Depositional Framework and Regional Correlation of Pre-Carboniferous Metacarbonate Rocks of the Snowden Mountain Area, Central Brooks Range, Northern Alaska

Total Page:16

File Type:pdf, Size:1020Kb

Depositional Framework and Regional Correlation of Pre-Carboniferous Metacarbonate Rocks of the Snowden Mountain Area, Central Brooks Range, Northern Alaska Depositional Framework and Regional Correlation of Pre-Carboniferous Metacarbonate Rocks of the Snowden Mountain Area, Central Brooks Range, Northern Alaska U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1545 Cover: Massive carbonate rocks chiefly of the Mathews River unit, Chandalar D-6 quadrangle, central Brooks Range, northern Alaska. The image is a digital enhancement of the photograph (fig. 4) on page 7. Design and layout by Sunne Rinkus, 1994. Depositional Framework and Regional Correlation of Pre-Carboniferous Metacarbonate Rocks of the Snowden Mountain Area, Central Brooks Range, Northern Alaska By J.A. Dumoulin and Anita G. Harris U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1545 Lithofacies, conodont biostratigraphy and biofacies, and depositional environments of pre-Carboniferous metacarbonate rocks, correlation with other sequences across northern Alaska, and paleogeographic and paleotectonic implications UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY GORDON P. EATON, Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center, Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Published in the Eastern Region, Reston, Va. Manuscript approved for publication August 17, 1993. Library of Congress Cataloging in Publication Data Dumoulin, Julie A. Depositional framework and regional correlation of pre-Carboniferous metacarbonate rocks of the Snowden Mountain area, central Brooks Range, northern Alaska / by J.A. Dumoulin and Anita G. Harris. p. cm.—(U.S. Geological Survey professional paper ; 1545) "Lithofacies, conodont biostratigraphy and biofacies, and depositional environments of pre-Carboniferous metacarbonate rocks, correlation with other sequences across northern Alaska, and paleogeographic and paleotectonic implications." Includes bibliographical references. Supt. of Docs. no. : I 19.16:1545 1. Rocks, Carbonate—Alaska—Snowden Mountain Region. 2. Conodonts— Alaska—Snowden Mountain Region. 3. Stratigraphic correlation. I. Harris, Anita G. II. Title. III. Series. QE471.15.C3D86 1994 552'.58-dc20 93-21361 CIP CONTENTS Abstract........................................................................................... 1 Acknowledgments .............................................................................. 1 Introduction...................................................................................... 2 Geologic Setting ................................................................................ 2 Previous Work .................................................................................. 3 Stratigraphic Nomenclature ................................................................... 3 Methods.......................................................................................... 6 Metacarbonate Succession—Cambrian (and older?) to Middle Devonian Metasedimentary Rocks .............................................................. 6 Cambrian Rocks .......................................................................... 6 Lithologies........................................................................... 7 Age and Biofacies .................................................................. 7 Distribution.......................................................................... 8 Depositional Environment......................................................... 8 Middle Ordovician Rocks................................................................. 8 Lithologies........................................................................... 10 Age and Biofacies .................................................................. 14 Distribution.......................................................................... 14 Depositional Environment......................................................... 14 Upper Ordovician and Silurian Rocks ................................................ 16 Lithologies........................................................................... 17 Age and Biofacies .................................................................. 20 Distribution.......................................................................... 21 Depositional Environment......................................................... 21 Lower and (or) Middle Devonian Rocks ............................................. 22 Metacarbonate Rocks of Uncertain Age .............................................. 23 Wiehl Mountain Area.............................................................. 23 Dillon Mountain Area.............................................................. 24 Snowden Mountain Massif........................................................ 25 Table Mountain Area .............................................................. 25 Summary of the Metacarbonate Succession in the Snowden Mountain Area................................................................................ 26 Devonian Metaclastic Rocks.................................................................. 28 Beaucoup Formation ..................................................................... 28 Carbonate Lithologies.............................................................. 28 Age and Biofacies .................................................................. 30 Distribution.......................................................................... 30 Depositional Environment......................................................... 30 Hunt Fork Shale .......................................................................... 31 Carbonate Lithologies.............................................................. 31 Age and Biofacies.................................................................. 31 Distribution.......................................................................... 31 Depositional Environment......................................................... 32 Nutirwik Creek Unit ..................................................................... 33 Carbonate Lithologies.............................................................. 33 Age and Biofacies .................................................................. 34 Distribution.......................................................................... 34 Depositional Environment......................................................... 34 Summary of Devonian Metaclastic Rocks in the Snowden Mountain Area................................................................................ 34 m IV CONTENTS Regional Relationships......................................................................... 35 Pre-Carboniferous Metacarbonate Successions ...................................... 35 Eastern Baird Mountains Metacarbonate Succession ......................... 37 Proterozoic and (or) Cambrian Rocks..................................... 37 Lower and Middle Ordovician Rocks..................................... 39 Upper Ordovician to Devonian(?) Rocks................................. 40 Comparison of the Snowden Mountain and Eastern Baird Mountains Metacarbonate Successions .............................................. 40 Other Pre-Carboniferous (Meta)sedimentary Successions ................... 42 Western Baird Mountains ................................................... 42 York Mountains............................................................... 44 Shublik and Sadlerochit Mountains........................................ 47 Doonerak Window............................................................ 47 Devonian Siliciclastic Units............................................................. 48 Devonian Siliciclastic Units in the Baird Mountains ......................... 48 Nakolik River Unit........................................................... 48 Unit ftqs ...................................................................... 48 Hunt Fork Shale .............................................................. 49 Comparison of Snowden Mountain and Baird Mountains Devonian Siliciclastic Units .......................................................... 49 Discussion.................................................................................. 50 Comparative Microfacies Analysis .............................................. 51 Paleobiogeography.................................................................. 53 Conclusions...................................................................................... 57 References Cited................................................................................ 57 Appendix......................................................................................... 62 PLATES [Plates follow appendix] 1. Ordovician conodonts from the Snowden Creek unit. 2. Late Ordovician and Silurian conodonts from the Mathews River unit. 3. Latest Givetian and Frasnian conodonts from the Beaucoup Formation, Hunt Fork Shale, and Nutirwik Creek unit. FIGURES 1. Index map showing location of Snowden Mountain study area, northern Alaska ................................. 2 2. Map showing generalized distribution of geologic units in the Snowden Mountain area ........................ 4 3. Index map showing geographic names and location of measured sections and lithologic and fossil collections ......................................................................................................................
Recommended publications
  • Orta Toroslar'da Konodont Biy Ostratigrafisi(1 )
    Türkiye Jeoloji Kurumu Bülteni, e. 20, 35-48, Şubat 1977 Bulîetin of the Geölogical Boclety of Turkey, v. 20, 35-48, February 1977 Orta Toroslar'da konodont biy ostratigrafisi(1 ) Conodontbiostratigra/phy in the Middle Taurus ÎSMET GEDİK Jeoloji Bölümü, Karadeniz Teknik Üniversitesi, Trabzon ÖZ: Çalışılan bölgede, Kambriyen-Triyas arasına ait konodont faunası saptanmış ve kısaca tanıtılmıştır. Metamorfik Alan- ya Masifinin bir nap şeklinde Sedre Triyas'mm üzerine geldiği ve bunun da bir tektonik pencere olarak görüldüğü görü- şüne varılmıştır. Hadimopanella oezgueli n. gen. n. sp. (incertae sedis) ve üç yeni konodont türü bulunmuştur. ABSTRACT: in the area studied Cambrian to Triassie systems are distinguished by the use of conodonts and their fauna is deseribed briefly. it is believed that the metamorphic Alanya massif overlays the Sedre Triassie as a nappe, forming a teetonic window. Hadimopanella oezgueli n. gen. n. sp. (İncertae sedis) and three new conodont speeies are established. (1) Bu yazı Türkiye Jeoloji Kurumu 30. Bilimsel Kurultayında bildiri olarak sunulmuştur. 36 GEDÎK GİRİŞ ve Monod, 1970). İçlerinde bazı trilobit lanmasmdon oluşan ve kalınlığı 1000 m parçalarına rastlanmıştır. Üste doğru kil yi aşan Seydişehir Formasyonuna geçti- Bu çalışma, özellikle son 20 yılda oranı gittikçe artarak, yaklaşık 50 m ği görülür. Bu formasyonun ilk 50 m lik büyük stratigrafik önem kazanan ve ge- kalınlığındaki kırmızımsı - morumsu, alt düzeylerinde bulunan kireçtaşı mer- niş çapta jeolojik formasyonların korre- yumrulu kireçtaşlarına geçilir. Bu dü- ceklerinden elde eddlen lasyonunda kullanılan konodontlardan zey içinde bol olarak Conocoryphe, Oneotodus tenu4s yararlanarak, ülkemizin bir bölgesinin Öoryneocochus, vb. gibi Orta Kambriyen stratigrafisini biraz daha aydınlığa ka- Fumishina furnishi yaşındaki tribolitlere ve akrotretid bra- Hertzima bisulcata vuşturmak ve dolayısiyle jeolojik yapısı- kiyopodlara rastlanılmıştır.
    [Show full text]
  • Conodonts in Ordovician Biostratigraphy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia 1 Conodonts in Ordovician biostratigraphy STIG M. BERGSTRÖM AND ANNALISA FERRETTI Conodonts in Ordovician biostratigraphy The long time interval after Pander’s (1856) original conodont study can in terms of Ordovician conodont biostratigraphic research be subdivided into three periods, namely the Pioneer Period (1856-1955), the Transition Period (1955-1971), and the Modern Period (1971-Recent). During the pre-1920s, the few published conodont investigations were restricted to Europe and North America and were not concerned about the potential use of conodonts as guide fossils. Although primarily of taxonomic nature, the pioneer studies by Branson & Mehl, Stauffer, and Furnish during the 1930s represent the beginning of the use of conodonts in Ordovician biostratigraphy. However, no formal zones were introduced until Lindström (1955) proposed four conodont zones in the Lower Ordovician of Sweden, which marks the end of the Pioneer Period. Because Lindström’s zone classification was not followed by similar work outside Baltoscandia, the time interval up to the late 1960s can be regarded as a Transition Period. A milestone symposium volume, entitled ‘Conodont Biostratigraphy’ and published in 1971, 2 summarized much new information on Ordovician conodont biostratigraphy and is taken as the beginning of the Modern Period of Ordovician conodont biostratigraphy. In this volume, the Baltoscandic Ordovician was subdivided into named conodont zones whereas the North American Ordovician succession was classified into a series of lettered or numbered Faunas. Although most of the latter did not receive zone names until 1984, this classification has been used widely in North America.
    [Show full text]
  • CONODONTS of the MOJCZA LIMESTONE -.: Palaeontologia Polonica
    CONODONTS OF THE MOJCZA LIMESTONE JERZY DZIK Dzik, J. 1994. Conodonts of the M6jcza Limestone. -In: J. Dzik, E. Olemp ska, and A. Pisera 1994. Ordovician carbonate platform ecosystem of the Holy Cross Moun­ tains. Palaeontologia Polonica 53, 43-128. The Ordovician organodetrital limestones and marls studied in outcrops at M6jcza and Miedzygorz, Holy Cross Mts, Poland, contains a record of the evolution of local conodont faunas from the latest Arenig (Early Kundan, Lenodus variabilis Zone) to the Ashgill (Amorphognathus ordovicicus Zone), with a single larger hiatus corre­ sponding to the subzones from Eop/acognathus pseudop/anu s to E. reclinatu s. The conodont fauna is Baltic in general appearance but cold water genera , like Sagitto­ dontina, Scabbardella, and Hamarodus, as well as those of Welsh or Chinese af­ finities, like Comp/exodus, Phragmodus, and Rhodesognathu s are dominant in par­ ticular parts of the section while others common in the Baltic region, like Periodon , Eop/acognathus, and Sca/pellodus are extremely rare. Most of the lineages continue to occur throughout most of the section enabling quantitative studies on their phyletic evolut ion. Apparatuses of sixty seven species of thirty six genera are described and illustrated. Phyletic evolution of Ba/toniodus, Amorphognathu s, Comp/exodus, and Pygodus is biometrically documented. Element s of apparatu ses are homolog ized and the standard notation system is applied to all of them. Acodontidae fam. n., Drepa­ nodus kie/censis sp. n., and D. santacrucensis sp. n. are proposed . Ke y w o r d s: conodonts, Ordovici an, evolut ion, taxonomy. Jerzy Dzik, Instytut Paleobiologii PAN, A/eja Zwirk i i Wigury 93, 02-089 Warszawa , Poland.
    [Show full text]
  • Conodont Biostratigraphy and Paleoecology of The
    CONODONT BIOSTRATIGRAPHY AND PALEOECOLOGY OF THE LOWER DEVONIAN HELDERBERG GROUP OF VIRGINIA by Elizabeth G. Cook Thesis submitted to the Graduate Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Geological Sciences APPROVED: Dr. C. G. Tillman, Chairman -------------~-""'\-----7----- --------------------~-~------- Dr. W. D.)Lowry Dr. J. F. Read May, 1981 Blacksburg, Virginia ACKNOWLEDGEMENTS I thank Dr. Tillman for proposing the problem and for continued help and encouragement during the research and writing of the thesis. Dr. J. F. Read and W. D. Lowry offered constructive criticism of the ' ' manuscript. Thanks are also due to William Seaton for assistance with some of the sampling and to Gordon Love for assistance with the photography. I also acknowledge financial support from the Department of Geological Sciences at Virginia Polytechnic Institute and State University. E. G. C. ii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ii LIST OF FIGURES vi LIST OF TABLES vii INTRODUCTION • 1 LOCATION OF SECTIONS 3 METHODS 5 STRUCTURAL SETTING • 7 STRATIGRAPHY • 8 Introduction • 8 Previous Work 8 Description of Formations in the Study Area 10 Keyser Formation • • 10 New Creek Limestone 12 Healing Springs Sandstone 12 Corriganville Limestone 13 Licking Creek Formation 13 Regional Correlation 14 DEPOSITIONAL ENVIRONMENTS 17 Introduction • • 17 Keyser Formation 17 Laminated limestone lithofacies 17 Nodular limestone lithofacies 20 Cross-stratified sand lithofacies 22 iii Page Shale lithofacies 23 Deeper water facies 23 Swmnary of Keyser facies in the study area • 24 New Creek Limestone 24 Healing Springs Sandstone 25 Corriganville Limestone 26 Licking Creek Formation 26 Cherry Run Member 26 Little Cove Member .
    [Show full text]
  • Six Charts Showing Biostratigraphic Zones, and Correlations Based on Conodonts from the Devonian and Mississippian Rocks of the Upper Mississippi Valley
    14. GS: C.2 ^s- STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION SIX CHARTS SHOWING BIOSTRATIGRAPHIC ZONES, AND CORRELATIONS BASED ON CONODONTS FROM THE DEVONIAN AND MISSISSIPPIAN ROCKS OF THE UPPER MISSISSIPPI VALLEY Charles Collinson Alan J. Scott Carl B. Rexroad ILLINOIS GEOLOGICAL SURVEY LIBRARY AUG 2 1962 ILLINOIS STATE GEOLOGICAL SURVEY URBANA 1962 CIRCULAR 328 I I co •H co • CO <— X c = c P o <* CO o CO •H C CD c +» c c • CD CO ft o e c u •i-CU CD p o TJ o o co CO TJ <D CQ x CO CO CO u X CQ a p Q CO *» P Mh coc T> CD *H O TJ O 3 O o co —* o_ > O p X <-> cd cn <d ^ JS o o co e CO f-l c c/i X ex] I— CD co = co r CO : co *H U to •H CD r I .h CO TJ x X CO fc TJ r-< X -P -p 10 co C => CO o O tJ CD X5 o X c c •> CO P <D = CO CO <H X> a> s CO co c %l •H CO CD co TJ P X! h c CD Q PI CD Cn CD X UJ • H 9 P CD CD CD p <D x c •—I X Q) p •H H X cn co p £ o •> CO o x p •>o C H O CO "P CO CO X > l Ct <-c . a> CD CO X •H D. CO O CO CM (-i co in Q.
    [Show full text]
  • Catalog of Type Specimens of Invertebrate Fossils: Cono- Donta
    % {I V 0> % rF h y Catalog of Type Specimens Compiled Frederick J. Collier of Invertebrate Fossils: Conodonta SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY NUMBER 9 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti­ tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com­ mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of profes­ sional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These publications are distributed by mailing lists to libraries, laboratories, and other in­ terested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available.
    [Show full text]
  • Lee-Riding-2018.Pdf
    Earth-Science Reviews 181 (2018) 98–121 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Marine oxygenation, lithistid sponges, and the early history of Paleozoic T skeletal reefs ⁎ Jeong-Hyun Leea, , Robert Ridingb a Department of Geology and Earth Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea b Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA ARTICLE INFO ABSTRACT Keywords: Microbial carbonates were major components of early Paleozoic reefs until coral-stromatoporoid-bryozoan reefs Cambrian appeared in the mid-Ordovician. Microbial reefs were augmented by archaeocyath sponges for ~15 Myr in the Reef gap early Cambrian, by lithistid sponges for the remaining ~25 Myr of the Cambrian, and then by lithistid, calathiid Dysoxia and pulchrilaminid sponges for the first ~25 Myr of the Ordovician. The factors responsible for mid–late Hypoxia Cambrian microbial-lithistid sponge reef dominance remain unclear. Although oxygen increase appears to have Lithistid sponge-microbial reef significantly contributed to the early Cambrian ‘Explosion’ of marine animal life, it was followed by a prolonged period dominated by ‘greenhouse’ conditions, as sea-level rose and CO2 increased. The mid–late Cambrian was unusually warm, and these elevated temperatures can be expected to have lowered oxygen solubility, and to have promoted widespread thermal stratification resulting in marine dysoxia and hypoxia. Greenhouse condi- tions would also have stimulated carbonate platform development, locally further limiting shallow-water cir- culation. Low marine oxygenation has been linked to episodic extinctions of phytoplankton, trilobites and other metazoans during the mid–late Cambrian.
    [Show full text]
  • Version 4.Cdr
    THE GEOMAGNETIC POLARITY TIME SCALE FOR EARY PALEOZOIC: DATA AND SYNTHESE 1 2 1 Vladimir Pavlov and Yves Gallet 2 Institute of Physics of the Earth, Institut de Physique Russian Academy of Sciences INTRODUCTION EARLY CAMBRIAN: Kirschvink and LONG STANDING CONROVERSY: Constructing the Geomagnetic Polarity Time Scale (GPTS) through the geological history is of crucial importance to address Rozanov, 1984 TWO PRIMARY POLES FOR ONE SIBERIAN PLATFORM? several major issues in Earth sciences, as for instance the long-term evolution of the geodynamo. The GPTS is also an Khramov et al., 1982 important chronological tool allowing one to decipher the age and duration of various geological processes. Moreover, GPTS 509 Ma is widely used in prospecting for commercial minerals and in petroleum geology Kirschvink’s direction OR Khramov’s direction? Series Regiostage . N N The chronology of the geomagnetic polarity reversals since the Upper Jurassic is rather well known thanks to the magnetic Kirschvink and Pisarevsky anomalies recorded in the sea floor. For more ancient epochs our knowledge of the GPTS is still very fragmentary and much Rozanov, 1984 et al., 1997 more uncertain. However significant information has been obtained for several time intervals, in particular for the Triassic and the beginning of the Phanerozoic. Hirnantian Khondelen We will focus our presentation on recent developments made in the determination of the GPTS during the Early Paleozoic P-T Botoma - Toyon Botoma - Botoma - Toyon Botoma - 516 Ma (Siberia) (Cambrian and Ordovician). Siberian APWP Ashgill Epoch 2 Epoch 2 D3-C1 экватор E30° Е90° Е150° Botmoynak Dolborian (Tianshan) Late Ediacarian - Hyperactivity of the Earth magnetic field? Early Cambrian Kirschvink’s pole Early Cambrian O2-O3 Cm3-O1 Khramov’s pole S30° Moyero N Cm2 N N Low (very low?) reversal frequency (Siberia) Pavlov et al., Pavlov et al., 2018 S60° unpubl.
    [Show full text]
  • Lithostratigraphic, Conodont, and Other Faunal Links Between Lower Paleozoic Strata in Northern and Central Alaska and Northeastern Russia
    Geological Society of America Special Paper 360 2002 Lithostratigraphic, conodont, and other faunal links between lower Paleozoic strata in northern and central Alaska and northeastern Russia Julie A. Dumoulin* U.S. Geological Survey, 4200 University Drive, Anchorage, Alaska 99508-4667, USA Anita G. Harris U.S. Geological Survey, 926A National Center, Reston, Virginia 20192, USA Mussa Gagiev† Russian Academy of Sciences, Portovaya Street 16, Magadan, 685010, Russia Dwight C. Bradley U.S. Geological Survey, 4200 University Drive, Anchorage, Alaska 99508-4667, USA John E. Repetski U.S. Geological Survey, 926A National Center, Reston, Virginia 20192, USA ABSTRACT Lower Paleozoic platform carbonate strata in northern Alaska (parts of the Arc- tic Alaska, York, and Seward terranes; herein called the North Alaska carbonate plat- form) and central Alaska (Farewell terrane) share distinctive lithologic and faunal fea- tures, and may have formed on a single continental fragment situated between Siberia and Laurentia. Sedimentary successions in northern and central Alaska overlie Late Proterozoic metamorphosed basement; contain Late Proterozoic ooid-rich dolostones, Middle Cambrian outer shelf deposits, and Ordovician, Silurian, and Devonian shal- low-water platform facies, and include fossils of both Siberian and Laurentian biotic provinces. The presence in the Alaskan terranes of Siberian forms not seen in well- studied cratonal margin sequences of western Laurentia implies that the Alaskan rocks were not attached to Laurentia during the early Paleozoic. The Siberian cratonal succession includes Archean basement, Ordovician shal- low-water siliciclastic rocks, and Upper Silurian–Devonian evaporites, none of which have counterparts in the Alaskan successions, and contains only a few of the Lauren- tian conodonts that occur in Alaska.
    [Show full text]
  • Catenipora Heintzi from Ringerike, Oslo Region
    Computer-aided study of growth pattems in tabulate corals, exemplified by Catenipora heintzi from Ringerike, Oslo Region ØYVIND HAMMER Hammer, Ø. Computer-aided study of growth pattems in tabulate corals, exemplified by Catenipora heintzi from Ringerike, Oslo Region. Norsk Geologisk Tidsskrift, Vol. 79, pp. 219-226. Oslo 1999. ISSN 0029-196X. A detailed study of a fragment of a colony of tbe halysitid tabulate coral Catenipora heintzi from tbe Norwegian Wenlock is . presented. The specimen was collected from tbe Braksøya Formation near Nes, Ringerike. Closely spaced (O.l mm) senal sectlons . document astogenetical events and trends, including lateral and interstitial increase, branching, damage and regeneratlon, and lateral growth of individual corallites. Among tbese events, two previously undescribed phenom�na are observed: conn�tlon to � . neigbbouring rank as a result of interstitial increase, and competition between polyps leadmg to atroph�. The studted spectmen ts discussed in tbe light of tbe tbeories for halysitid astogeny. This indicates tbe existence of rank branching, tbe prefe�ence for increase from tbe youngest corallite in a rank, an exclusive ability of new corallites to fuse witb otber ranks,regulation of lacuna size, occasional sediment smotbering and possibly an annua! periodicity in frequency of increase. Øyvind Hammer, Paleontological Museum, University of Oslo, Sars gt. l, 0562, Oslo, Norway Introduction of authors (Buehler 1955; Hamada 1959; Stasinska 1967, 1980; Lee & Noble 1990; Lee & Elias 1991; Hubmann The Ordovician and Silurian halysitids belong to the 1996; Hammer 1998). A new colony is firstinitiated by the tabulate corals. The alternative hypothesis of sponge settlement of a planula larva on the substrate.
    [Show full text]
  • Early Ordovician Conodonts from Far Western New South Wales, Australia. Records of the Australian Museum 55(2): 169–220
    © Copyright Australian Museum, 2003 Records of the Australian Museum (2003) Vol. 55: 169–220. ISSN 0067-1975 Early Ordovician Conodonts from Far Western New South Wales, Australia YONG-YI ZHEN1*, IAN G. PERCIVAL2 AND BARRY D. WEBBY3 1 Division of Earth & Environmental Sciences, Australian Museum, 6 College Street, Sydney NSW 2010, Australia [email protected] 2 Specialist Services Section, Geological Survey of New South Wales, PO Box 76, Lidcombe NSW 2141, Australia [email protected] 3 Centre for Ecostratigraphy & Palaeobiology, Department of Earth & Planetary Sciences, Macquarie University NSW 2109, Australia [email protected] ABSTRACT. Thirty species (representing 19 genera) of Early Ordovician conodonts are described and illustrated from Mount Arrowsmith and Koonenberry Gap in the northwestern part of New South Wales. One new genus, Cooperignathus, and the new species Oepikodus pincallyensis, are established. Acodus sp. cf. emanuelensis predominates in 35 samples from the Tabita Formation and upper beds of the underlying Yandaminta Quartzite at Mount Arrowsmith, associated with ramiform and pectiniform taxa including species of Cooperignathus, Prioniodus, Oepikodus, Erraticodon, and Baltoniodus. The Koonenberry Gap fauna is dominated by coniform species, particularly Protopanderodus nogamii, P. gradatus, and Scolopodus multicostatus. Both faunas span an age range from latest Bendigonian to Chewtonian (evae Zone); their compositional differences are probably related to slight variations in water depths and depositional environments. Species endemic to the shallow water Australian cratonic region, represented by Bergstroemognathus kirki, Triangulodus larapintinensis, Acodus sp. cf. emanuelensis and Prioniodus sp. cf. amadeus, support a correlation with Early Ordovician faunas of central and western Australia, particularly those from the lower Horn Valley Siltstone of the Amadeus Basin.
    [Show full text]
  • (Floian) Conodont Fauna from the Eastern Cordillera of Peru (Central Andean Basin) Geologica Acta: an International Earth Science Journal, Vol
    Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España GUTIÉRREZ-MARCO, J.C.; ALBANESI, G.L.; SARMIENTO, G.N.; CARLOTTO, V. An Early Ordovician (Floian) Conodont Fauna from the Eastern Cordillera of Peru (Central Andean Basin) Geologica Acta: an international earth science journal, vol. 6, núm. 2, junio, 2008, pp. 147-160 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50513115004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.6, Nº 2, June 2008, 147-160 DOI: 10.1344/105.000000248 Available online at www.geologica-acta.com An Early Ordovician (Floian) Conodont Fauna from the Eastern Cordillera of Peru (Central Andean Basin) 1 2 1 3,4 J.C. GUTIÉRREZ-MARCO G.L. ALBANESI G.N. SARMIENTO and V. CARLOTTO 1 Instituto de Geología Económica (CSIC-UCM). Facultad de Ciencias Geológicas 28040 Madrid, Spain. Gutiérrez-Marco E-mail: [email protected] Sarmiento E-mail: [email protected] 2 CONICET-CICTERRA, Museo de Paleontología Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba Casilla de Correo 1598, 5000 Córdoba, Argentina. E-mail: [email protected] 3 INGEMMET Avenida Canadá 1740, San Borja, Lima, Peru. E-mail: [email protected] 4 Departamento de Geología, Universidad Nacional San Antonio Abad del Cusco Avda. de la Cultura 733, Cuzco, Perú ABSTRACT Late Floian conodonts are recorded from a thin limestone lens intercalated in the lower part of the San José For- mation at the Carcel Puncco section (Inambari River), Eastern Cordillera of Peru.
    [Show full text]