Exploding stars and the synthesis of heavy elements Artemis Spyrou

Artemis Spyrou, BNL, June 2021, Slide 1 Overview

• Heavy Element Synthesis • R-process • Nuclear Physics Input • Current Experiments • New Opportunities • Future - FRIB

Credit: Erin O’Donnel, MSU

Artemis Spyrou, BNL, June 2021, Slide 2 Elements in nature

1 2 H He 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 11 12 13 14 15 16 17 18 Na Mg Al Si P S Cl Ar 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pd Bi Po At Rn 87 88 89 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 Fr Ra Ac Rf Ha Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og

58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Artemis Spyrou, BNL, June 2021, Slide 3 Elements in nature

1 2 H He 3 Li

BANG

Artemis Spyrou, BNL, June 2021, Slide 4 Elements in nature

1 The rest… made in stars!!! 2 H He 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 11 12 13 14 15 16 17 18 Na Mg Al Si P S Cl Ar 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr BANGY Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pd Bi Po At Rn 87 88 89 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 Fr Ra Ac Rf Ha Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og

58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Artemis Spyrou, BNL, June 2021, Slide 5 Elements in nature

1 The rest… made in stars!!! 2 H He 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 11 12 How can we13 tell?14 15 16 17 18 Na Mg Al Si P S Cl Ar 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pd Bi Po At Rn 87 88 89 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 Fr Ra Ac Rf Ha Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og

58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Artemis Spyrou, BNL, June 2021, Slide 6 How Can We Tell?

Light from a red giant (s-process):

Star contains Technetium (Tc) !!! (heavy element Z=43, T1/2 = 4 Million years Merrill 1952) Paul Merrill, Mount Wilson Observatory

Merril 1952: “It is surprising to find an unstable element in the stars” …“(1) A stable isotope (of technetium) actually exists although not yet found on Earth; or (2) S-type stars somehow produce technetium as they go along; or (3) S-type stars represent a comparatively transient phase of stellar existence”

Artemis Spyrou, BNL, June 2021, Slide 7 Nuclear Landscape p-process s-process r-process SNII or SNIa? AGB stars SNII or NS mergers?

91Mo 92Mo 93Mo 94Mo 95Mo 96Mo 97Mo 98Mo 99Mo 100Mo 101Mo Proton Number Proton

Neutron Number

Credit: Erin O’Donnell, MSU

Credit: NASA Goddard Artemis Spyrou, BNL, June 2021, Slide 8 Nucleosynthesis paths

processprocess p s r process Margaret Burbidge 56 Fe Geoffrey Burbidge William A. Fowler Fred Hoyle From M. Wiescher, JINA web B2FH, 1957

Stellar burning

pp chain

From St. John’s College, University of Cambridge

Artemis Spyrou, BNL, June 2021, Slide 9 s/r-process paths and abundances

s process r process

Sneden, C., Cowan, J. J., & Gallino, R., Ann. Rev. Ast. Ap. 46 (2008) 241.

Artemis Spyrou, BNL, June 2021, Slide 10 R-Process Simulation

Made with SkyNet by Jonas Lippuner Artemis Spyrou, BNL, June 2021, Slide 11 Kilonova in GW170817 Star Merger

“Red” component: Heavy r-process elements Lanthanides Blue component: Infrared Light r-process elements Longer-lasting Optical Bright and brief Strontium observation

Credit: NASA Goddard Watson et al., Nature 2019 days

Kasen et al., Nature 2017 Kilpatrick, et al, Science 2017 Artemis Spyrou, BNL, June 2021, Slide 12 More observations

Uncertain nuclear physics data limit our confidence in this conclusion

Artemis Spyrou, BNL, June 2021, Slide 13 r-process in neutron-star mergers

• What is needed?

-process path

Simplistic r

Artemis Spyrou, BNL, June 2021, Slide 14 r-process in neutron-star mergers

• What is needed?

β- decay

(γ,n) βn decay

(n,γ)

-process path

Simplistic r

Fission

Artemis Spyrou, BNL, June 2021, Slide 15 What’s known?

• masses • beta-decay rates • beta-delayed neutron emission probabilities • neutron capture rates

r-process path

• fission rates • fission product distributions • neutrino interaction rates • Equation of state figure by M. Mumpower

Artemis Spyrou, BNL, June 2021, Slide 16 Current (n,γ) measurements

Artemis Spyrou, BNL, June 2021, Slide 17 The trouble with Neutron Capture Reactions

o Regular kinematics • Measuring Neutron Capture

light beam reactions on short-lived nuclei heavy nucleus (target) is challenging • Cannot make a neutron target o Inverse kinematics • Cannot make a target out of a short-lived isotope heavy beam • Need indirect techniques heavy recoil Light target

Artemis Spyrou, BNL, June 2021, Slide 18 Neutron capture reactions

Z=28

N=50

N=40

• Variation of theoretical predictions using TALYS code, changing model parameters • Predictions diverge moving away from stability

Artemis Spyrou, BNL, June 2021, Slide 19 R-process sensitivity to neutron captures

Monte-Carlo variations of (n,γ) rates within a factor 100 – 10 – 2 light – darker – dark bands

Liddick, Spyrou, et al., PRL 2016 Artemis Spyrou, BNL, June 2021, Slide 20 R-process sensitivity to neutron captures

Main r-process Neutron-star merger

Supernova

Mumpower et. al., PPNP 86 (2016) 86 Weak r-process

Surman, et al., , AIPLiddick Advances, Spyrou, 4, 041008et al., PRL (2014) 2016 Artemis Spyrou, BNL, June 2021, Slide 21 Neutron Capture – Uncertainties

Hauser – Feshbach (Statistical Model) (n,γ) • Nuclear Level Density (NLD) Dominate uncertainties • γ-ray strength function (γSF) (A-1, Z) Large uncertainties • Optical model potential further from stability γ

β-Oslo collaboration: (A, Z) • Liddick, Spyrou (MSU) • Larsen, Guttormsen (Oslo) β-Oslo method: • Combine traditional Oslo Method with Total Absorption Spectroscopy • Use β-decay to populate the compound nucleus of interest • Advantage: study nuclei far from stability

Artemis Spyrou, BNL, June 2021, Slide 22 Neutron Capture – Indirect studies (d,p) (3He,3He) (p,t) (3He,4He) 4 (p, He) β- (n,γ) (A, Z-1)

(A-1, Z) =11.2 s T 1/2 γ 69Ni 70Ni β- (n,γ) 70Co (A, Z) • Populate the compound nucleus via β-decay •Need: • Study nuclei far from stability ü Radioactive Beam • Feasible with low beam intensities ü Segmented γ-ray calorimeter

Spyrou, Liddick, Larsen, Guttormsen, et al, PRL2014

Artemis Spyrou, BNL, June 2021, Slide 23 Michigan State University National Superconducting Cyclotron Laboratory

Artemis Spyrou, BNL, June 2021, Slide 24 Coupled Cyclotron Facility

Example: 86Kr → 78Ni K500 ion sources

coupling 86Kr14+, line 12 MeV/u K1200 A1900 focal plane

Δp/p = 5% production transmission stripping 86Kr34+, target foil of 65% of the 140 MeV/u produced 78Ni wedge fragment yield after target fragment yield after wedge fragment yield at focal plane

Artemis Spyrou, BNL, June 2021, Slide 25 National Superconducting Cyclotron Lab

ReAccelerator Facility

“Stopped beam area”

Slow Gas Stopper Reaccelerated

Fast

Artemis Spyrou, BNL, June 2021, Slide 26 Summing NaI – SuN and friends SuN γ-Total Absorption Spectrometer

SuNTAN Tape Transport System Design by LSU and ANL

Fiber Detector β-detection

Hope College DSSD Implantation-decay correlation A. Simon, S.J. Quinn, A.S., et al., Nucl. Instr. Meth A 703, 16 (2013)

Artemis Spyrou, BNL, June 2021, Slide 27 Weak r-process measurements

R. Surman, et al., , AIP Advances 4, 041008 (2014) TALYS upper/lower limits 68 69 SuN - middle value Ni(n,γ) Ni SuN - upper/lower limits ) 7 -1 10 BRUSLIB mol

-1 REACLIB - rath s 3

106

105 Reaction Rate (cm

Spyrou, Larsen, et al, JPG 2017 104 −1 10 69 70 1 BRUSLIB 10 7 69Ni(n,γ) Ni rate70 T (GK) 10 Ni(n,γ) Ni JINA REACLIB ) -1 mol

-1 6

s 10 3 (cm

73 74 〉 Zn(n,γ) Zn v σ 〈

A Impact on weak r-process 105 N abundance calculations

10-1 1 T (109 K) Liddick, Spyrou, et al, PRL 2016 Lewis, et al, Submitted 2018. Artemis Spyrou, BNL, June 2021, Slide 28 β-Oslo @ MSU

Alex Stephanie Dombos, Lyons, MSU MSU

Andrea Richard, MSU Adriana Ureche, UC Berkeley Katie Childers, MSU Caley Becky Lewis,Mallory Harris, MSU Smith, MSU Debra MSU Richman, MSU

Artemis Spyrou, BNL, June 2021, Slide 29 Current Reach

r-process path

figure by M. Mumpower

Artemis Spyrou, BNL, June 2021, Slide 30 Facility for Rare Isotope Beams

• Facility for Rare Isotope Beams (FRIB) Project constructs a $730 million scientific user facility funded by the Department of Energy Office of Science (DOE-SC), Michigan State University, and the State of Michigan – DOE-SC $635.5 million – State of Michigan $94.5 million • Planned FRIB completion date is June 2022, managing to early completion in 2021 • Upon FRIB completion, NSCL stops operation and FRIB Laboratory starts operation as a DOE-SC scientific user facility for world-class rare isotope research supporting the mission of the Office of Nuclear Physics in DOE-SC

Artemis Spyrou, BNL, June 2021, Slide 31 Facility for Rare Isotope Beams, FRIB Michigan State University Campus

Artemis Spyrou, BNL, June 2021, Slide 32 Summary - Conclusions

• Nuclear structure and reactions are important input in astrophysical calculations

• New techniques to solve the problem of unconstrained neutron-capture reactions far from stability

• FRIB will bring new capabilities and access to a lot more exotic nuclei

Artemis Spyrou, BNL, June 2021, Slide 33 Collaboration

B. Crider S.N. Liddick K. Cooper A.C. Larsen A.C. Dombos M. Guttormsen R. Lewis T. Renstrøm D.J. Morrissey S. Siem F. Naqvi L. Crespo-Campo C. Prokop S.J. Quinn C.S. Sumithrarachchi R.G.T. Zegers A. Couture S. Mosby

A. Simon I. Dillman G. Perdikakis S. Nikas D. Muecher D. L. Bleuel

Artemis Spyrou, BNL, June 2021, Slide 34