp. n., and D. santacrucensis sp. n. are proposed . Ke y w o r d s: conodonts, Ordovici an, evolut ion, taxonomy. Jerzy Dzik, Instytut Paleobiologii PAN, A/eja Zwirk i i Wigury 93, 02-089 Warszawa , Poland.
    [Show full text]
  • Tremadocian ,Conodonts of the North Atlantic Provi
    ACT A PAL A EON T 0 LOG ICA POLONICA Vol. 25 1980 NO.1 HUBERT SZANIAWSKI CONODONTS FROM THE TREMADOCIAN CHALCEDONY BEDS, HOLY CROSS MOUNTAINS (POLAND) SZANIAWSKI H.: Conodonts from the Tremadocian chalcedony beds, Holy Cross Mts. - Acta Palaeont. Polonica, 25, 1, 101-121, May, 1980. Conodonts extracted by means of hydrofluoric acid from the Upper Tremadocian chalcedony beds of the Holy Cross Mts. are described. Two multlelemental sim­ ple-cone apparatuses are recognized: Drepanoistodus deLtijer pristinus (Viira) and Acodus? sp. Drepanoistodus deltijer (= Paltodus deLtijer) Zone is subdivided into D. deltijer pristinus and D. deltijer deltijer Subzones. Correlation of the subzones over northern Europe, and approximate intercontinental correlation, are esta­ blished. Possible differences in internal structure are recognized between the Tremadocian cordylodids and simple cones. Key W 0 r d s: conOdonts, stratigraphy, Ordovician, Tremadocian, Poland. Hubert Szaniawski, Polska Akademia Nauk, Zaklad Paleobiologit, AI. ZWirki i Wigury 93, 02-089 Warszawa, Poland. Received: September, 1979. INTRODUCTION Tremadocian ,conodonts of the North Atlantic Province are !known fwm a few locaLities ~n the Balt'oscandian area (Pander 1856; Lindstrom 1955, 1971, Sergeeva 1966; Viira 1966, 1970, 1974; Van Wamel 1974; Magi and Viira 1976). However, the Tremadoc~an sequence is nowhere at those localities complete and hence, the pre1sent knowledge of oonodonts of this age is far from suff,tcd:ent. The ilnvestigated 'conodiont assemblage from the Holy Cross Mts. is also derd:ved from merely a part of the Tre­ madocian and dJt includes mOIStly forms known to soielme. Nonetheless, it contrihutes to the reoonstruction 'of two multielemental pr,imitiivesim­ pIe-cone apparatuses and to refinement of the conodont biostratigraphy.
    [Show full text]
  • Catalog of Type Specimens of Invertebrate Fossils: Cono- Donta
    % {I V 0> % rF h y Catalog of Type Specimens Compiled Frederick J. Collier of Invertebrate Fossils: Conodonta SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY NUMBER 9 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti­ tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com­ mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of profes­ sional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These publications are distributed by mailing lists to libraries, laboratories, and other in­ terested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available.
    [Show full text]
  • Conodontes Cámbricos Y Jujuyaspis Keideli Kobayashi (Trilobita)
    AMEGHINIANA (Rev. Asoc. Paleontol. Argent.) - 46 (3): 537-556. Buenos Aires, 30-09-2009 ISSN 0002-7014 Conodontes cámbricos y Jujuyaspis keideli Kobayashi (Trilobita) en el Miembro Alfarcito de la Formación Santa Rosita, quebrada de Humahuaca, Cordillera Oriental de Jujuy Fernando J. ZEBALLO1 y Guillermo L. ALBANESI1,2 Abstract. CAMBRIAN CONODONTS AND JUJUYASPIS KEIDELI KOBAYASHI (TRILOBITA) FROM THE ALFARCITO MEMBER OF THE SANTA ROSITA FORMATION, QUEBRADA DE HUMAHUACA, CORDILLERA ORIENTAL OF JUJUY. A conodont fauna from the lower levels of the Alfarcito Member (Santa Rosita Formation) at the Salto Alto section, Quebrada de Humahuaca, is analyzed. Recorded conodonts are associated to the trilobite Jujuyaspis keide- li keideli Kobayashi, among others, which represents the homonymous zone. Although the range of this ta- xon has been considered largely to be restricted to the lower Tremadocian (basal Lower Ordovician), the conodont assemblage refers to the Cordylodus intermedius Zone, Hirsutodontus simplex Subzone, from the upper Cambrian. The conodont species Albiconus postcostatus Miller, Cordylodus cf. andresi Viira and Sergeyeva, C. cf. tortus Barnes, Hirsutodontus simplex (Druce and Jones), Variabiloconus datsonensis (Druce and Jones), ?"Prooneotodus" mitriformis Dubinina, Prosagittodontus sp., Teridontus gallicus Serpagli, Ferretti, Nicoll and Serventi, and Westergaardodina polymorpha Müller and Hinz, are described for the first time in the Cordillera Oriental of Argentina from Cambrian levels. The faunal assemblage shows a strong resem- blance with that one found in western Newfoundland incorporating Baltic taxa. Therefore, the faunal con- dition fits consistently with previous paleobiogeographic reconstructions for this latitude. Resumen. Se analiza una fauna de conodontes procedente del tramo basal del Miembro Alfarcito (Formación Santa Rosita) en la sección del Salto Alto, quebrada de Humahuaca, provincia de Jujuy.
    [Show full text]
  • GSSP) of the Drumian Stage (Cambrian) in the Drum Mountains, Utah, USA
    Articles 8585 by Loren E. Babcock1, Richard A. Robison2, Margaret N. Rees3, Shanchi Peng4, and Matthew R. Saltzman1 The Global boundary Stratotype Section and Point (GSSP) of the Drumian Stage (Cambrian) in the Drum Mountains, Utah, USA 1 School of Earth Sciences, The Ohio State University, 125 South Oval Mall, Columbus, OH 43210, USA. Email: [email protected] and [email protected] 2 Department of Geology, University of Kansas, Lawrence, KS 66045, USA. Email: [email protected] 3 Department of Geoscience, University of Nevada, Las Vegas, Las Vegas, NV 89145, USA. Email: [email protected] 4 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. Email: [email protected] The Global boundary Stratotype Section and Point correlated with precision through all major Cambrian regions. (GSSP) for the base of the Drumian Stage (Cambrian Among the methods that should be considered in the selection of a GSSP (Remane et al., 1996), biostratigraphic, chemostratigraphic, Series 3) is defined at the base of a limestone (cal- paleogeographic, facies-relationship, and sequence-stratigraphic cisiltite) layer 62 m above the base of the Wheeler For- information is available (e.g., Randolph, 1973; White, 1973; McGee, mation in the Stratotype Ridge section, Drum Moun- 1978; Dommer, 1980; Grannis, 1982; Robison, 1982, 1999; Rowell et al. 1982; Rees 1986; Langenburg et al., 2002a, 2002b; Babcock et tains, Utah, USA. The GSSP level contains the lowest al., 2004; Zhu et al., 2006); that information is summarized here. occurrence of the cosmopolitan agnostoid trilobite Pty- Voting members of the International Subcommission on Cam- chagnostus atavus (base of the P.
    [Show full text]
  • The Middle and Upper Ordovician Conodont Faunas of Minnesota
    MINNESOTA GEOLOGICAL SURVEY SP-4 Special Publication Series The Middle and Upper Ordovician Conodont Faunas of Minnesota G. F. Webers UNIVERSITY OF MINNESOTA MINNEAPOLIS • 1966 THE MIDDLE AND UPPER ORDOVICIAN CONODONT FAUNAS OF MINNESOTA by G. F. Webers CONTENTS Page Abstract. 1 Introduction . 1 Procedures. 3 Sampling method . 3 Concentration and separation techniques . 4 Conodont photography. 4 Natural assemblages of conodonts. 5 General discussion. 5 Statistical determination of natural assemblages ............. 5 Present problems in the zoological nomenclature of conodonts. 6 Results of investigation . 7 Statistical assemblages. 7 Faunal list. .. 10 Natural species. .. 10 Possible natural species. .. 12 Residual form species . .. 13 Facies concepts ....................................... " 14 Stratigraphic distribution of conodonts . .. 15 Faunal migrations. .. 18 Comments on correlation . 19 Conclusions. .. 21 Systematic descriptions 21 References 107 Appendix .. .. 113 Stratigraphic Sections .................................... 113 III ILLUSTRATIONS Plate 1 - Stratigraphic distribution of conodonts: . 77 2 - 13 - Conodont illustrations. 78 14-15 - Phosphatic microfossil illustrations ............... 102 Figure 1 - Map showing locations of stratigraphic sections. 2 2 - Biostratigraphic zonation of conodonts ......... 16 IV THE MIDDLE AND UPPER ORDOVICIAN CONODONT .FAUNAS OF MINNESOTA by G. F. Webers ABSTRACT About thirty-five thousand identifiable conodonts were re­ covered from samples of Middle and Upper Ordovician sedi­ mentary
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis arxi dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing In this copy for an additional charge. Contact UMI directly to order. Bell & Howell Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 UMI NOTE TO USERS This reproduction is the best copy available. UMI Stratigraphy, Conodont Taxonomy and Biostratigraphy of Upper Cambrian to Lower Silurian Platform to Basin Facies, Northern British Columbia by Leanne Pyle B. Sc., University of Saskatchewan, 1994 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the School of Earth and Ocean Sciences We accept this dissertation as conforming to the required standard , Supervisor (School of Earth and Ocean Sciences) Dr.
    [Show full text]
  • Tips on the SW-Gondwana Margin: Ordovician Conodont-Graptolite Biostratigraphy of Allochthonous Blocks in the Rinconada Mélange, Argentine Precordillera
    Andean Geology 45 (3): 399-409. September, 2018 Andean Geology doi: 10.5027/andgeoV45n3-3095 www.andeangeology.cl Tips on the SW-Gondwana margin: Ordovician conodont-graptolite biostratigraphy of allochthonous blocks in the Rinconada mélange, Argentine Precordillera *Gustavo G. Voldman1, Juan L. Alonso2, Luis P. Fernández2, Gladys Ortega3, Guillermo L. Albanesi1, 3, Aldo L. Banchig4, Raúl Cardó4, 5 1 Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Ciencias de la Tierra, Universidad Nacional de Córdoba, CIGEA, Av. Vélez Sarsfield 1611, X5016GCA, Córdoba, Argentina. [email protected]; [email protected] 2 Departamento de Geología, Universidad de Oviedo, Arias de Velasco s/n, 33005, Oviedo, Spain. [email protected]; [email protected] 3 Consejo Nacional de Investigaciones Científicas y Técnicas, CIGEA and Museo de Paleontología, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 249, X5000JJC, Córdoba, Argentina. [email protected] 4 Departamento de Geología, Universidad Nacional de San Juan, Ignacio de La Rosa y Meglioli s/n, 5400, San Juan, Argentina. [email protected]; [email protected] 5 Servicio Geológico y Minero Argentino, Sargento Cabral 685 (oeste), 5400, San Juan, Argentina. * Corresponding author: [email protected] ABSTRACT. The Rinconada Formation is a mélange that crops out in the eastern margin of the Argentine Precordillera, an exotic terrane accreted to Gondwana in Ordovician times. Its gravity-driven deposits have been studied by means of conodont and graptolite biostratigraphy, and complemented with stratigraphic analyses. 46 rock samples (85 kg total weight) were obtained from blocks of limestones and of carbonate-cemented quartz-arenites, and from limestone clasts included in conglomerate blocks and debrites.
    [Show full text]
  • Zna Marginifera
    1 MASARYKOVA UNIVERZITA Přírodovědecká fakulta Monika RUTOVÁ KONODONTOVÁ FAUNA VE VYBRANÝCH PROFILECH SVRCHNÍHO FAMENU V LESNÍM LOMĚ V BRNĚ-LÍŠNI Bakalářská práce Vedoucí práce: prof. RNDr. Jiří Kalvoda, CSc. 2 © 2007 Monika Rutová Všechna práva vyhrazena 3 Jméno a příjmení autora: Monika Rutová Název bakalářské práce: Konodontová fauna ve vybraných profilech svrchního famenu v Lesním lomě v Brně- Líšni Název v angličtině: Late Famenian conodont fauna in the Lesní Quarry in Brno-Líšeň Studijní program: Bakalářský Studijní obor (směr), kombinace oborů: Geologie, hydrogeologie, geochemie Vedoucí bakalářské práce: prof. RNDr. Jiří Kalvoda, CSc. Rok obhajoby: 2007 Předložená práce řeší biostratigrafické poměry na vybraném profilu na lokalitě Lesní lom v Brně-Líšni na základě studia konodontové fauny. Studovaný profil zastihuje sled hádsko-říčských vápenců. Bylo odebráno 8 vzorků, které byly vyhodnoceny. Byly zjištěny následující konodontové zóny: Palmatolepis perlobata postera a Palmatolepis gracilis expansa. (subzóny spodní, střední a svrchní Palmatolepis gracilis expansa). Na základě rodového složení byly zjištěné asociace konodontů přiřazeny ke konodontovým biofaciím - palmatolepis-bispathodové, palmatolepis-polygnathové a biofacii polygnathové. Based on the study of conodont fauna the thesis outlines the biostratigraphy of the section in the Lesní Quarry in Brno-Líšeň. In the studied section eight samples have been taken from the Hády-Říčka limestones. The following conodont zones have been distinguished: Palmatolepis perlobata postera and Palamtolepis gracilis expansa (Lower, Middle and Upper expansa Zone). Based on generic composition, conodont biofacies have been determined – palmatolepid-bispathodid, palmatolepid-polygnathid and polygnathid. Klíčová slova v češtině: konodont, famen, Palmatolepis, Polygnathus, Bispathodus, zonace, biofacie Klíčová slova v angličtině: conodont, Famennian, Palmatolepis, Polygnathus, Bispathodus, zonation, biofacies 4 Prohlašuji, že tuto práci jsem vypracovala samostatně.
    [Show full text]
  • Microfossil Fauna from the Blue Earth Siltstone of the Lower Ordovician Prairie Du Chien Group, Minnesota, USA
    Microfossil fauna from the Blue Earth Siltstone of the Lower Ordovician Prairie du Chien Group, Minnesota, USA Allison R. Vitkus Senior Integrative Exercise March 10, 2010 Submitted in partial fulfillment of the requirements for a Bachelor of Arts degree from Carleton College, Northfield, Minnesota Table of Contents Abstract Introduction………………………………………………………………………………1 Geologic Setting…………………………………………………………………………..3 Karst Features……………………………………………………………………………..5 Blue Earth Siltstone……………………………………………………………………….5 Methods…………………………………………………………………………………...7 Microfossil Survey Results………………………………………………………………8 Conodonts…………………………………………………………………………………..8 Sponges……………………………………………………………………………………10 Other Fossil Taxa………………………………………………………………………..10 Discussion……………………………………………………………………………….13 Conodonts…………………………………………………………………………………13 Sponges……………………………………………………………………………………15 Unidentified Material……………………………………………………………………15 Conclusions……………………………………………………………………………….17 Acknowledgements……………………………………………………………………..19 References Cited………………………………………………………………………...20 Fossil fauna from the Blue Earth Siltstone of the Lower Ordovician Prairie du Chien Group, Minnesota, USA Allison R. Vitkus Carleton College Senior Integrative Exercise March, 2010 Advisor: Clinton A. Cowan, Carleton College Department of Geology ABSTRACT The white to green, thinly laminated, argillaceous, feldspathic siltstone known as the “Blue Earth Siltstone bed,” can be found at the base of and within solution cavities of certain exposures of the Oneota Dolomite, part of the Lower Ordovician
    [Show full text]
  • The Upper Ordovician Glaciation in Sw Libya – a Subsurface Perspective
    J.C. Gutiérrez-Marco, I. Rábano and D. García-Bellido (eds.), Ordovician of the World. Cuadernos del Museo Geominero, 14. Instituto Geológico y Minero de España, Madrid. ISBN 978-84-7840-857-3 © Instituto Geológico y Minero de España 2011 ICE IN THE SAHARA: THE UPPER ORDOVICIAN GLACIATION IN SW LIBYA – A SUBSURFACE PERSPECTIVE N.D. McDougall1 and R. Gruenwald2 1 Repsol Exploración, Paseo de la Castellana 280, 28046 Madrid, Spain. [email protected] 2 REMSA, Dhat El-Imad Complex, Tower 3, Floor 9, Tripoli, Libya. Keywords: Ordovician, Libya, glaciation, Mamuniyat, Melaz Shugran, Hirnantian. INTRODUCTION An Upper Ordovician glacial episode is widely recognized as a significant event in the geological history of the Lower Paleozoic. This is especially so in the case of the Saharan Platform where Upper Ordovician sediments are well developed and represent a major target for hydrocarbon exploration. This paper is a brief summary of the results of fieldwork, in outcrops across SW Libya, together with the analysis of cores, hundreds of well logs (including many high quality image logs) and seismic lines focused on the uppermost Ordovician of the Murzuq Basin. STRATIGRAPHIC FRAMEWORK The uppermost Ordovician section is the youngest of three major sequences recognized widely across the entire Saharan Platform: Sequence CO1: Unconformably overlies the Precambrian or Infracambrian basement. It comprises the possible Upper Cambrian to Lowermost Ordovician Hassaouna Formation. Sequence CO2: Truncates CO1 along a low angle, Type II unconformity. It comprises the laterally extensive and distinctive Lower Ordovician (Tremadocian-Floian?) Achebayat Formation overlain, along a probable transgressive surface of erosion, by interbedded burrowed sandstones, cross-bedded channel-fill sandstones and mudstones of Middle Ordovician age (Dapingian-Sandbian), known as the Hawaz Formation, and interpreted as shallow-marine sediments deposited within a megaestuary or gulf.
    [Show full text]
  • X Congreso Argentino De Paleontología Y Bioestratigrafía VII Congreso Latinoamericano De Paleontología La Plata, Argentina - Septiembre De 2010
    X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 Financian Auspician 1 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 2 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 3 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 X Congreso Argentino de Paleontología y Bioestratigrafía y VII Congreso Latinoamericano de Paleontología Resúmenes/coordinado por Sara Ballent ; Analia Artabe ; Franco Tortello. 1a ed. - La Plata: Museo de la Plata; Museo de la Plata, 2010. 238 p. + CD-ROM; 28x20 cm. ISBN 978-987-95849-7-2 1. Paleontología. 2. Bioestratigrafía. I. Ballent, Sara , coord. II. Artabe, Analia, coord. III. Tortello, Franco, coord. CDD 560 Fecha de catalogación: 27/08/2010 4 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología Declarado de Interés Municipal, La Plata (Decreto N° 1158) 5 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 6 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología Prólogo Una vez más el Congreso Argentino de Paleontología y Bioestratigrafía y el Congreso Latino- americano de Paleontología se realizan de manera conjunta.
    [Show full text]