Bacterial Biofilm Within Diseased Pancreatic and Biliary Tracts

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial Biofilm Within Diseased Pancreatic and Biliary Tracts 388 PANCREAS Gut: first published as 10.1136/gut.2004.043059 on 11 February 2005. Downloaded from Bacterial biofilm within diseased pancreatic and biliary tracts A Swidsinski, P Schlien, A Pernthaler, U Gottschalk, E Ba¨rlehner, G Decker, S Swidsinski, J Strassburg, V Loening-Baucke, U Hoffmann, D Seehofer, L P Hale, H Lochs ............................................................................................................................... Gut 2005;54:388–395. doi: 10.1136/gut.2004.043059 Background: Bacterial community structures in human pancreatic and biliary tracts were evaluated. Methods: Gall bladder stones from 153 patients, 20 gall bladder walls, six common duct stones, 52 biliary stents, 21 duodenal biopsies, nine pancreatic duct biopsies, and five bile ducts were investigated using fluorescence in situ hybridisation (FISH) with ribosomal RNA targeted Cy3/Cy5 (carbocyanine) labelled See end of article for authors’ affiliations oligonucleotide probes. ....................... Result: Duodenal, gall bladder, and bile duct walls were free of bacteria. A dense multispecies bacterial biofilm was present within the pancreatic duct of patients with calcific pancreatitis and within biliary stents, Correspondence to: Dr A Swidsinski, Innere irrespective of diagnosis. The concentration, density, and amenability of the biofilm to FISH and DNA Klinik, Gastroenterologie, staining declined progressively with the grade of stent occlusion. The lowest detectable bacterial Charite´, 10098 Berlin, concentrations were found by FISH in completely occluded stents and brown/mixed gall stones. Bacteria Germany; alexander.swidsinski@ were not detectable with FISH in cholesterol gall stones. charite.de Conclusions: A wide range of different branches and groups of bacteria participate in the development of biofilms on the surfaces of foreign bodies, such as biliary stents, mixed gall stones, or calcific pancreatic Revised version received ducts, but not on the surface of pure cholesterol gall stones. Occlusion of stents leads to progressive 21 April 2004 Accepted for publication extinction of the biofilm and mummification of its components. Deposition of cholesterol or other 26 May 2004 substances within the biofilm matrix may be a novel mechanism of host defence against bacteria present in ....................... these biofilms. acterial biofilms are increasingly identified as a source of endoscopically removed common duct stones were also many recalcitrant bacterial infections such as perio- studied. In addition, we studied 52 endoscopically removed dontal disease, endocarditis, chronic obstructive lung biliary stents, 12 corresponding duodenal biopsies, nine B 12 disease, foreign body related infections, etc. Gall stones are pancreatic duct and corresponding nine duodenal biopsies http://gut.bmj.com/ naturally occurring foreign bodies. The incidence, distribu- from patients with calcific pancreatitis, and five common bile tion, and impact of bacteria in gall stone formation are poorly ducts from patients operated on for cholangiocarcinoma. All understood. Currently accepted concepts of bacterial involve- patients with chronic pancreatitis had strictures of the ment are derived mainly from culture studies from the 1960s, pancreatic duct and had undergone previous manipulations, supported by electron microscopy studies34 and molecular- such as sphincterotomy in all and endoprosthesis placement genetic methods using polymerase chain reaction (PCR), in four. None had pancreatic surgery. with subsequent cloning and sequencing in the 1990s.5 The main disadvantage of both culture and PCR techniques on September 23, 2021 by guest. Protected copyright. Tissue preparation is that they do not provide any information about spatial Surgically removed gall bladders and biopsies of the organisation of the bacteria either to each other or to the pancreas, duodenum, and bile duct tissues were fixed in surface to which the biofilm is attached. They are therefore of Carnoy solution7 and initially sent to the Department of limited use in evaluation of complex biofilms. Pathology for histological investigation. Thereafter paraffin Our aims were to study the composition and spatial blocks of these tissues were subjected to FISH evaluation. organisation of bacterial biofilms on the surface of duodenal, pancreatic, and bile duct epithelium within biliary stents, common duct/gall bladder stones, and on the gall bladder Gall stone processing wall. We used fluorescence in situ hybridisation (FISH) with All gall stones were placed in 10% neutral buffered formalin rRNA targeted fluorescent probes at the domain and group immediately after surgery. A total of 132 patients had levels6 to assess the potential impact of bacteria in stent cholesterol gall stones (cholesterol content .70%), 19 had obliteration and gall stone pathogenesis. mixed pigment gall stones (cholesterol content 30–70%), and two had brown pigment gall stones (,30% cholesterol). Four of the six common duct gall stones were mixed cholesterol METHODS All human samples were removed for clinical indications, and gall stones and two were brown pigment gall stones. A 100 mg section of gall stone was crushed in 1.5 ml of represented in most cases material that would otherwise have been discarded. The use of this histological material for physiological saline and vigorously shaken for five minutes. The mixture was centrifuged at 700 for 30 seconds. Then, research aims and obtaining additional duodenal biopsies g was approved by the Institutional Human Research Committee of the Charite Hospital and all patients gave Abbreviations: Cy3/Cy5, different carbocyanine dyes used in written informed consent. fluorescence microscopy to label the oligonucleotide probes; DAPI, 4,6- Investigations were performed on gall bladder stones from diamidino-2-phenylindole; FISH, fluorescence in situ hybridisation; PCR, 153 patients. Twenty corresponding gall bladder walls and six polymerase chain reaction www.gutjnl.com Biliary and pancreatic biofilms 389 Table 1 Fluorescence in situ hybridisation probes Gut: first published as 10.1136/gut.2004.043059 on 11 February 2005. Downloaded from Name Target Reference No Eub338 Virtually all Bacteria, Kingdom (Eu)Bacteria 9 Alf1b Alpha group of Proteobacteria: Rhodobacter, Acetobacter, Paracoccus, 10 Beta42a Beta subclass of Proteobacteria: Rhodocyclus, Bordetella, Neisseria, Thiobacillus, Alcaligenes, and other 10 Gam42a Gamma subclass of Proteobacteria: Enterobacteriaceae, Proteus, Legionella, Azotobacter 10 Ec1531 Escherichia coli 11 Srb385 Sulphate reducing bacteria 12 Hpy-1 Helicobacter pylori epsilon subclass of Proteobacteria 13 Arc1430 Arcobacter sp epsilon subclass of Proteobacteria 8 HGC Gram positive bacteria with high G+C content: Actinobacteria 14 LGC Gram positive bacteria with low G+C content: Firmicutes 15 Sfb Segmented filamentous bacteria 16 Erec482 Clostridium coccoides-Eubacterium rectale group 17 Chis150 Clostridium histolyticum group 17 Clit135 Clostridium. lituseburense group 17 Lab158 Lactobacillus and Enterococcus group 18 Strc493 Streptococcus 17 Ecyl Eubacterium biforme, Clostridium innocuum, and other 19 Phasco Acidaminococcus fermentans and other 19 Veil Veillonella group 19 Rbvo,Rfla Ruminococcus flavefaciens, Clostridium leptum 19 Bif164 Bifidobacterium 20 Ato291 Atopobium, Coriobacterium, Eggerthell,andCollinsella spp 21 CF319a Cytophaga-Flavobacterium group 22 Bac303 Bacteroides/Prevotella group 22 Bfra602 Bacteroides fragilis group 17 Bdis656 Bacteroides distasonis group 17 Fprau645 Fusobacterium prausnitzii group 23 Non338 Nonsense probe was used to test for non-specific binding 10 750 ml of supernatant were taken, added to 750 ml of fresh volume of the stent piece. The volume of extracted sludge physiological saline, shaken, and centrifuged once more for was divided by the inside volume of the stent to quantify the 30 seconds. Then, 750 ml of supernatant were centrifuged at grade of stent occlusion. Stents with a sludge volume ,30% 6500 g for 10 minutes. The precipitate was resuspended in of stent volume were classified as narrowed. Stents with a 75% ethanol and stored at 220˚C. The remnants of the stones sludge volume of 30–70% were considered partially occluded. and intact stones were stored in absolute alcohol at 220˚C The stent portion was defined as occluded if the sludge and used to prepare smears and slices. volume was .70% of stent volume. Bacteria were extracted from the sludge and stored http://gut.bmj.com/ Biliary stents according to the protocol used for extraction of bacteria from Removed undamaged biliary stents (Wilson-Cook Medical, gall stones. Limerick, Ireland) were placed in 10% neutral buffered A 3 mm section of the adjacent liver ends and duodenal formalin. Two 2 cm pieces were cut off from the liver and ends of the biliary stents were cut and embedded in paraffin duodenal ends of the stent and inspected for signs of for further investigation of bacterial biofilm. occlusion. Physiological saline (2 ml) was passed by syringe through the lumen of the 2 cm stent pieces. The volume of FISH on September 23, 2021 by guest. Protected copyright. the collected sludge was measured. To estimate the inside Fluorescence in situ hybridisation was performed on glass volume of the stent piece, the stent piece was dipped in a dish slides.8 Oligonucleotide probes were synthesised with a Cy3 of water. One of the ends of the stent piece was closed under or Cy5 (carbocyanine) reactive fluorescent dye at the 59 end the water surface. The stent
Recommended publications
  • Actinobacteria and the Vitamin Metabolism of Firebugs
    Actinobacteria and the Vitamin Metabolism of Firebugs - Characterizing a mutualism's specificity and functional importance - Seit 1558 Dissertation To Fulfill the Requirements for the Degree of „Doctor of Philosophy“ (PhD) Submitted to the Council of the Faculty of Biology and Pharmacy of the Friedrich Schiller University Jena by M.S. Hassan Salem Born on 16.01.1986 in Cairo, Egypt i Das Promotionsgesuch wurde eingereicht und bewilligt am: Gutachter: 1) 2) 3) Das Promotionskolloquium wurde abgelegt am: ii To Nagla and Samy, for ensuring that life’s possibilities remain endless To Aly, for sharing everything* And to Aileen, my beloved HERC2 mutant * Everything except our first Gameboy (circa 1993). For all else, I am profoundly grateful. i ii CONTENTS LIST OF PUBLICATIONS ................................................................................................... 1 CHAPTER 1: SYMBIOSIS AND THE EVOLUTION OF BIOLOGICAL NOVELTY IN INSECTS ............................................................................................................................ 3 1.1 The organism in the age of the holobiont: It, itself, they .................................................. 3 1.2 Adaptive significance of symbiosis .................................................................................. 4 1.3 Symbiont-mediated diversification ................................................................................... 5 1.4 Revisiting Darwin’s mystery of mysteries: The role of symbiosis in species formation 6 1.5 Homeostasis of symbioses
    [Show full text]
  • Microbiome of Odontogenic Abscesses
    microorganisms Article Microbiome of Odontogenic Abscesses Sebastian Böttger 1,* , Silke Zechel-Gran 2, Daniel Schmermund 1, Philipp Streckbein 1 , Jan-Falco Wilbrand 1 , Michael Knitschke 1 , Jörn Pons-Kühnemann 3, Torsten Hain 2,4, Markus Weigel 2 , Hans-Peter Howaldt 1, Eugen Domann 4,5 and Sameh Attia 1 1 Department of Oral and Maxillofacial Surgery, Justus-Liebig-University Giessen, University Hospital Giessen and Marburg, Giessen, D-35392 Giessen, Germany; [email protected] (D.S.); [email protected] (P.S.); [email protected] (J.-F.W.); [email protected] (M.K.); [email protected] (H.-P.H.); [email protected] (S.A.) 2 Institute of Medical Microbiology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany; [email protected] (S.Z.-G.); [email protected] (T.H.); [email protected] (M.W.) 3 Institute of Medical Informatics, Justus-Liebig-University Giessen, D-35392 Giessen, Germany; [email protected] 4 German Center for Infection Research (DZIF), Justus-Liebig-University Giessen, Partner Site Giessen-Marburg-Langen, D-35392 Giessen, Germany; [email protected] 5 Institute of Hygiene and Environmental Medicine, Justus-Liebig-University Giessen, D-35392 Giessen, Germany * Correspondence: [email protected]; Tel.: +49-641-98546271 Abstract: Severe odontogenic abscesses are regularly caused by bacteria of the physiological oral Citation: Böttger, S.; Zechel-Gran, S.; microbiome. However, the culture of these bacteria is often prone to errors and sometimes does not Schmermund, D.; Streckbein, P.; result in any bacterial growth.
    [Show full text]
  • Novel Molecular, Structural and Evolutionary Characteristics of the Phosphoketolases from Bifidobacteria and Coriobacteriales
    RESEARCH ARTICLE Novel molecular, structural and evolutionary characteristics of the phosphoketolases from bifidobacteria and Coriobacteriales Radhey S. Gupta*, Anish Nanda, Bijendra Khadka Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 Members from the order Bifidobacteriales, which include many species exhibiting health a1111111111 promoting effects, differ from all other organisms in using a unique pathway for carbohydrate metabolism, known as the ªbifid shuntº, which utilizes the enzyme phosphoketolase (PK) to carry out the phosphorolysis of both fructose-6-phosphate (F6P) and xylulose-5-phosphate (X5P). In contrast to bifidobacteria, the PKs found in other organisms (referred to XPK) are OPEN ACCESS able to metabolize primarily X5P and show very little activity towards F6P. Presently, very lit- Citation: Gupta RS, Nanda A, Khadka B (2017) tle is known about the molecular or biochemical basis of the differences in the two forms of Novel molecular, structural and evolutionary PKs. Comparative analyses of PK sequences from different organisms reported here have characteristics of the phosphoketolases from bifidobacteria and Coriobacteriales. PLoS ONE 12 identified multiple high-specific sequence features in the forms of conserved signature (2): e0172176. doi:10.1371/journal.pone.0172176 inserts and deletions (CSIs) in the PK sequences that clearly distinguish the X5P/F6P phos- Editor: Eugene A. Permyakov, Russian Academy of phoketolases (XFPK) of bifidobacteria from the XPK homologs found in most other organ- Medical Sciences, RUSSIAN FEDERATION isms. Interestingly, most of the molecular signatures that are specific for the XFPK from Received: December 12, 2016 bifidobacteria are also shared by the PK homologs from the Coriobacteriales order of Acti- nobacteria.
    [Show full text]
  • Impact of the Interplay Between Bile Acids, Lipids, Intestinal Coriobacteriaceae and Diet on Host Metabolism
    Technische Universität München ZIEL – Zentralinstitut für Ernährungs- und Lebensmittelforschung Nachwuchsgruppe Intestinales Mikrobiom Impact of the interplay between bile acids, lipids, intestinal Coriobacteriaceae and diet on host metabolism Sarah Just Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. rer. nat. Siegfried Scherer Prüfer der Dissertation: 1. Prof. Dr. rer. nat. Dirk Haller 2. Prof. Dr. rer. nat. Martin Klingenspor Die Dissertation wurde am 14.02.2017 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 12.06.2017 angenommen. Abstract Abstract The gut microbiome is a highly diverse ecosystem which influences host metabolism via for instance via conversion of bile acids and production of short chain fatty acids. Changes in gut microbiota profiles are associated with metabolic diseases such as obesity, type-2 diabetes, and non-alcoholic fatty liver disease. However, beyond alteration of the ecosystem structure, only a handful of specific bacterial species were shown to influence host metabolism and knowledge about molecular mechanisms by which gut bacteria regulate host metabolism are scant. The family Coriobacteriaceae (phylum Actinobacteria) comprises dominant members of the human gut microbiome and can metabolize cholesterol-derived substrates such as bile acids. Furthermore, their occurrence has been associated with alterations of lipid and cholesterol metabolism. However, consequences for the host are unknown. Hence, the aim of the present study was to characterize the impact of Coriobacteriaceae on lipid, cholesterol, and bile acid metabolism in vivo.
    [Show full text]
  • Quantification of Slackia and Eggerthella Spp. in Human Feces
    fmicb-07-00658 May 5, 2016 Time: 16:44 # 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 09 May 2016 doi: 10.3389/fmicb.2016.00658 Quantification of Slackia and Eggerthella spp. in Human Feces and Adhesion of Representatives Strains to Caco-2 Cells Gyu-Sung Cho1, Felix Ritzmann2, Marie Eckstein2, Melanie Huch2, Karlis Briviba3, Diana Behsnilian4, Horst Neve1 and Charles M. A. P. Franz1* 1 Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany, 2 Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany, 3 Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Edited by: Federal Research Institute of Nutrition and Food, Karlsruhe, Germany, 4 Department of Food Technology and Bioprocess Andrea Gomez-Zavaglia, Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany Center for Research and Development in Food Cryotechnology – Consejo Nacional Eggerthella and Slackia spp. are gut associated bacteria that have been suggested to De Investigaciones Científicas Y play roles in host lipid and xenobiotic metabolism. A quantitative PCR method for the Técnicas, Argentina selective enumeration of bacteria belonging to either the genus Eggerthella or Slackia Reviewed by: was developed in order to establish the numbers of these bacteria occurring in human Paula Carasi, Universidad Nacional de La Plata, feces. The primers developed for selective amplification of these genera were tested first Argentina in conventional PCR to test for their specificity.
    [Show full text]
  • Sequence Analysis of Percent G+ C Fraction Libraries of Human Faecal
    BMC Microbiology BioMed Central Research article Open Access Sequence analysis of percent G+C fraction libraries of human faecal bacterial DNA reveals a high number of Actinobacteria Lotta Krogius-Kurikka1, Anna Kassinen1, Lars Paulin2, Jukka Corander3, Harri Mäkivuokko4,6, Jarno Tuimala5 and Airi Palva*1 Address: 1Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, PO Box 66, FI-00014 University of Helsinki, Finland, 2DNA Sequencing Laboratory, Institute of Biotechnology, University of Helsinki, Finland, 3Department of Mathematics, Åbo Akademi University, Finland, 4Danisco Innovation, Kantvik, Finland, 5CSC – Scientific Computing Ltd, Espoo, Finland and 6The Finnish Red Cross, Blood Service, Helsinki, Finland Email: Lotta Krogius-Kurikka - [email protected]; Anna Kassinen - [email protected]; Lars Paulin - [email protected]; Jukka Corander - [email protected]; Harri Mäkivuokko - [email protected]; Jarno Tuimala - [email protected]; Airi Palva* - [email protected] * Corresponding author Published: 8 April 2009 Received: 16 December 2008 Accepted: 8 April 2009 BMC Microbiology 2009, 9:68 doi:10.1186/1471-2180-9-68 This article is available from: http://www.biomedcentral.com/1471-2180/9/68 © 2009 Krogius-Kurikka et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The human gastrointestinal (GI) tract microbiota is characterised by an abundance of uncultured bacteria most often assigned in phyla Firmicutes and Bacteroidetes. Diversity of this microbiota, even though approached with culture independent techniques in several studies, still requires more elucidation.
    [Show full text]
  • Genomic and Phenotypic Description of the Newly Isolated Human Species Collinsella Bouchesdurhonensis Sp Nov
    Genomic and phenotypic description of the newly isolated human species Collinsella bouchesdurhonensis sp nov. Melhem Bilen, Mamadou Beye, Maxime Descartes Mbogning Fonkou, Saber Khelaifia, Frederic Cadoret, Nicholas Armstrong, Thi Tien Nguyen, Jeremy Delerce, Ziad Daoud, Didier Raoul, et al. To cite this version: Melhem Bilen, Mamadou Beye, Maxime Descartes Mbogning Fonkou, Saber Khelaifia, Frederic Cadoret, et al.. Genomic and phenotypic description of the newly isolated human species Collinsella bouchesdurhonensis sp nov.. MicrobiologyOpen, Wiley, 2018, 7 (5), pp.e00580. 10.1002/mbo3.580. hal-02004009 HAL Id: hal-02004009 https://hal.archives-ouvertes.fr/hal-02004009 Submitted on 10 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Received: 8 September 2017 | Revised: 15 November 2017 | Accepted: 21 November 2017 DOI: 10.1002/mbo3.580 ORIGINAL RESEARCH Genomic and phenotypic description of the newly isolated human species Collinsella bouchesdurhonensis sp. nov.
    [Show full text]
  • Enorma Massiliensis Gen. Nov., Sp. Nov
    Standards in Genomic Sciences (2013) 8:290-305 DOI:10.4056/sigs.3426906 Non contiguous-finished genome sequence and description of Enorma massiliensis gen. nov., sp. nov., a new member of the Family Coriobacteriaceae Ajay Kumar Mishra1*, Perrine Hugon1*, Jean-Christophe Lagier1,Thi-Tien Nguyen1, Carine Couderc1, Didier Raoult1 and Pierre-Edouard Fournier1¶ 1Aix-Marseille Université, URMITE, Marseille, France Corresponding author: Pierre-Edouard Fournier ([email protected]) *These two authors contributed equally to this work. Keywords: Enorma massiliensis, genome, culturomics, taxono-genomics. Enorma massiliensis strain phIT is the type strain of E. massiliensis gen. nov., sp. nov., the type species of a new genus within the family Coriobacteriaceae, Enorma gen. nov. This strain, whose genome is described here, was isolated from the fecal flora of a 26-year-old woman suffering from morbid obe- sity. E. massiliensis strain phIT is a Gram-positive, obligately anaerobic bacillus. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,280,571 bp long genome (1 chromosome but no plasmid) exhibits a G+C content of 62.0% and contains 1,901 protein-coding and 51 RNA genes, including 3 rRNA genes. Introduction Enorma massiliensis strain phIT (= CSUR P183 = and may not be of any routine use in clinical la- DSMZ 25476) is the type strain of E. massiliensis boratories. As a consequence, we recently pro- gen. nov., sp. nov, which, in turn, is the type spe- posed a polyphasic approach [6-17] to describe cies of the genus Enorma gen. nov. This bacterium new bacterial taxa, in which the complete genome was isolated from the stool of a 26-year-old wom- sequence and MALDI-TOF of the protein spectrum an suffering from morbid obesity as part of a would be used together with their main phenotyp- culturomics study aimed at individually cultivat- ic characteristics (habitat, Gram staining, culture ing all of the bacterial species within human feces and metabolic characteristics and, when applica- [1].
    [Show full text]
  • Composition and Function of the Microbiotas in the Different Parts Of
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 117: 352–371, 2020 http://www.eje.cz doi: 10.14411/eje.2020.040 ORIGINAL ARTICLE Composition and function of the microbiotas in the different parts of the midgut of Pyrrhocoris sibiricus (Hemiptera: Pyrrhocoridae) revealed using high-throughput sequencing of 16S rRNA RONGRONG LI 1, *, MIN LI 1 , *, JIANG YAN 1 and HUFANG ZHANG 2, ** 1 Taiyuan Normal University, Jinzhong, Shanxi 030619, China; e-mails: [email protected], [email protected], [email protected] 2 Xinzhou Teachers University, Xinzhou, Shanxi 034000, China; e-mail: [email protected] Key words. Pyrrhocoridae, Pyrrhocoris sibiricus, digestion, gut microbiota, community structure, functional profi ling, next- generation sequencing, 16S rRNA gene Abstract. In pyrrhocorids, digestion of food occurs mainly in the midgut, which is divided into four parts (M1–M4), and takes be- tween three and four days. Food is retained in M1 for about 5 h and passes quickly through M4. However, food is retained in M2 and M3 much longer, about 70 to 90 h. The different stages in digestion may be infl uenced by different microbial populations in the different parts of the midgut. In the present study, the microbiota in the four parts of the midgut of Pyrrhocoris sibiricus were analysed in detail using high-throughput sequencing of the 16S rRNA V3–V4 region. The most abundant bacteria in M3 were Actinobacteria (Coriobacteriaceae) whereas it was Proteobacteria (gammaproteobacteria) in M1, M2 and M4. Actinobacteria was the second most abundant bacterial group in M2. According to the PCA analysis, M2 and M3 have the most similar bacterial com- munities.
    [Show full text]
  • Direct Link to Fulltext
    IDENTIFICATION OF MICROBIAL COMMUNITY COLONIZING THE GUT OF DYSDERCUS CINGULATUS FABRICIUS (HEMIPTERA: PYRRHOCORIDAE) Shama Uzmi1, C. Shruthi Sureshan1,3, Sewali Ghosh2 & S. K. M. Habeeb1,3* Address(es): 1Department of Bioinformatics, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai – 603203. 2Department of Advance Zoology and Biotechnology, Guru Nanak College, Velachery, Chennai – 600042. 3Entomoinformatics Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai – 603203. *Corresponding author: [email protected] , [email protected] doi: 10.15414/jmbfs.2019/20.9.3.496-501 ARTICLE INFO ABSTRACT Received 18. 10. 2018 Red cotton stainer Dysdercus cingulatus sucks the sap of cotton plant and hence considered as one of the serious pests of cotton across Revised 10. 5. 2019 the globe. Gut microbial community of this pest was studied using 16srRNA variable regions (V3 & V4) using Illumina MiSeq Accepted 12. 5. 2019 technology. Totally 11, 0,797 reads were obtained which were processed using QIIME pipeline. This study resulted in the identification Published 1. 12. 2019 of gut microbiota of D. cingulatus categorized into 34 different phyla, 88 classes, 132 classes, 206 families and 336 genera. Phylum level taxonomic classification identifies bacteria predominantly from Proteobacteria (46.7%), Actinobacteria (25.7%) and Firmicutes (18%). Species from the genus Coriobacterium, Bifidobacterium, Corynebacterium, Klebsiella & Pseudomonas are most abundant in Regular article the gut of D. cingulatus. Insights into the gut can help us to understand the role of microorganism which dismantles the plant. Keywords: Cotton Pest, Dysdercus cingulatus, 16s rRNA, Gut Microbiome, Bioinformatics, NGS MiSeq INTRODUCTION Dively, 2014).
    [Show full text]
  • Geographical and Ecological Stability of the Symbiotic Midgut Microbiota in European Firebugs, Pyrrhocoris Apterus (Hemiptera, P
    Molecular Ecology (2012) 21, 6134–6151 doi: 10.1111/mec.12027 Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae) SAILENDHARAN SUDAKARAN,* HASSAN SALEM,* CHRISTIAN KOST†‡ and MARTIN KALTENPOTH* *Max Planck Research Group Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany, †Experimental Ecology and Evolution Research Group, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany, ‡Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany Abstract Symbiotic bacteria often play an essential nutritional role for insects, thereby allowing them to exploit novel food sources and expand into otherwise inaccessible ecological niches. Although many insects are inhabited by complex microbial communities, most studies on insect mutualists so far have focused on single endosymbionts and their interactions with the host. Here, we provide a comprehensive characterization of the gut microbiota of the red firebug (Pyrrhocoris apterus, Hemiptera, Pyrrhocoridae), a model organism for physiological and endocrinological research. A combination of several culture-independent techniques (454 pyrosequencing, quantitative PCR and cloning/sequencing) revealed a diverse community of likely transient bacterial taxa in the mid-gut regions M1, M2 and M4. However, the completely anoxic M3 region har- boured a distinct microbiota consisting of facultative and obligate anaerobes including Actinobacteria (Coriobacterium glomerans and Gordonibacter sp.), Firmicutes (Clostri- dium sp. and Lactococcus lactis) and Proteobacteria (Klebsiella sp. and a previously undescribed Rickettsiales bacterium). Characterization of the M3 microbiota in differ- ent life stages of P. apterus indicated that the symbiotic bacterial community is verti- cally transmitted and becomes well defined between the second and third nymphal instar, which coincides with the initiation of feeding.
    [Show full text]
  • Impact of the Interplay Between Bile Acids, Lipids, Intestinal Coriobacteriaceae and Diet on Host Metabolism
    Technische Universität München ZIEL – Zentralinstitut für Ernährungs- und Lebensmittelforschung Nachwuchsgruppe Intestinales Mikrobiom Impact of the interplay between bile acids, lipids, intestinal Coriobacteriaceae and diet on host metabolism Sarah Just Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. rer. nat. Siegfried Scherer Prüfer der Dissertation: 1. Prof. Dr. rer. nat. Dirk Haller 2. Prof. Dr. rer. nat. Martin Klingenspor Die Dissertation wurde am 14.02.2017 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 12.06.2017 angenommen. Abstract Abstract The gut microbiome is a highly diverse ecosystem which influences host metabolism via for instance via conversion of bile acids and production of short chain fatty acids. Changes in gut microbiota profiles are associated with metabolic diseases such as obesity, type-2 diabetes, and non-alcoholic fatty liver disease. However, beyond alteration of the ecosystem structure, only a handful of specific bacterial species were shown to influence host metabolism and knowledge about molecular mechanisms by which gut bacteria regulate host metabolism are scant. The family Coriobacteriaceae (phylum Actinobacteria) comprises dominant members of the human gut microbiome and can metabolize cholesterol-derived substrates such as bile acids. Furthermore, their occurrence has been associated with alterations of lipid and cholesterol metabolism. However, consequences for the host are unknown. Hence, the aim of the present study was to characterize the impact of Coriobacteriaceae on lipid, cholesterol, and bile acid metabolism in vivo.
    [Show full text]