Anticoagulation Protocol
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mechanical Circulatory Support As Bridge Therapy for Heart Transplant: Case Series Report Javier D
Garzon‑Rodriguez et al. BMC Res Notes (2018) 11:430 https://doi.org/10.1186/s13104-018-3515-2 BMC Research Notes CASE REPORT Open Access Mechanical circulatory support as bridge therapy for heart transplant: case series report Javier D. Garzon‑Rodriguez1, Carlos Obando‑Lopez2, Manuel Giraldo‑Grueso3* , Nestor Sandoval‑Reyes2, Jaime Camacho2 and Juan P. Umaña2 Abstract Background: Mechanical circulatory support (MCS) represents an efective urgent therapy for patients with cardiac arrest or end-stage cardiac failure. However, its use in developing countries as a bridge therapy remains controversial due to costs and limited duration. This study presents fve patients who underwent MSC as bridge therapy for heart transplantation in a developing country. Case presentation: We present fve patients who underwent MCS as bridge therapy for heart transplant between 2010 and 2015 at Fundación Cardioinfantil-Instituto de Cardiología. Four were male, median age was 36 (23–50) years. One patient had an ischemic cardiomyopathy, one a lymphocytic myocarditis, two had electrical storms (recurrent ventricular tachycardia) and one an ischemic cardiomyopathy with an electrical storm. Extracorporeal life sup‑ port (ECLS) was used in three patients, left ventricular assistance in one, and double ventricular assistance in one (Levitronix® Centrimag®). Median assistance time was 8 (2.5–13) days. Due to the inability of cardiopulmonary bypass weaning, two patients required ECLS after transplant. One patient died in the intensive care unit due to type I graft rejection. Endpoints assessed were 30-day mortality, duration of bridge therapy and complications related to MCS. Patients that died on ECLS, or were successfully weaned of ECLS were not included in this study. -
Periprocedural Management of Oral Anticoagulation
Nicole Hlavacek, PharmD candidate; Drew McMillan, PharmD Periprocedural management candidate; Jeremy Vandiver, PharmD, BCPS University of Wyoming of oral anticoagulation: School of Pharmacy, Laramie (Ms. Hlavacek, Mr. McMillan, and Dr. Vandiver); When and how to hit “pause” Swedish Family Medicine Residency, Littleton, Colo (Dr. Vandiver) Here’s how best to assess patients’ bleeding and [email protected] thrombotic risks and 5 key questions to ask as you The authors reported no consider withholding oral anticoagulants. potential conflict of interest relevant to this article. CASE 1 u PRACTICE Debra P is a 62-year-old African American woman who calls RECOMMENDATIONS your office to report that she has an upcoming routine colo- ❯ Don’t stop oral antico- noscopy planned in 2 weeks. She has been taking warfarin agulation for procedures with for the past 2 years for ischemic stroke prevention secondary minimal bleeding risk, such as minor dermatologic, dental, to atrial fibrillation (AF), and her gastroenterologist recom- or ophthalmic procedures. C mended that she contact her family physician (FP) to discuss periprocedural anticoagulation plans. Ms. P is currently tak- ❯ Reserve periprocedural ing warfarin 5 mg on Mondays, Wednesdays, and Fridays, bridging with a parenteral an- ticoagulant for those patients and 2.5 mg all other days of the week. Her international nor- on warfarin who are at high- malized ratio (INR) was 2.3 when it was last checked 2 weeks est risk for thromboembolism ago, and it has been stable and within goal range for the past (those with severe thrombo- 6 months. Her medical history includes AF, well-controlled philia, active thrombosis, or hypertension, and type 2 diabetes mellitus, as well as gout and mechanical heart valves). -
Role of Thrombin and Thromboxane A2 in Reocclusion Following Coronary
Proc. Natl. Acad. Sci. USA Vol. 86, pp. 7585-7589, October 1989 Medical Sciences Role of thrombin and thromboxane A2 in reocclusion following coronary thrombolysis with tissue-type plasminogen activator (thrombolytic therapy/coronary thrombosis/platelet activation/reperfusion) DESMOND J. FITZGERALD*I* AND GARRET A. FITZGERALD* Divisions of *Clinical Pharmacology and tCardiology, Vanderbilt University, Nashville, TN 37232 Communicated by Philip Needleman, June 28, 1989 (receivedfor review April 12, 1989) ABSTRACT Reocclusion of the coronary artery occurs against the prothrombinase formed on the platelet surface after thrombolytic therapy of acute myocardlal infarction (13) and the neutralization ofheparin by platelet factor 4 (14) despite routine use of the anticoagulant heparin. However, and thrombospondin (15), proteins released by activated heparin is inhibited by platelet activation, which is greatly platelets. enhanced in this setting. Consequently, it is unclear whether To address the role of thrombin during coronary throm- thrombin induces acute reocclusion. To address this possibility, bolysis, we have examined the effect of a specific thrombin we examined the effect of argatroban {MCI9038, (2R,4R)- inhibitor, argatroban {MCI9038, (2R,4R)-4-methyl-1-[N-(3- 4-methyl-l-[Na-(3-methyl-1,2,3,4-tetrahydro-8-quinolinesulfo- methyl-1,2,3,4-tetrahydro-8-quinolinesulfonyl)-L-arginyl]-2- nyl)-L-arginyl]-2-piperidinecarboxylic acid}, a specific throm- piperidinecarboxylic acid} on the response to tissue plasmin- bin inhibitor, on the response to tissue-type plasminogen ogen activator (t-PA) in a closed-chest canine model of activator in a dosed-chest canine model of coronary thrombo- coronary thrombosis. MCI9038, an argimine derivative which sis. MCI9038 prolonged the thrombin time and shortened the binds to a hydrophobic pocket close to the active site of time to reperfusion (28 + 2 min vs. -
Stroke Prevention in Chronic Kidney Disease Disclosures
5/18/2020 Controversies: Stroke Prevention in Chronic Kidney Disease Wei Ling Lau, MD FASN FAHA FACP Assistant Professor, Nephrology University of California, Irvine Visiting Fellow at OptumLabsCOPY Disclosures • Prior or current research funding from NIH, AHA, Sanofi, ZS Pharma, and Hub Therapeutics. • Associate Medical Director for home peritoneal dialysis at Fresenius University Dialysis Center of Orange. • Has beenNOT on Fresenius medical advisory board for Velphoro. • No conflicts of interest relevant to the current talk. Controversies: Stroke prevention in CKD Wei Ling Lau, MD DO 1 5/18/2020 Stroke Prevention in CKD • Blood pressure targets • Antiplatelet agents • Statins • Anticoagulation Controversies: Stroke prevention in CKD Wei Ling Lau, MD COPY BP TARGETS Data is limited, as patients with CKD were historically excluded from clinical trials NOT Whelton 2017 ACC/AHA hypertension guidelines [Hypertension 2018] Controversies: Stroke prevention in CKD Wei Ling Lau, MD DO 2 5/18/2020 Systolic Blood Pressure Intervention Trial SPRINT: BP lowering to <120 vs <140 mmHg significantly lowered rate of CVD composite primary outcome; no clear effect on stroke Controversies: Stroke prevention in CKD The SPRINT Research Group. N Engl J Med 2015 p2103 Wei Ling Lau, MD COPY SPRINT subgroup analysis: CKD • Patients with CKD stage 3‐4 (eGFR of 20 to <60) comprised 28% of the SPRINT study population • Intensive BP management seemed to provide the same benefits for reduction in the CVD composite primary outcomeNOT – but did not impact stroke Controversies: Stroke prevention in CKD Cheung 2017 J Am Soc Nephrol p2812 Wei Ling Lau, MD DO 3 5/18/2020 The hazard of incident stroke associated with systolic BP (SBP) and chronic kidney disease (CKD)BP using and an unadjusted stroke model risk: that contained J‐shaped dummy variables association for CKD and BP groups (A) and a fully adjusted model that contained dummy variables for CKD and BP grou.. -
Organ Transplant Discrimination Against People with Disabilities Part of the Bioethics and Disability Series
Organ Transplant Discrimination Against People with Disabilities Part of the Bioethics and Disability Series National Council on Disability September 25, 2019 National Council on Disability (NCD) 1331 F Street NW, Suite 850 Washington, DC 20004 Organ Transplant Discrimination Against People with Disabilities: Part of the Bioethics and Disability Series National Council on Disability, September 25, 2019 This report is also available in alternative formats. Please visit the National Council on Disability (NCD) website (www.ncd.gov) or contact NCD to request an alternative format using the following information: [email protected] Email 202-272-2004 Voice 202-272-2022 Fax The views contained in this report do not necessarily represent those of the Administration, as this and all NCD documents are not subject to the A-19 Executive Branch review process. National Council on Disability An independent federal agency making recommendations to the President and Congress to enhance the quality of life for all Americans with disabilities and their families. Letter of Transmittal September 25, 2019 The President The White House Washington, DC 20500 Dear Mr. President, On behalf of the National Council on Disability (NCD), I am pleased to submit Organ Transplants and Discrimination Against People with Disabilities, part of a five-report series on the intersection of disability and bioethics. This report, and the others in the series, focuses on how the historical and continued devaluation of the lives of people with disabilities by the medical community, legislators, researchers, and even health economists, perpetuates unequal access to medical care, including life- saving care. Organ transplants save lives. But for far too long, people with disabilities have been denied organ transplants as a result of unfounded assumptions about their quality of life and misconceptions about their ability to comply with post-operative care. -
GTH 2021 State of the Art—Cardiac Surgery: the Perioperative Management of Heparin-Induced Thrombocytopenia in Cardiac Surgery
Review Article 59 GTH 2021 State of the Art—Cardiac Surgery: The Perioperative Management of Heparin-Induced Thrombocytopenia in Cardiac Surgery Laura Ranta1 Emmanuelle Scala1 1 Department of Anesthesiology, Cardiothoracic and Vascular Address for correspondence Emmanuelle Scala, MD, Centre Anesthesia, Lausanne University Hospital (CHUV), Lausanne, Hospitalier Universitaire Vaudois, Rue du Bugnon 46, BH 05/300, 1011 Switzerland Lausanne, Suisse, Switzerland (e-mail: [email protected]). Hämostaseologie 2021;41:59–62. Abstract Heparin-induced thrombocytopenia (HIT) is a severe, immune-mediated, adverse drug Keywords reaction that paradoxically induces a prothrombotic state. Particularly in the setting of ► Heparin-induced cardiac surgery, where full anticoagulation is required during cardiopulmonary bypass, thrombocytopenia the management of HIT can be highly challenging, and requires a multidisciplinary ► cardiac surgery approach. In this short review, the different perioperative strategies to run cardiopul- ► state of the art monary bypass will be summarized. Introduction genicity of the antibodies and is diagnostic for HIT. The administration of heparin to a patient with circulating Heparin-induced thrombocytopenia (HIT) is a severe, im- pathogenic HITabs puts the patient at immediate risk of mune-mediated, adverse drug reaction that paradoxically severe thrombotic complications. induces a prothrombotic state.1,2 Particularly in the setting The time course of HIT can be divided into four distinct of cardiac surgery, where full anticoagulation is required phases.6 Acute HIT is characterized by thrombocytopenia during cardiopulmonary bypass (CPB), the management of and/or thrombosis, the presence of HITabs, and confirma- HIT can be highly challenging, and requires a multidisciplin- tion of their platelet activating capacity by a functional ary approach. -
Use of Left Ventricular Assist Devices As Destination Therapy in End-Stage Congestive Heart Failure: a Systematic Review
Department of Veterans Affairs Health Services Research & Development Service Evidence-based Synthesis Program Use of Left Ventricular Assist Devices as Destination Therapy in End-Stage Congestive Heart Failure: A Systematic Review May 2012 Prepared for: Investigators: Department of Veterans Affairs Principal Investigators: Veterans Health Administration Thomas S. Rector, Ph.D. Quality Enhancement Research Initiative Brent C. Taylor, Ph.D., M.P.H. Health Services Research & Development Service Washington, DC 20420 Research Associates: Nancy Greer, Ph.D. Prepared by: Indulis Rutks, B.S. Evidence-based Synthesis Program (ESP) Center Minneapolis VA Medical Center Minneapolis, MN Timothy J. Wilt, M.D., M.P.H., Director Use of Left Ventricular Assist Devices as Destination Therapy in End-Stage Congestive Heart Failure: A Systematic Review Evidence-based Synthesis Program PREFACE Quality Enhancement Research Initiative’s (QUERI) Evidence-based Synthesis Program (ESP) was established to provide timely and accurate syntheses of targeted healthcare topics of particular importance to Veterans Affairs (VA) managers and policymakers, as they work to improve the health and healthcare of Veterans. The ESP disseminates these reports throughout VA. QUERI provides funding for four ESP Centers and each Center has an active VA affiliation. The ESP Centers generate evidence syntheses on important clinical practice topics, and these reports help: • develop clinical policies informed by evidence, • guide the implementation of effective services to improve patient outcomes and to support VA clinical practice guidelines and performance measures, and • set the direction for future research to address gaps in clinical knowledge. In 2009, the ESP Coordinating Center was created to expand the capacity of QUERI Central Office and the four ESP sites by developing and maintaining program processes. -
Decisional Considerations in Left Ventricular Assist Device for Destination Therapy Megan Laila Morrison a Dissertation Submitte
1 Decisional Considerations in Left Ventricular Assist Device for Destination Therapy Megan Laila Morrison A dissertation Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2016 Reading Committee: Ardith Doorenbos, Chair Barbara McGrath J. Randall Curtis Program Authorized to Offer Degree: School of Nursing 2 © Copyright 2016 Megan L. Morrison 3 University of Washington Abstract Decisional Considerations in Left Ventricular Assist Device for Destination Therapy Megan L. Morrison Chair of the Supervisory Committee: Professor Ardith Z. Doorenbos School of Nursing End-stage heart failure is a growing problem in the United States as well as world-wide. The definitive treatment in heart failure that is refractory to medical treatment is a heart transplant. But there are a limited numbers of hearts available for transplant and a growing number of patients in need. There has recently been tremendous development in the area of mechanical circulatory support. One of these developments is the left ventricular assist device (LVAD). The LVAD is a pump that assists the failing left ventricle of the heart. The LVAD has proven to increase survival and improve symptoms of end-stage heart failure. Initially the LVAD was used to support patients with heart failure to survive to either recovery or heart transplant, thus termed a bridge therapy. But eventually these devices would be implanted without the intent of heart transplant or recovery, becoming known as destination therapy. A third category of LVAD designation is called bridge to candidacy. In this category 4 patients undergo the implantation of the LVAD and then are later determined whether they are appropriate for heart transplant. -
Use of Extracorporeal Membrane Oxygenation in Patients with Acute High-Risk Pulmonary Embolism: a Case Series with Literature Review
Acute and Critical Care 2019 May 34(2):148-154 Acute and Critical Care https://doi.org/10.4266/acc.2019.00500 | pISSN 2586-6052 | eISSN 2586-6060 Use of extracorporeal membrane oxygenation in patients with acute high-risk pulmonary embolism: a case series with literature review You Na Oh1, Dong Kyu Oh1, Younsuck Koh1, Chae-Man Lim1, Jin-Won Huh1, Jae Seung Lee1, Sung-Ho Jung2, Pil-Je Kang2, Sang-Bum Hong1 Departments of 1Pulmonary and Critical Care Medicine and 2Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea Background: Although extracorporeal membrane oxygenation (ECMO) has been used for the treatment of acute high-risk pulmonary embolism (PE), there are limited reports which focus Original Article on this approach. Herein, we described our experience with ECMO in patients with acute high-risk PE. Received: April 10, 2019 Revised: May 16, 2019 Methods: We retrospectively reviewed medical records of patients diagnosed with acute high- Accepted: May 18, 2019 risk PE and treated with ECMO between January 2014 and December 2018. Results: Among 16 patients included, median age was 51 years (interquartile range [IQR], 38 Corresponding author to 71 years) and six (37.5%) were male. Cardiac arrest was occurred in 12 (75.0%) including Sang-Bum Hong two cases of out-of-hospital arrest. All patients underwent veno-arterial ECMO and median Department of Pulmonary and Critical Care Medicine, Asan Medical ECMO duration was 1.5 days (IQR, 0.0 to 4.5 days). Systemic thrombolysis and surgical embo- Center, University of Ulsan College lectomy were performed in seven (43.8%) and nine (56.3%) patients, respectively including of Medicine, 88 Olympic-ro 43-gil, three patients (18.8%) received both treatments. -
Statistical Analysis Plan – Part 1
NCT03251482 Janssen Research & Development Statistical Analysis Plan – Part 1 A Randomized, Double-blind, Double-dummy, Multicenter, Adaptive Design, Dose Escalation (Part 1) and Dose-Response (Part 2) Study to Evaluate the Safety and Efficacy of Intravenous JNJ-64179375 Versus Oral Apixaban in Subjects Undergoing Elective Total Knee Replacement Surgery Protocol 64179375THR2001; Phase 2 JNJ-64179375 Status: Approved Date: 18 October 2017 Prepared by: Janssen Research & Development, LLC Document No.: EDMS-ERI-148215770 Compliance: The study described in this report was performed according to the principles of Good Clinical Practice (GCP). Confidentiality Statement The information in this document contains trade secrets and commercial information that are privileged or confidential and may not be disclosed unless such disclosure is required by applicable law or regulations. In any event, persons to whom the information is disclosed must be informed that the information is privileged or confidential and may not be further disclosed by them. These restrictions on disclosure will apply equally to all future information supplied to you that is indicated as privileged or confidential. 1 Approved, Date: 18 October 2017 JNJ-64179375 NCT03251482 Statistical Analysis Plan - Part 1 64179375THR2001 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................................... 2 LIST OF IN-TEXT TABLES AND FIGURES ............................................................................................... -
Interactions with COUMADIN
Interactions with COUMADIN INDICATIONS • have kidney problems • take other medicines that increase your risk of COUMADIN® (warfarin sodium) is a prescription medicine used bleeding, including: to treat blood clots and to lower the chance of blood clots – a medicine that contains heparin forming in your body. Blood clots can cause a stroke, heart – other medicines to prevent or treat blood clots attack, or other serious conditions if they form in the legs or – non-steroidal anti-inflammatory drugs (NSAIDs) lungs. COUMADIN may have been prescribed to help you: • take warfarin sodium for a long time. Warfarin sodium is • Reduce your risk of forming blood clots if you have had a the active ingredient in COUMADIN. heart-valve replacement or if you have an irregular, rapid Call your doctor or seek immediate medical care heartbeat, called atrial fibrillation if you have any of the following signs or symptoms • Lower the risk of death if you’ve had a heart attack, as of bleeding: well as lowering your risk of having another heart attack, • pain, swelling, or discomfort stroke, and having blood clots move to another part of • headaches, dizziness, or weakness your body • unusual bruising (bruises that develop without known It is not known if COUMADIN is safe and effective in children. cause or grow in size) • nosebleeds or bleeding gums IMPORTANT SAFETY INFORMATION • bleeding from cuts takes a long time to stop • menstrual bleeding or vaginal bleeding that is heavier COUMADIN® (warfarin sodium) can cause bleeding than normal which can be serious -
AHS Provincial High-Alert Medication List
Provincial High-alert Medication List Classes/Categories of Medications Specific Medications adrenergic agonists: IV (e.g., epiNEPHrine, ePHEDrine, isoproterenol, magnesium sulfate injection PHENYLephrine, norepinephrine, doBUTamine, doPAMine, salbutamol) methotrexate: oral for non-oncologic adrenergic antagonists: IV (e.g., propranolol, metoPROLOL, labetalol, use esmolol) nitroprusside sodium for injection anesthetic agents: general, inhaled and IV (e.g., propofol, ketamine, sevoflurane, isoflurane, desflurane, etomidate) opium tincture antiarrhythmics: IV (e.g., lidocaine, amiodarone, procainamide, oxytocin: IV adenosine, bretylium, ibutilide) potassium chloride for injection: antithrombotic agents: concentrate anticoagulants (e.g., warfarin, acenocoumarol, tinzaparin, potassium phosphates injection enoxaparin, dalteparin, danaparoid, unfractionated heparin, sodium citrate) promethazine: IV factor Xa inhibitors (e.g., fondaparinux, rivaroxaban) vasopressin: IV or intraosseous direct thrombin inhibitors (e.g., apixaban, argatroban, bivalirudin, dabigatran) thrombolytics (e.g., alteplase, tenecteplase) glycoprotein IIb/IIIa inhibitors (e.g.,eptifibitide, tirofiban, abciximab) cardioplegic solutions chemotherapeutic agents: parenteral and oral dextrose: 20% or greater (hypertonic) dialysis solutions: peritoneal and hemodialysis The following medications are also epidural or intrathecal medications associated with higher risk and must inotropic medications: IV (e.g., digoxin, milrinone) comply with the segregated storage and labelling